Center for Service Marketing at Arizona State University (United States),
University of Karlstad (Sweden) and the First Insurance
This volume represents the cooperative efforts of the Service Research

Bengt-Owe Gustavsson
University of Karlstad
Bo Edvardsson
University of Karlstad
Bertil Gummeson
Arizona State University
Stephen W. Brown

Edited by

Multinational Perspectives
Multidisciplinary and Multi-Methodological Approaches to Service Quality
Introduction

Cerdal R. F. Faulhaber

Franklin Allen

Quality Control in the Service Firm

and Consumer Learning
In this section, the model is extended to include three factors:

- **Product Quality**: The quality of the product is a crucial factor in customer satisfaction. Higher-quality products tend to have fewer defects, leading to higher customer satisfaction and loyalty.
- **Price**: The price of the product is another significant factor. Customers are more likely to be satisfied with products that offer good value for money.
- **Customer Service**: Effective customer service can help resolve any issues customers may have, leading to increased satisfaction.

The model suggests that these three factors interact to influence customer satisfaction and loyalty, which in turn impact customer retention and overall sales performance.
The equilibrium price of a good machine is determined from equations (7) and (8), which are:

\[
\begin{align*}
\max \mathbb{E}[Z] &= \frac{1}{b'} \quad \Rightarrow \\
0 &= (9')^{\text{Y}}(w-1) + (9')^{\text{Y}} w + (9')^{\text{Y}} b = (9')^{\text{Y}} Z
\end{align*}
\]

Expected profits for the firm from a machine of type \(1 \text{ or } 2\) are

\[
(1) \quad \text{a} - (1)^{\text{Y}} w = \text{a} - (1)^{\text{Y}} w = d - (1)^{\text{Y}} w
\]

First, let's consider production, i.e., replace price = \(w'\) of the demand price as \(w'\). When the equilibrium price of the good machine exceeds both zero and the total value of the good machine, the firm produces a machine to be of type 1.

\[
(1) \quad (w-1) + w = w
\]

Observe that if the price of the second period, \(0 = (\text{Y})\), is zero, then the price of the machine in the first period, \(w'\), is equal to the sum of the first and second periods.

\[
\begin{align*}
\text{Expected profits for the firm from a machine of type } 1 \\
&= (w-1) + (w-1)^{\text{Y}} = \frac{e}{b'}
\end{align*}
\]
A comparison of parts 1, 2, and 3 of Proposition 1 shows the steps in the derivation of the process involved in the feedback loop of quality control. The final outcome of the process is a measure of the quality of the output. This measure is compared with a standard, and if the output is below the standard, corrective action is taken.

In a recent study, zero-defects competitive markets were observed. The study found that when firms invest in quality control, they achieve higher profits than when they do not. This is because firms that invest in quality control are able to meet customer expectations, leading to increased sales and profits.

The study also found that the optimal profit is when the firm invests in quality control and the customer is willing to pay a premium for a product that meets the quality standard. This result is consistent with previous studies that have found a positive relationship between quality and profitability.

In conclusion, quality control is an important factor in determining a firm's profitability. Firms that invest in quality control are able to meet customer expectations, leading to increased sales and profits. Therefore, firms should focus on quality control in order to increase their profitability.
These results can be summarized as follows.

Figure 19.1. Expected profits for a good machine conditional on success.

The zero-profit condition is

\[\eta \left(\theta, q \right) = 0 \]

The zero-profit condition is

\[\eta \left(d, q \right) = 0 \]

\[\left(d^{\theta - 1} + \frac{d^{q - 1}}{d^{\theta - q}} \right) q + 0 = 0 \]

The zero-profit condition is

\[\eta \left(d, q \right) = 0 \]

\[\left(d^{\theta - 1} + \frac{d^{q - 1}}{d^{\theta - q}} \right) q + 0 = 0 \]

The zero-profit condition is

\[\eta \left(d, q \right) = 0 \]

\[\left(d^{\theta - 1} + \frac{d^{q - 1}}{d^{\theta - q}} \right) q + 0 = 0 \]

The zero-profit condition is

\[\eta \left(d, q \right) = 0 \]

\[\left(d^{\theta - 1} + \frac{d^{q - 1}}{d^{\theta - q}} \right) q + 0 = 0 \]

The zero-profit condition is

\[\eta \left(d, q \right) = 0 \]

\[\left(d^{\theta - 1} + \frac{d^{q - 1}}{d^{\theta - q}} \right) q + 0 = 0 \]
I. The results of the empirical study of two-process confirm.

Figure 19-2: Expected profile of quality control

Conclusion

Contribution points a function of quality control

Proposition 1:

Proposition 2: