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Abstract

This paper studies portfolio choice and asset prices in a model with two consump-

tion goods, one of which involves a commitment in that its consumption can only be

adjusted at a cost. Commitments effectively make investors more risk averse: they

invest less in risky assets and smooth total consumption more. Aggregating over

a population of such consumers implies dynamics that match those of a represen-

tative consumer economy with habit formation. Calibrations show that the model

can resolve the equity premium puzzle. We test the key prediction that an exoge-

nous increase in economic commitments (e.g., housing) causes a more conservative

portfolio allocation using a novel instrumental variables strategy related to age at

marriage. We find that a $1 increase in housing causes a 50-70 cent reallocation

from stocks to bonds for the average investor. Exploiting differences in the variance

of home prices across cities, we show that this effect is due to commitments and not

greater exposure to housing price risk.
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1 Introduction

Much of the modern literature on asset pricing has focused on explaining the equity

premium puzzle: Consumption growth covaries only weakly with stock returns – im-

plying that stocks are not very risky – yet the risk premium commanded by stocks is

very large.1 Most existing models of asset pricing assume that agents consume one

good, i.e., that there is a composite commodity. This assumption requires that agents

can substitute costlessly across different types of consumption within a given period.

But in practice, many goods, such as housing and other illiquid durables, involve “com-

mitments” – a transaction cost must be paid to change consumption of these goods.

This paper proposes a solution to the equity premium puzzle by showing that such con-

sumption commitments have significant effects on portfolio choice and asset pricing both

theoretically and empirically.

The basic intuition underlying our analysis is straightforward. Consider an individual

who consumes commitment (e.g., housing) and non-commitment (e.g., food) goods in

equal shares.2 After making his commitment, suppose the individual faces a shock that

necessitates a 10% reduction in expenditure. Since commitments are difficult or costly

to adjust in the short run, the individual may rationally choose not to move out of his

house, making the shock translate into a 20% drop in food consumption. The presence of

commitments magnifies the impact of shocks, effectively making the consumer more risk

averse. As a result, agents with commitments may rationally hold less risky portfolios

and demand a higher equity risk premium.

We formalize this logic by modelling the portfolio choice decision of an individual

who has neoclassical preferences over the two types of consumption goods. A number

of assumptions are necessary to make the model analytically tractable. We assume that

consumers have simple, constant elasticity of substitution preferences over commitment

and non-commitment goods. To model costly adjustment, we use a time-dependent ad-

justment framework, rather than the more natural but intractable state-dependent setup.

We consider two different time-dependent adjustment rules. The first, which is similar

1See Kocherlakota (1996) and Campbell (2002) for recent surveys of the literature on the equity

premium and consumption based asset pricing.
2Tabulations from the Consumer Expenditure Survey (see Table 1) indicate that across a broad range

of income categories, approximately 50-60% of expenditure is committed for the average household.
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to Taylor-pricing, allows the consumer to reset consumption of the commitment good

after a fixed number of periods. The second has a stochastic reset date and resembles

the Calvo-pricing rule.3 Our main theoretical results are similar in both models.

We first show that individuals who have more commitments act as if they are more

risk averse. They invest less in risky assets and have a smoother path of total consump-

tion. We then consider a population of such individuals and derive aggregate dynamics.

The key theoretical result is that aggregate dynamics in a model where individuals have

heterogeneity in commitments are identical to the dynamics that arise from a represen-

tative consumer model with habit formation utility in the spirit of Constantinides (1990)

and Campbell and Cochrane (1999). Moreover, under certain conditions in the stochas-

tic adjustment framework, the aggregate economy coincides exactly with the represen-

tative consumer economy of Constantinides, with the exception that we have external

rather than internal habit formation. The commitments model therefore provides non-

psychological micro-foundations for representative-consumer habit formation models.

The connection between commitments at the microeconomic level and habit forma-

tion in the aggregate is quite intuitive. In habit formation models, consumer well-being is

determined by surplus consumption over current habit, which is a slow-moving time aver-

age of past consumption levels. In the commitments model, part of consumer well-being

is determined by consumption over the level of commitments. For the household, these

commitments are slow moving in that they are unchanged except at adjustments. When

an adjustment takes place, the new commitment level reflects the household’s current

prosperity, and hence recent levels of consumption. Our aggregation result essentially

states that an economy of individuals with fixed costs and infrequent adjustments in

consumption look in the aggregate like an individual facing a smooth, slow-moving habit

that depends on past consumption levels.

