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Abstract

Habit utility has been the focus of a large and growing body of literature in financial economics
study investigates ways of accurately and efficiently solving the Campbell and Cochrane [1999.
of Political Economy 107, 205–251] external habit model. Solutions for this model based on a g
values for the state variable are shown to converge as the grid becomes increasingly fine. Conve
substantially faster if the price–dividend ratio is computed as a series of “zero-coupon equity” claims
than as the fixed point of the Euler equation. Fitting the model to the term structure as well as to
moments (as in [Wachter, J.A., 2005. A consumption-based model of the term structure of intere
Journal of Financial Economics, in press]) also results in faster convergence.
 2005 Elsevier Inc. All rights reserved.
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Introduction

Habit utility has been the focus of a large and growing body of literature in financial
nomics.Constantinides (1990)andSundaresan (1989)show that habit preferences, which assu
an agent’s previous consumption affects his utility from current consumption, can help e
the high equity premium documented byMehra and Prescott (1985). Abel (1990)shows that pref
erences where the agent evaluates consumption relative to past aggregate consumption (“
up with the Joneses”) can also help resolve the equity premium puzzle. In both types of m
consumption is evaluated relative to a time-varying reference point, however, in the Abel
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this reference point is external in that the agent’s current consumption choice does no
future utility. For this reason, “catching up with the Joneses” preferences are sometimes r
to as external habit formation. Building on these contributions,Campbell and Cochrane (199
show that a model where utility is a function of consumption minus external habit is capa
reconciling the low standard deviation of consumption growth with a high equity premium,
volatility of returns, and a low and smooth riskfree rate. Recently, external habit models
been extended to address a broad range of phenomena (see, e.g.,Abel (1999), Brandt and Wang
(2003), Buraschi and Jiltsov (2003), Campbell and Cochrane (2000), Chan and Kogan (2002,
Dai (2000), Lettau and Uhlig (2000), Menzly et al. (2004), Pastor and Veronesi (2005), Wachter
(2005)), and tested in a variety of ways (see, e.g.,Chen and Ludvigson (2003), Duffee (2004),
Gomes and Michaelides (2003), Korniotis (2005), Li (2001), Tallarini and Zhang (2005)). Given
the enduring interest in external habit models, it is important to investigate ways of solving
models accurately and efficiently.

This study focuses on the external habit model ofCampbell and Cochrane (1999)and its
extension inWachter (2005). Both papers solve for the price–dividend ratio by iterating on a
of values for the state variable. While choosing a grid that is too coarse can lead to inaccu
this study shows that for both calibrations of the model (Campbell and Cochrane; Wa
the solution for the price–dividend ratio converges as the grid becomes finer. Converge
substantially faster if the price–dividend ratio is computed as a series of “zero-coupon e
claims, rather than as the fixed point of the Euler equation. Fitting the model to the term str
as well as to equity moments (as inWachter (2005)) also results in faster convergence.

The remainder of this paper is organized as follows. Section1 briefly describes the mode
for the representative agent and the aggregate endowment. Section2 describes the solution tech
niques explored in this paper, Section3 the calibration, and Section4 the results. Extensions t
the basic model are considered inAppendices A and B.

1. Model

This section briefly describes the external habit model ofCampbell and Cochrane (1999)and
its extension inWachter (2005). Identical investors are assumed to have utility over consump
relative to a reference pointXt :

(1)E

∞∑
t=0

δt (Ct − Xt)
1−γ − 1

1− γ
,

whereδ > 0 is the time preference parameter andγ > 0 is the curvature parameter. Habit,Xt , is
defined through surplus consumptionSt , where

St ≡ Ct − Xt

Ct

.

It is assumed thatst = lnSt follows the process

(2)st+1 = (1− φ)s̄ + φst + λ(st )
(
�ct+1 − E(�ct+1)

)
,

where s̄ is the unconditional mean ofst , φ is the persistence, andλ(st ) is the sensitivity to
changes in consumption. In what follows,s̄ andλ(st ) will be specified in terms of the primitiv
parameters. Aggregate consumptionCt follows a random walk:

(3)�ct+1 = g + vt+1,
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wherect = lnCt andvt+1 is aN(0, σ 2
v ) shock that is independent across time.