To evaluate the performance of the commitments model in explaining asset pricing

puzzles, we perform a calibration exercise similar to Constantinides (1990). We find that

our model can match the first and second moments of stock returns and consumption as

well as the riskfree rate. The unconstrained coefficient of relative risk aversion, relevant

for households when they are free to adjust their commitments, can be as low as γ =

3Time-dependent adjustment rules have a long history in macroeconomics (see Taylor, 1979, Calvo,

1983 or Blanchard and Fischer, 1989).
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2. However, generating the equity premium with such a low γ requires the share of

commitments in individual consumption to be about 80%. The model is also capable

of matching the equity premium at a share of commitment consumption (50-60%) that

matches the actual share of physical commitments if γ is between 4 and 5. Even at

these higher levels of risk aversion, the model explains much of the riskfree rate puzzle,

though it does not completely resolve it: we are about 0.4− 0.6 percentage points short

of matching mean growth in aggregate consumption. Borrowing constraints and time

non-separable utility are likely to further improve the model’s fit.

The central benefit of our micro-foundations is that they yield a natural set of testable

predictions. The prediction that we test is the following: Holding all else fixed, an

exogenous increase in an agent’s commitments (e.g., size of home mortgage) should

make his optimal portfolio allocation shift away from risky assets and toward safe assets.

Operationalizing this test is difficult because commitments are chosen endogenously. In

particular, agents who are more risk loving or face less background risk are more likely

to commit themselves to bigger houses and also invest more in stocks relative to bonds.

Not surprisingly, an OLS regression of stockholding on housing commitment, controlling

for all observables, shows that house size and stockholding are positively associated.

In view of this endogeneity problem, we employ a novel instrumental variables strat-

egy to create exogenous variation in home size. We exploit the fact the individuals tend

to buy homes around the time of marriage, and those who marry later tend to buy big-

ger homes and therefore have a larger home mortgage outstanding, holding total wealth

fixed, at any given age. This effect presumably arises because those who buy later tend

to have the resources and credit necessary to buy a larger home.

The central identifying assumption in our empirical analysis is that age at marriage

is not directly related to portfolio choice. We provide evidence in support of this or-

thogonality condition by examining two “control” groups: homeowners who have been

married for a long time and renters. Marriage age is unrelated to mortgage size for both

of these groups. We find no relationship between age at marriage and stockholding in

these groups, confirming that there is no direct association between age at marriage and

portfolio choice for these groups. These results support the validity of the instrument;

our IV results could only be inconsistent if there is a time-varying relationship between

marriage age and risk preferences unique to homeowners. Using age at marriage as an

4



instrument for housing, we find that a $1 exogenous increase in mortgage size causes a

50-70 cent shift in portfolio allocation from stocks to bonds. These results are robust

to a rich set of controls and specification checks for sample selection and other potential

biases.

Having identified what appears to be a strong causal relationship between house size

and portfolio choice, we address a competing explanation for these empirical results that

has been proposed in the recent literature. Flavin and Yamashita (2002) and Yamashita

(2003) observe that homes are a risky asset and show that an exogenous increase in

housing will lead to a sharp shift from stocks to bonds under a mean-variance optimiza-

tion framework. Their argument is that greater risk exposure in the housing market

causes less risk taking in other dimensions of the portfolio. To distinguish this theory

from ours, we use data on the variance of home prices by city to permit variation in

exposure to housing risk while holding home value fixed and vice versa. We find that

a $1 increase in home value continues to cause a large reduction in stockholding even

when exposure to home price risk is held fixed. While house price variance does not

appear to significantly affect the portfolio allocation of homeowners – perhaps because

they have a natural hedge against this risk in their own home – renters do hold less stocks

when living in high-risk areas. We conclude that the empirical evidence on housing and

portfolio choice strongly supports the commitments hypothesis proposed in this paper.