The process forst is heteroscedastic and perfectly conditionally correlated with innova
in consumption growth. The sensitivity functionλ(st ) is specified so that the real riskfree rate
linear and that forst ≈ s̄, xt is a deterministic function of past consumption. These considera
imply that

(4)λ(st ) = (1/S̄)
√

1− 2(st − s̄) − 1,

(5)S̄ = σv

√
γ

1− φ − b/γ
,

whereb is a preference parameter that determines the behavior of the riskfree rate. In ord
the quantity within the square root remains positive,λ(st ) is set to be 0 whenst > smax, for

(6)smax= s̄ + 1

2

(
1− S̄2).

In Campbell and Cochrane (1999), b is chosen to be zero to produce a constant real risk
rate.Wachter (2005)shows that values ofb > 0 allow the model to capture aspects of the te
structure of interest rates.

Because habit is external, the investor’s intertemporal marginal rate of substitution is gi

(7)Mt+1 ≡ δ

(
St+1

St

Ct+1

Ct

)−γ

.

Any asset returnRt+1 must satisfy

(8)Et [Mt+1Rt+1] = 1.

LetRf

t+1 denote the one-period real riskfree rate betweent andt +1, andrf

t+1 = lnR
f

t+1. Because

R
f

t+1 is known att , applying(8) implies

(9)r
f

t+1 = ln
(
1/Et [Mt+1]

)
(10)= − ln δ + γg + γ (1− φ)(s̄ − st ) − γ 2σ 2

v

2

(
1+ λ(st )

)2
.

Strictly speaking,(10) is an approximation, as it assumes there is a zero probability ofst rising
abovesmax. Becausest > smax occurs very rarely for relevant parameter values, the approx
tion in (10) is highly accurate, as shown in what follows. Substituting the equation forλ(st ) into
(10)produces the equation

(11)r
f

t+1 = − ln δ + γg − γ (1− φ) − b

2
+ b(s̄ − st ).

Thus(4) implies a riskfree rate that is linear inst .
The aggregate market is represented as the claim to the future consumption streamPt

denotes the ex-dividend price of this claim, then(8) implies that in equilibriumPt satisfies

Et

[
Mt+1

(
Pt+1 + Ct+1

Pt

)]
= 1,

which can be rewritten as

(12)Et

[
Mt+1

(
Pt+1 + 1

)
Ct+1

]
= Pt

.

Ct+1 Ct Ct
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BecauseCt is the dividend paid by the aggregate market,Pt/Ct is the price–dividend ratio.1

The model is simulated by drawing from the consumption process(3), feeding these draw
through(2) to obtain draws forst , and then using thest values to obtain draws for the riskfre
rate and the price–dividend ratio. Returns on the aggregate market are simulated using

(13)Rm
t+1 = (Pt+1/Ct+1) + 1

Pt/Ct

Ct+1

Ct

.

Whatever difficulties lie in solving the model lie in solving(12) for the price–dividend ratio as
function ofst , and, to a lesser extent, solving(9) for the riskfree rate.

2. Solution methods

The riskfree rate can be computed directly by solving the expectation in(9), where

(14)Et [Mt+1] = δe−γ (g+(1−φ)(s̄−st ))

∞∫
−∞

p(v)e−γ (λ(st )+1)v dv,

andp(v) is the probability density function of a normal distribution with mean zero and stan
deviationσv .2 Computing the price–dividend ratio is less straightforward. One method, us
Campbell and Cochrane (1999)and referred to here as thefixed-point method, involves solving
(12) recursively. Conjecturing a solutionG0(st ), G1(st ) is obtained on a grid of values forst as

G1(st ) = Et

[
Mt+1

(
G0(st+1) + 1

)Ct+1

Ct

]

= δe(1−γ )g−γ (1−φ)(s̄−st )

(15)×
∞∫

−∞
p(v)e(1−γ )v−γ λ(st )v

(
G0((1− φ)s̄ + φst + λ(st )v

) + 1
)
dv.

More generally, givenGk , Gk+1 satisfies

1 It is possible to model aggregate dividends as separate from aggregate consumption.Campbell and Cochrane (199
introduce a dividend processDt , wheredt = lnDt and explore a model with

�dt+1 = g + wt+1,

wherewt+1 is correlated withvt+1. Wachter (2000), following Campbell (1986)andAbel (1999), allows dividends to
be a levered claim on consumption:

Dt = Cθ
t .

Prices for these claims can be determined by straightforward modifications to(12). Both have the potential disadvanta
that the consumption–dividend ratio is non-stationary: either the claim to dividends or the claim to consumption
ally takes over the economy. An alternative is to assume that consumption and dividends are co-integrated.Appendix A
shows how to modify(12) to such a model.

2 Solving this integral requires a choice of bounds on the shock, as well as a choice of numerical integration
Here, and in the rest of this paper, Gauss–Legendre 40-point quadrature is used, and the integral is bounded b−8 and
+8 standard deviations. Increasing the number of standard deviations in the integral has a negligible effect on th
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Gk+1(st ) = δe(1−γ )g−γ (1−φ)(s̄−st )

×
∞∫

−∞
p(v)e(1−γ )v−γ λ(st )v

(
Gk

(
(1− φ)s̄ + φst + λ(st )v

) + 1
)
dv.

The procedure is repeated untilGk+1 andGk differ by at most 10−4. The resulting fixed poin
is the solutionG(st ) to (12). Chen et al. (2004)show that this recursive definition of th
price–dividend ratio is well defined, continuous, and smooth in a wide interval. Each s
this recursion requires computing the function obtained in the previous step at a set of
{(1 − φ)s̄ + φst + vj } (where {vj } is determined by the numerical integration routine)
each value ofst . These points generally lie outside of the grid. To evaluateGk at these points
Campbell and Cochrane (1999)use log-linear interpolation. That is, they assume that lnGk is
approximately linear in lnst .

A second way of solving for the price–dividend ratio also takes(12) as the starting point
Iterating(12)N times produces

(16)GN(st ) =
N∑

n=1

Et

[(
n∏

j=1

Mt+j

)
Ct+n

Ct

]
+ Et

[(
N∏

j=1

Mt+j

)
Ct+N

Ct

G0(st+N)

]
,

whereMt+j ≡ δ
( St+j

St+j−1

Ct+j

Ct+j−1

)−γ for j � 1. Assuming one has chosen an initialG0 such that

lim
N→∞Et

[(
N∏

j=1

Mt+j

)
Ct+N

Ct

G0(st+N)

]
= 0,

(16) implies a convenient characterization of the price–dividend ratio as an infinite sum
pectations:

(17)G(st ) ≡ lim
N→∞GN(st ) =

∞∑
n=1

Et

[(
n∏

j=1

Mt+j

)
Ct+n

Ct

]
.

Each term in(17) is the time-t price of a claim to the aggregate dividendn periods from now
divided by the dividend today. This can be thought of as “zero-coupon equity” with maturin.

Equation(17) suggests another way of solving for the price–dividend ratio: computing
expectation on the right-hand side of(17), or at least enough terms so that what remain
sufficiently small. This can be done recursively, using the Euler equation(8). Let Fn(st ) denote
thenth term in this expectation:

(18)Fn(st ) = Et

[(
n∏

j=1

Mt+j

)
Ct+n

Ct

]
.

Fn(st )Ct is then the price of zero-coupon equity that matures inn periods. Because this secur
pays no dividends, its one-period return equals

Rn,t+1 = Fn−1(st+1)Ct+1

Fn(st )Ct

and(8) implies

(19)Fn(st ) = Et

[
Mt+1

Ct+1
Fn−1(st+1)

]
.

Ct
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Finally, when the equity matures it pays the aggregate dividend. ThereforeF0(st ) = 1.3 Finally,

G(st ) =
∞∑

n=1

Fn(st ).

Similar computations to solve for the aggregate price–dividend ratio have been employedAng
and Liu (2004), Bekaert et al. (2004), andLettau and Wachter (2005).

Iterating on(19) (usingF0(st ) = 1 to start the process), and summing the terms is a se
method of solving for the price–dividend ratio of the aggregate market. I call this theseries
method. Like the fixed-point method, the series method must also be implemented nume
The recursion(19) has no closed-form solution, and is solved on a grid of values forst . Given
Fn−1(st ),

Fn(st ) = δe(1−γ )g−γ (1−φ)(s̄−st )

∞∫
−∞

p(v)e(1−γ )v−γ λ(st )vFn−1
(
(1− φ)s̄ + φst + λ(st )v

)
dv.

As in the fixed-point method,Fn−1((1− φ)s̄ + φst + v) is found by interpolating between gr
points.