In addition to the literature on housing risk, our paper also builds on a number

of other strands of the asset pricing and consumption literatures. The importance of

commitments for asset pricing was documented in a seminal paper by Grossman and

Laroque (1990). Their model has a single, durable consumption good, and they do not

discuss the relationship between commitments and habit formation. Marshall and Parekh

(1999) aggregate and calibrate the Grossman-Laroque model. Maintaining the single

(durable) good assumption, they argue that the model can explain approximately half of

the equity premium puzzle. In contrast, we are able to fully match the equity premium

in our two good framework and test microeconomic implications of the model. More

recently, Fratantoni (2001) and Li (2003) analyze two-good models where one of the goods

involves adjustment costs. They demonstrate the portfolio choice implications of their

models using numerical simulations. These papers do not discuss aggregate dynamics or

the empirical connection between housing and portfolio choice documented here. Our
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model is also related to Gabaix and Laibson (2001), who study asset pricing with a single

good and infrequent adjustments in portfolio choice. In their model, households do not

adjust consumption in the short run because they do not observe their risky financial

holdings. This generates low consumption volatility over short horizons. In our model,

consumers would like to (but cannot) adjust their consumption commitments, which

effectively makes them more risk averse.4

Risk preferences in the two-good commitments model have also received attention

in other contexts. Chetty (2002) studies preferences over wealth in a state-dependent

framework and shows that agents with consumption commitments exhibit significantly

higher degrees of risk-aversion to moderate-stake wealth fluctuation than they do to large-

stake wealth fluctuations using data from labor markets. Olney (1999) finds that large

exposure to installment finance, a form of consumption commitments, forced households

to cut back on other consumption and was therefore responsible for a significant share

of the welfare loss during the Great Depression.

Finally, our results contribute to the growing literature which shows that decompos-

ing aggregate consumption into components sheds light on various asset pricing puzzles.

Piazzesi, Schneider and Tuzel (2003) and Yogo (2003) examine the effects of composition

risk (fluctuations in housing or durable consumption relative to non-durable consump-

tion), while Lustig and Nieuwerburgh (2003) consider the collateral value of housing.

These papers abstract from the commitment feature of consuming these goods, while

we abstract from composition risk and collateral value effects. Ait-Sahalia, Parker and

Yogo (2003) consider the consumption of luxury and basic goods, and argue that the

volatility of luxury goods consumption helps resolving the equity premium puzzle. To

the extent that luxury goods are non-commitment, their findings support the hypothesis

of this paper.

The remainder of the paper is organized as follows. The next section develops the

model and presents the key aggregation results, first with deterministic adjustment and

then with stochastic adjustment. Section 3 demonstrates in a calibration that the model

can resolve the equity premium puzzle. The fourth section presents empirical evidence

for the model and shows how the key risk aversion parameter used in the calibrations

4Time dependent adjustment rules are also studied in an asset pricing context by Koren and Szeidl

(2003), who use them to model financial illiquidity.
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can be imputed from these estimates. The final section concludes.

2 Portfolio Choice and Consumption with Commitments

2.1 A Model of the Household

Consider a consumer with preferences both for consumption commitments, such as hous-

ing (x), and non-commitment consumption, such as food (f). The per-period utility

function over these two goods is assumed to be a constant elasticity of substitution

aggregate with elasticity ε,

u(f, x) =
(
f1− 1

ε + µx1− 1
ε

) ε
ε−1

. (1)

The consumer maximizes expected lifetime utility given by

max E
∫ ∞

0
e−ρtu(ft, xt)1−γ

1− γ
dt

where ρ is the discount rate. Since utility is assumed to be time-separable, γ measures

the relative risk aversion of an individual who is free to adjust both commitment and food

consumption, as well as the elasticity of intertemporal substitution. In the following, we

further assume that γ = 1/ε, that is, the intertemporal and across-good elasticities of

substitution are equal. This simplification is necessary to make the model tractable.

Under this assumption, the maximization problem becomes

max E
∫ ∞

0
e−ρt

(
ft

1−γ

1− γ
+ µ

xt
1−γ

1− γ

)
dt. (2)

Our next modelling choice concerns commitments. We assume that consumption com-

mitments are costly to adjust in the following sense. Every T periods, the consumer

is free to adjust her level of commitment consumption x; however, between adjustment

dates x is fixed, and no adjustment is possible.5

There are two assets traded in this economy. The price process of the riskless bond

is given by
dBt

Bt
= rdt

5In Section 2.3 we consider a stochastic version of this adjustment rule.
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where r is the riskfree rate, which is assumed to be constant. The dynamics of the risky

asset are given by the standard exponential Brownian motion

dSt

St
= (r + π)dt+ σdzt

where zt is a standard Brownian motion, π is the expected excess return (equity pre-

mium), and σ is the standard deviation of asset returns.