These calculations rely on numerical methods to evaluate the solution for the price–di
ratio. Having a closed-form solution would obviate the need for these methods, but suc
lution is not apparent. The lack of an explicit expression does not arise from the assump
discrete time, asAppendix Bshows. While the stochastic discount factorMt+1, as well as the
riskfree raterf

t+1 share certain similarities with continuous-time, affine term structure mode
the Cox et al. (1985)form they are in fact quite different. In continuous time, a version of
formula(10) for the riskfree rate is exact rather than approximate. However, this is a minor
as the discussion below makes clear. The solution for zero-coupon claims satisfies a diff
equation inst and the maturity, but this differential equation does not have an exponential-
solution.4

3. Calibration

To address the accuracy of the fixed-point and series methods, it is necessary to cho
sonable parameter values. Two sets of parameter values are considered. The first set
Campbell and Cochrane (1999). Campbell and Cochrane choose this set of parameters to fi
mean and volatility of consumption growth, the average riskfree rate, the Sharpe ratio, a
persistence of the price–dividend ratio in annual data from 1947 until 1995. The parameb is
set to zero, and therefore the (real) riskfree rate is constant. Campbell and Cochrane calcu
price–dividend ratio using the fixed-point method, simulate the model at a monthly frequ
and aggregate the data to an annual frequency.

The second set of parameters is fromWachter (2005). Wachter chooses this set to fit the sa
equity moments as in Campbell and Cochrane, but in quarterly data from 1952 until 2004. A
important difference is thatb is allowed to differ from zero to match the upward-sloping yi
curve for nominal Treasury bonds. This choice of parameters is shown to account for feat

3 These relations can also be derived directly from(18).
4 Menzly et al. (2004)specify a different process for surplus consumptionSt . In their specification, it is possible t

find a closed-form solution in continuous time.
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Table 1
Parameter choices

CC value Wachter valu

Mean consumption growth (%)g 1.89 2.20
Standard deviation of consumption growth (%)σv 1.50 0.86
Utility curvatureγ 2.00 2.00
Coefficient on−st in the riskfree rateb 0.00 0.011
Habit persistenceφ 0.87 0.89
Discount rateδ 0.90 0.93

Note. This table reports the assumed parameters inCampbell and Cochrane (1999)(CC) andWachter (2005). The CC
specification is simulated at a monthly frequency while the Wachter specification is simulated at a quarterly fre
Parameters are annualized, e.g., 12g,

√
12σ , φ12 andδ12 for the CC values, and 4g, 2σ , φ4 andδ4 for the Wachter

values.

the term structure of interest rates. This model is simulated at a quarterly frequency. Pa
values for both calibrations are reported inTable 1.

4. Results

To assess the accuracy of the fixed-point and series methods, I first calculate the solutio
each method using three different grids, and under both theCampbell and Cochrane (1999)and
Wachter (2005)calibrations. The first grid (“Grid 1”) is identical to that used by Campbell
Cochrane. To form this grid, 12 points are chosen at equally spaced intervals between
Smax. Smax is included in the grid for a total of 13 points. Zero is not included because log-l
interpolation requires taking the log ofSt . To capture non-linear behavior of the price–divide
ratio nearSmax, additional points are added at intervals of 0.01, for a total of 17 grid points.5

The second grid (“Grid 2”) starts with Grid 1 and extends it to include values ofSt closer to
zero by adding points 0.0005, 0.0015, 0.0025, 0.0035, and 0.0045. Finally, the third grid
3”) is finer and includes values much closer to zero. This grid is constructed in two pa
upper segment and a lower segment. The upper segment consists of 101 equally space
St between 0 andSmax with Smax included. The lower segment consists of 900 logarithmic
spaced points between the lowest point in the upper segment (e.g., ln 0.0072 for the Campbe
and Cochrane parameter values), and−300.

Figure 1illustrates the solution for the price–dividend ratio computed using each m
(fixed-point or series) and each grid. The top panel shows results forCampbell and Cochran
(1999)parameter values and the bottom panel shows results forWachter (2005)parameter values
Triangles denote the solution obtained with the fixed-point method; circles denote the s
obtained with the series method. Symbols are decreasing in size from the coarsest grid
to the finest grid (Grid 3). For the Campbell and Cochrane parameter values, the solutio
same for the fixed-point and the series method as long as the finest grid is used. Howe
coarser grids produce solutions for the price–dividend ratio that are different from one an
and different from the solution produced by the finest grid. These differences are substa
smaller for the series method as compared to the fixed-point method.

The bottom panel ofFig. 1shows analogous results for parameter values fromWachter (2005).
Once again, the solution is the same whether one uses the fixed-point or series method

5 For example, for the Campbell and Cochrane calibration, the valuesSt included in Grid 1 are [0.0072 0.0144 0.02
0.0289 0.0361 0.0433 0.0506 0.0578 0.0650 0.0722 0.0794 0.0867 0.0902 0.0911 0.0920 0.0930 0.0939].
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Fig. 1. The price–dividend ratio as a function of surplus consumptionSt under Grids 1 (coarse), 2, and 3 (fine). F
denotes the fixed-point method and Ser. denotes the series method.

as the finest grid is used. Moreover, the series method produces accurate solutions for
grids at these parameter values. Slight inaccuracies are present for the fixed-point metho
Grids 1 and 2 are used, but on the whole the differences for the solutions across grids and m
are small.

Figure 1shows that the solution for the price–dividend ratio depends on the choice of
Tables 2 and 3show the consequences of this dependence for statistics in simulated data. F
sets of parameters, I simulate 100,000 years of data.Table 2reports results for theCampbell and
Cochrane (1999)calibration: the equity premiumE(rm − rf ), whererm = lnRm, the standard
deviation ofrm −rf and the Sharpe ratio (the equity premium divided by the standard devia
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Table 2
Simulation results:Campbell and Cochrane (1999)calibration

Moment/Grid Fixed point Series Data

1 2 3 1 2 3

E(rm − rf ) (%) 6.59 5.18 3.89 4.44 4.19 3.90 6.69
σ(rm − rf ) (%) 15.05 11.80 8.23 9.51 9.00 8.25 15.70
Sharpe ratio 0.44 0.44 0.47 0.47 0.47 0.47 0.43
Skewness 0.26 0.12 0.04 0.07 0.06 0.04 −0.53
Kurtosis 4.58 3.87 3.37 3.49 3.44 3.37 3.35
E(rf ) (%) 0.94 0.94 0.94 0.94 0.94 0.94 0.94
exp{E(p − d)} 18.62 24.35 34.66 29.30 31.43 34.52 24.70
σ(p − d) 0.27 0.21 0.13 0.16 0.15 0.13 0.26
Corr(p − d) 0.86 0.85 0.84 0.84 0.84 0.84 0.87

Notes. 100,000 years of artificial data are simulated based on the Campbell and Cochrane calibration inTable 1for the
fixed-point and series methods, and for Grids 1 (coarse), 2, and 3 (fine) as described in Section4. The model is simulated
at a monthly frequency and results are aggregated to an annual frequency. Data moments are calculated using a
from 1947 to 1995.

Table 3
Simulation results:Wachter (2005)calibration

Moment/Grid Fixed point Series Data

1 2 3 1 2 3

E(rm − rf ) (%) 5.86 5.43 5.64 5.65 5.64 5.65 5.21
σ(rm − rf ) (%) 17.24 16.07 16.10 16.14 16.11 16.14 15.93
Sharpe ratio 0.34 0.34 0.35 0.35 0.35 0.35 0.33
Skewness 0.33 0.32 0.33 0.33 0.33 0.33 −0.95
Kurtosis 4.04 3.86 3.83 3.83 3.83 3.83 4.91
E(rf ) (%) 1.47 1.47 1.47 1.47 1.47 1.47 1.46
exp{E(p − d)} 20.68 22.31 21.39 21.34 21.35 21.33 31.50
σ(p − d) 0.34 0.31 0.31 0.31 0.31 0.31 0.33
Corr(p − d) 0.97 0.97 0.97 0.97 0.97 0.97 0.97

Notes. 400,000 quarters of artificial data are simulated based on the Wachter calibration inTable 1for the fixed-point and
series methods, and for Grids 1 (coarse), 2, and 3 (fine) as described in Section4. The model is simulated at a quarter
frequency. Results are reported in annual terms (expected returns are multiplied by 4, and the standard de
returns is multiplied by 2). Data moments are calculated using quarterly data from 1952 to 2004.

This table also reports the skewness and kurtosis of returns, the mean of the riskfree rate
mean, standard deviation, and persistence of the log of the price–dividend ratio.

As Table 2shows, the differences in the price–dividend ratio across grids lead to notic
differences in simulated data. The first column contains results using Grid 1 and the fixed
method.6 The Sharpe ratio is 0.44, the equity premium is 6.6% per annum and the volati
excess returns is 15%. The standard deviation of the price–dividend ratio is 0.27. When G
used with the fixed-point method, the Sharpe ratio is 0.47, the equity premium is 3.9%, a
volatility is 8.2%. The standard deviation of the price–dividend ratio is 0.13.