Let wt denote the wealth of the consumer in period t and αt the share of the risky

asset in the consumer’s wealth portfolio. Define total consumption as c = f + x. We

assume that the relative price of commitment and food goods is fixed at one. Then the

dynamic budget constraint of the consumer is

dwt = [(r + αtπ)wt − ct] dt+ αtwtσdz. (3)

Intuitively, the total mean return on the wealth portfolio is r+αtπ and a wealth share of

αt in risky assets gives rise to a standard deviation of αtσ in the growth rate of wealth.

The consumer thus maximizes (2) subject to the reset rule for consumption commit-

ments and the budget constraint (3). Let ∆ denote the time elapsed since the consumer

last adjusted her consumption commitment; clearly 0 ≤ ∆ < T . Note that between reset

dates, ∆ = ∆(t) depends linearly on calendar time, that is, d∆ = dt.

Theorem 1 The optimal consumption and investment rule between two reset dates is

characterized by the policies

ft = ψ∆ · (wt − η∆xt) (4)

αtwt =
π

γσ2
· (wt − η∆xt) (5)

where ψ∆ = ψ∆(t) and η∆ = η∆(t) are deterministic functions of the time elapsed since

the last reset date, given in the Appendix.

At a reset date, the consumer chooses

xt = χ · wt (6)

where χ depends on the underlying parameters of the model.

The consumption dynamics between two reset dates is given by

dct
ct

=
{
r − ψ∆(t) +

π2

γσ2
+
ψ′∆
ψ∆

}
ft

ct
dt+

π

γσ

ft

ct
dz. (7)
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Proof. See the Appendix.

To understand this result, note that between reset dates, the model has two state

variables, wealth (w) and the current level of consumption commitments (x). The op-

timal consumption and investment rules turn out to be linear functions of these state

variables. More importantly, the expression wt−η∆xt governs the optimal policy of both

consumption and investment. This quantity can be interpreted as net wealth since the

value of outstanding future commitments is exactly η∆xt. Intuitively, since commitment

consumption can only be reset at particular dates, the consumer has to be certain that

she has enough funds to finance her outstanding commitments until the next reset date.

She allocates an amount corresponding to outstanding commitments in bonds, and uses

that money exclusively to finance future commitments. She then decides on how to invest

the rest of her wealth in stocks and bonds and how much to spend on food consumption.

According to (5), as η∆ is always non-negative, an individual with a high level of

commitment consumption invests relatively less in risky assets.6 Furthermore, the effect

of commitments on stockholding is more pronounced when individuals are less risk averse

(i.e., when γ is lower). To see why, observe that one dollar less in commitments implies

one dollar more net wealth. Clearly, a less risk averse individual invests a higher share of

her marginal dollar into stocks; therefore the portfolio of a less risk averse individual is

more sensitive to the level of commitments. Less risk averse individuals also hold more

stocks on average. In contrast, the optimal portfolio of a more risk averse individual

has a lower slope with respect to commitments, and a lower intercept reflecting lower

average stockholdings.

We remark that (4) and (5) continue to be the optimal policies even if the current level

of commitment was allocated exogenously to the consumer, as long as she is free to choose

commitments at the next reset date. This is important because our empirical strategy

is to test whether portfolio allocation varies as the model predicts when commitments

are assigned exogenously.

We now turn to the implied dynamics of consumption. First, observe that at a reset

date, the consumer has a single state variable, her current level of wealth. The optimal

level of consumption commitment undertaken will be proportional to wealth because at

6Note that this effect is purely a consequence of the level of commitments, as opposed to fluctuations

in the relative price of commitments (such as house price fluctuations).
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this stage the value function is homogenous of degree 1− γ in wealth.

Between two adjustment dates, the instantaneous standard deviation of log consump-

tion growth between two adjustment dates is given by

π

γσ
· ft

ct
. (8)

The first term in this product is the standard term that arises in a single good economy

(e.g., in the Merton consumption problem). The second term is the ratio of food to total

consumption, which is less than one when the agent has commitments. This term has

a clear intuitive meaning. Given that a share of total consumption is not adjustable in

the short run, the volatility of log consumption growth is smaller in this model than

in a model with a single, freely adjustable consumption good. Moreover, the effect is

proportional to the share of consumption that is not committed. Imagine that half of

consumption is committed: since all shocks affect only the non-commitment part of

consumption, along the optimal path that part will have a standard deviation of π/γσ.

Consequently, log total consumption growth will have a standard deviation that is only

1/2 times that.

Put differently, commitments effectively increase the coefficient of relative risk aver-

sion, γ, by a factor of c/f . This is apparent in (8), where c/f multiplies γ, reducing

consumption volatility. This suggests that the model could help explain the equity pre-

mium puzzle. We revisit this point in Section 3.

2.2 Aggregation

One shortcoming of the household model is that consumption jumps discontinuously on

adjustment dates. These jumps make it difficult to evaluate the model’s implications for

aggregate consumption smoothness over long horizons. To address this issue, we now

consider a heterogeneous population of individuals and show that in such a population

the jumps are averaged out and aggregate consumption becomes smooth.

To explore aggregate dynamics, consider an economy populated by a continuum of

agents who have preferences over consumption commitments. Assume that the individual

reset dates are uniformly distributed across the population, and normalize the total

mass of agents to one. The agents with different adjustment dates may also differ in

their wealth levels; however their preference parameters and adjustment horizons are
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the same. Our assumptions imply that during any time interval of length T everyone

resets exactly once, and during a time interval [s, t], exactly (t− s)/T agents adjust. Let

capital variables denote aggregate quantities, so that Xt, Ft and Ct stand for aggregate

commitment, food and total consumption, where for example

Xt =
∫ T

∆=0
xt(∆)d∆

if we index the individuals by the time ∆ elapsed since they last adjusted. We denote the

net wealth of an individual ∆ at time t by wnet
t (∆), and the aggregate of this quantity

across the population by W net
t . Finally, we define τ to be the value of t modulo T . This

notation allows us to state the following result.

Proposition 1 For an arbitrary initial net wealth distribution, individual net wealth

wnet
t (∆) can be written as

wnet
t (∆) = g(∆, τ) ·W net

t (9)

where g(∆, τ) is a deterministic function that depends on the initial net wealth distribu-

tion. Moreover at any point in time t > T , aggregate commitment and non-commitment

consumption can be expressed as

Xt =
1
T

∫ T

0
a(τ − u) ·W net

t−udu (10)

and

Ft = b(τ) ·W net
t (11)

where a(.) and b(.) are appropriate functions that depend on the initial distribution of

net wealth in the population.

The first equation says that individual net wealth is proportional to aggregate net

wealth where the factor of proportion depends only on the type of the individual (i.e.,

∆) and the value of time modulo T (i.e., τ). Individual and aggregate net wealth are

proportional because of power utility, and the factor of proportion naturally depends on

the type of the individual. Variable τ affects this factor because the aggregate economy

exhibits a T -long cycle, and τ is the measure of how far we are in that cycle. The presence

of a T -long cycle is not surprising given that T is every household’s adjustment horizon.

The remaining results of the proposition follow easily. To show that (10) holds, note
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that aggregate consumption commitment is the sum of individual commitment levels.

The commitment level of an agent who last adjusted on some past date t − u will be

proportional to her wealth level on that date by (6). By equation (9), this individual

wealth level on date t−u will be proportional to aggregate net wealth in the population

on date t − u, with the factor of proportion depending on τ − u, the measure of how

far the economy was in the aggregate cycle on date t− u. Thus aggregate commitment

will be a weighted sum of past levels of aggregate net wealth. The intuition for the final

equation is similar.

It is possible to find an initial wealth distribution such that the aggregate T -long

cycle washes out. This is the content of the next result.

Proposition 2 There exists an initial net wealth distribution, the balanced wealth dis-

tribution, such that if the economy starts from that distribution at date zero, then for all

t > T aggregate commitment consumption can be written as

Xt =
a

T
·
∫ T

0
W net

t−udu (12)

and aggregate food consumption can be written as

Ft = b ·W net
t (13)

with positive constants a and b.