Table 2also shows that results in simulated data are virtually identical for the fixed-poin
series methods, as long as the finest grid (Grid 3) is used. As inFig. 1, the series method give
more accurate results than the fixed-point method. Using Grid 1, for example, the equity pr

6 Slight differences fromCampbell and Cochrane (1999)are due to simulation noise.



J.A. Wachter / Finance Research Letters 2 (2005) 210–226 219

rences
kfree
the
s
ced by
the
puted
ative

is
ishable
e model
atio.
spects of

and that

as the
iently
) and

rrors.
ese di-
n upper
nd
nd the

density
d
g as
value,
gment.
lution
tracted
d us-
t
re

e grid
and the
density
m value
lue of

e

ution
d

under the series method is 4.4%, close to 3.9%, its value under Grid 3. Although diffe
in grids imply differences in equity moments, they do not result in differences for the ris
rate. Under theCampbell and Cochrane (1999)calibration, the riskfree rate is constant, so
mean of the riskfree rate is identically equal to its value. AsTable 2shows, this value is alway
0.94, regardless of which method or grid is used (indeed, 0.94 is also the value produ
the approximation(10)). It is not surprising that the choice of grid and method matters for
computation of the price–dividend ratio and not for the riskfree rate. The riskfree rate is com
using only one integral, while the price–dividend ratio is computed iteratively. This iter
procedure allows small errors to compound.

Table 3contains analogous results for theWachter (2005)calibration. The series method
again more accurate than the fixed-point method, and in fact the results are indistingu
across all three grids when the series method is applied. At these parameter values, th
can match the equity premium, return volatility, and the volatility of the price–dividend r
Wachter shows that these parameter values also enable the model to capture important a
the term structure of interest rates. However, as noted byTallarini and Zhang (2005), this type of
model produces returns that are skewed in the opposite direction as returns in the data,
exhibit less kurtosis than in the data.

I now turn to the question of whether the solution for the price–dividend ratio converges
grid becomes increasingly fine. This is important in establishing both that Grid 3 is suffic
fine (i.e. constructing an even finer grid would not produce a substantially different solution
as a means of determining how coarse the grid can be without producing unacceptable e

To address the question of convergence, grids are varied along three dimensions. Th
mensions are suggested by the construction of Grid 3. As described above, Grid 3 has a
and a lower segment. The upper segment consists of equally spaced points between 0 aSmax.
The lower segment consists of logarithmically spaced points between a minimum value a
natural log of the lowest point in the upper segment. When viewed as a grid onSt , the resulting
grid is evenly spaced in the upper segment, and more dense in the lower segment, with the
increasing asSt declines to zero. When viewed as a grid onst = lnSt , the grid is evenly space
in the lower segment, and more dense in the upper segment, with the density increasinst
rises towardsmax. To assess convergence, the grids are varied by decreasing the minimum
increasing the density of the lower segment, and increasing the density of the upper se
For each grid and method, the solution for the price–dividend ratio is compared to the so
computed using Grid 3 and the corresponding method. More precisely, the solution is sub
from the solution computed using Grid 3. This quantity is divided by the solution compute
ing Grid 3 and multiplied by 100. For purposes of comparison the solutions are evaluated asmax.
Repeating the exercise usings̄ rather thansmax yields results that are nearly identical; they a
omitted for brevity.

Figure 2shows the results of altering the minimum value, keeping other aspects of th
the same as in Grid 3 (the number of points in the upper segment is maintained at 100
number of points in the lower segment is set at three times the minimum value, so that the
remains constant even as the minimum value changes). The least fine grid has a minimu
of zero, so there are no points in the lower segment. The finest grid has a minimum va
−300, and so is equal to Grid 3. The top graph shows results for theCampbell and Cochran
(1999)parameter values and the bottom graph shows results for theWachter (2005)parameter
values. Thex-axis is in terms of the log of the minimum value. This figure shows that the sol
converges to its Grid-3 value as the minimum value approaches−300 for both calibrations an
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ds with
circles

times the
at

od and,
thod.
pper

s to the
Fig. 2. Percent difference in the price–dividend ratio between the grid with the lowest minimum value and gri
greater minimum values. Lines with triangles denote computations with the fixed-point (FP) method, lines with
denote computations with the series method. The number of grid points in the lower segment is equal to three
minimum value. The number of grid points in the upper segment is equal to 100. The difference is evaluatedSmax.
They-axis scale differs for the upper and lower graphs.

methods. This convergence is faster for the series method than for the fixed-point meth
for theWachter (2005)calibration, the errors are negligible for all grids under the series me

Figures 3 and 4display results for altering the density in the lower segment and the u
segment respectively. In both cases, the log of the minimum value is kept at−300. ForFig. 3, the
number of points in the upper segment is maintained at 100, while forFig. 4, the number of points
in the lower segment is maintained at 900. In both cases, the price–dividend ratio converge
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ent and
ethod,

ies
ethod.

idend
Fig. 3. Percent differences in the price–dividend ratio between the grid with the most density in the lower segm
grids with less density in the lower segment. Lines with triangles denote computations with the fixed-point (FP) m
lines with circles denote computations with the series method. The minimum value is equal to−300. The number of grid
points in the upper segment is equal to 100. The difference is evaluated atSmax.

Grid-3 value. The convergence is faster for theWachter (2005)parameter values and the ser
method again results in substantially faster convergence as compared to the fixed-point m

5. Conclusion

This paper has investigated two related methods of solving for the equilibrium price–div
ratio in theCampbell and Cochrane (1999)model and its extension inWachter (2005). Both
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ent and
ethod,

f val-
l future

point
d give
, there
nswer if
con-
Fig. 4. Percent difference in the price–dividend ratio between the grid with the most points in the upper segm
grids with fewer points in the upper segment. Lines with triangles denote computations with the fixed-point (FP) m
lines with circles denote computations with the series method. The minimum value is equal to−300. The number of grid
points in the lower segment is equal to 900. The difference is evaluated atSmax.

methods involve solving for the price–dividend ratio of the consumption claim on a grid o
ues. The series method computes the price–dividend ratio as a sum of claims to individua
dividend payments. The fixed-point method computes the price–dividend ratio as a fixed
of the investor’s Euler equation. If each method could be applied without error, they woul
identical solutions. However, because both methods involve numerical approximations
may be differences. This paper has shown that the two methods indeed give the same a
the grid used in the approximation is sufficiently fine. Moreover, the solution is shown to
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own to
ates as
th

uracy for
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ds. Let

n
o

d

verge for both methods as the grid becomes finer. The speed of this convergence is sh
depend on the calibration: when the model is calibrated to the term structure of interest r
well as equity moments (as inWachter (2005)), the solution converges more quickly. For bo
calibrations, the series method leads to substantially faster convergence and greater acc
any given grid.
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Appendix A

This appendix solves the model in the case of cointegrated consumption and dividen
zt = ct − dt , the consumption–dividend ratio, and assume that

zt+1 = (1− ψ)z̄ + ψzt + wt+1,

wherewt+1 is iid and jointly normally distributed withvt+1. Letρ denote the correlation betwee
vt+1 andwt+1 andσw the standard deviation ofwt+1. The ex-dividend price of the claim t
dividends,P d , satisfies

Et

[
Mt+1

P d
t+1 + Dt+1

Pt

]
= 1.

P d
t+1 can be expressed as the sum of claims to individual dividendsP d

nt that satisfy

(A.1)
P d

nt

Dt

= Et

[
Mt+1

P d
n−1,t+1

Dt+1

Dt+1

Dt

]
= Et

[
Mt+1

P d
n−1,t+1

Dt+1
eg+vt+1−�zt+1

]
,

with boundary condition

P d
0,t

Dt

= 1.

The presence ofzt adds a complication, as in principle the integration for the recursion(A.1)
must be done over two variables. However, it turns out thatP d

nt can be written as

(A.2)
P d

nt

Dt

= Fd
n (st )exp{An + Bnzt },

whereFd satisfies the one-dimensional recursion

(A.3)Fd
n (st ) = Et

[
Mt+1e

g+(1+(Bn−1)ρ σw
σv

)vt+1Fd
n−1(st+1)

]
,

with boundary conditionFd
0 (st ) = 1.

I now verify Eqs.(A.2) and (A.3)by substituting(A.2) into (A.1) and using the law of iterate
expectations. A similar argument is used to obtain expressions for nominal bonds inWachter
(2005). Substituting forP d

n−1,t+1/Dt+1 inside the expectation yields

P d
nt = Et

[
Mt+1F

d
n−1(st+1)exp{An−1 + Bn−1zt+1}exp{g + vt+1 − �zt+1}

]

Dt
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hod
ues
correct
qual

tio,
= exp
{
An−1 + (Bn−1 − 1)(1− ψ)z̄ + (Bn−1ψ − ψ + 1)zt

}
(A.4)× Et

[
Mt+1e

g+vt+1Fd
n−1(st+1)E

[
e(Bn−1−1)wt+1 | vt+1

]]
.

Conditional onvt+1, (Bn−1 − 1)wt+1 is normally distributed:

(Bn−1 − 1)wt+1 | vt+1 ∼ N

(
(Bn−1 − 1)ρ

σw

σv

vt+1, (Bn−1 − 1)2σ 2
w

(
1− ρ2)),

so the inner expectation in(A.4) can be written as

E
[
e(Bn−1−1)wt+1 | vt+1

] = exp

{
(Bn−1 − 1)ρ

σw

σv

vt+1 + 1

2
(Bn−1 − 1)2σ 2

w

(
1− ρ2)}.

Define recursions

(A.5)An = An−1 + (Bn−1 − 1)(1− ψ)z̄ + 1
2(Bn−1 − 1)2σ 2

w

(
1− ρ2),

(A.6)Bn = Bn−1ψ − ψ + 1,

and letA0 = B0 = 0. By induction, it follows that(A.2) is satisfied. Equation(A.6) and the
boundary condition imply

Bn = (1− ψ)
1− ψn

1− ψ
.

Using the decomposition(A.2), it is possible to solve this model using the series met
described in Section2. The recursion(A.3) is solved iteratively using quadrature. For any val
of the state variables, a price–dividend ratio can be produced by interpolating to find the
Fd

n (st ), and multiplying byeAn+Bnzt . The price–dividend ratio for the aggregate market is e
to

P d
t

Dt

=
∞∑

n=1

Fd
n (st )exp{An + Bnzt }.

Note that a decomposition analogous to(A.2) does not hold for the market price–dividend ra
and thus solving this model would be quite difficult with the fixed-point method.

Appendix B

This appendix describes a continuous-time version of the economy in Section1. Let Zt be a
one-dimensional Brownian motion, and assume that the log of consumption follows:

dct = g dt + σv dZt .

Log surplus consumptionst = ln[(Ct − Xt)/Ct ] is assumed to follow the process

dst = (1− φ)(s̄ − st ) dt + λ(st )σv dZt .

Let ζt denote the pricing kernel in this economy (seeDuffie, 1996, Chapter 6), which will be
determined endogenously in equilibrium. The pricing kernel follows the process

dζt

ζt

= −r
f
t dt − ηt dZt ,
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d risk-

inal

of

that

t date
wherer
f
t is the instantaneous riskfree rate (the continuous-time analogue to the one-perio

free rate in Section1), andηt is the price of risk.
Identical agents maximize

E

∞∫
0

δt (Ct − Xt)
1−γ

1− γ
dt

subject to

(B.1)E

[ ∞∫
0

ζtCt

]
= W0,

whereW0 is the initial wealth in the economy. The condition for equilibrium equates marg
utility with a constant multiplied by the pricing kernel (seeDuffie, 1996, Chapter 10):

(B.2)δt (StCt )
−γ = kζt .

The constantk adjusts such that(B.1) is satisfied. Applying Ito’s lemma to the left-hand side
(B.2) and equating drift and diffusion terms implies

ηt = γ σv

(
1+ λ(st )

)
,

and

(B.3)r
f
t = − ln δ + γg + γ (1− φ)(s̄ − st ) − γ 2σ 2

v

2

(
1+ λ(st )

)2
.

Unlike (10), (B.3)does not require an approximation.
Specifyingλ(st ) as

λ(st ) = (1/S̄)
√

1− 2(st − s̄) − 1

implies that(B.3) reduces to(11). In the continuous-time set-up, there is no need to require
λ(st ) be identically zero abovesmax, as this will never occur.

To solve for the price of the consumption claim, note that any risky asset with priceP that
follows the process

dPt

Pt

= µP,t dt + σP,t dZt

must satisfy the no-arbitrage condition

(B.4)µP,t − r
f
t = σP,tηt .

As in Section2, conjecture that the price of a zero-coupon consumption claim maturing a
t + τ takes the form

(B.5)P(Ct , st , τ ) = CtF (st , τ )

for some smooth functionF . Applying Ito’s lemma to(B.5) and substituting into(B.4) indicates
that(B.5) is satisfied, and thatF solves the following partial differential equation:

g + 1
σ 2

v + Fs
(1− φ)(s̄ − st ) − Fτ + 1 Fss

λ(st )
2σ 2

v + Fs
λ(st )σ

2
v − r

f
t
2 F F 2 F F
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(B.6)=
(

σv + Fs

F
σvλ(st )

)(
1+ λ(st )

)
γ σv,

whereFs , Fτ , Fss denote appropriate first and second derivatives ofF . Equation(B.6) thus
characterizes prices of zero-coupon equity and provides an alternative route to a solution
model in Section1.
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