In the special case when the economy is started from the balanced wealth distribu-

tion, we have no aggregate cycle, and the coefficients a and b do not depend on τ any

more. In the appendix we explicitly construct the balanced net wealth distribution. The

intuition behind that construction is the following. We know that with an arbitrary

initial distribution, the economy exhibits cycles. However, it is possible to add up a con-

tinuum of aggregate cycles, all shifted in time a bit relative to each other. The resulting

overall dynamics will then exhibit no cycles. Basically, we aggregate over the aggregate

cycles; equivalently, we add up a unit mass of a unit mass of consumers. Of course, the

total measure of consumers continues to be one. This procedure results in the balanced

wealth distribution of the proposition.

Using the propositions we can prove the following aggregation theorem.
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Theorem 2 The aggregate dynamics of consumption are the optimal policy of a repre-

sentative consumer with external habit formation utility function

E
∫ ∞

0
e−ρt (Ct −Xt)1−γ

1− γ
dt

where habit Xt evolves according to the path of committed consumption, given by equation

(10) in the general case, or

Xt =
a

T
·
∫ T

0
W net

t−udu. (14)

if the economy starts from the balanced net wealth distribution.

Proof. Because the only source of uncertainty in this model is the risky asset, the

two traded assets in the economy span the whole asset space. It follows that there exists

a unique stochastic discount factor (state price density). Call it ms,t(ω), then for any

trade asset return Rs,t between dates s and t, we have

1 = Es ms,t ·Rs,t.

Since consumers are free to adjust their consumption on the food margin, for any indi-

vidual, the (discounted) ratio of marginal utilities over food consumption between dates

s and t has to equal ms,t

e−ρ(t−s) f
−γ
t

f−γ
s

= ms,t

hence we have

ft = fs ·
(
eρ(t−s)ms,t

)− 1
γ
.

Aggregating this equation over the population yields

Ft = Fs ·
(
eρ(t−s)ms,t

)− 1
γ

so that

e−ρ(t−s) (Ct −Xt)−γ

(Cs −Xs)−γ
= ms,t

which implies

(Cs −Xs)−γ = e−ρ(t−s) · Es(Ct −Xt)−γRs,t.

But this is the Euler equation for optimality for a representative consumer with habit

formation utility, where habit is X. The evolution of habit is governed by a moving
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average of past net wealth levels, as shown by the previous proposition. It follows that

the aggregate consumption dynamics satisfies the Euler equation for the representative

consumer habit formation model.

Grossman and Shiller (1982) prove the existence of a representative consumer in an

asset pricing context with one consumption good, if individual consumption dynamics

follow Ito-processes. Although their result cannot be applied here because individual con-

sumption has jumps and there are two goods, the intuition is similar: individual marginal

utilities can be aggregated, and that defines the marginal utility of the representative

consumer. The second contribution of the theorem is that when individuals care about

commitment consumption, the representative agent will have a habit-formation utility

function. More generally, as long as individual marginal utility depends only on surplus

consumption over commitments (i.e., c − x), in other words, if utility is separable in

commitment and non-commitment consumption, the above aggregation argument goes

through. Under these circumstances it can be shown that the representative consumer’s

utility will only depend on aggregate surplus consumption C − X. In this sense, the

theorem is not a consequence of the exact functional form specification.

The intuitive connection between commitments and habit is straightforward: high

commitments, like a high level of habit, make the individual more risk averse. The lumpy

adjustment dynamics that are present at the individual level due to commitments are

“smoothed out” in the aggregate.7 This smoothing effect of aggregation is important

because aggregate consumption does not exhibit discontinuous jumps in the data.

While commitments lead to a slow moving habit in the aggregate, the dynamic of

habit in this model is somewhat different from existing habit formation specifications,

such as Constantinides (1990) or Campbell and Cochrane (1999). In those models, habit

is a slow moving time average of past levels of aggregate consumption. Here habit is

a slow moving time average of a different aggregate variable, net wealth. But even in

our model, habit can be rewritten as an average of past levels of aggregate consumption.

This is the content of the next result.

Proposition 3 In the balanced wealth distribution case, as long as the underlying pa-

rameters of the model are such that a < b, aggregate commitment consumption can be

7The literature on aggregating agents with state-dependent adjustment rules also finds a similar

smoothing effect; see for example Bertola and Caballero (1990).
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written as

Xt = κ(t)W net
0 +

∫ t

0
ζ(u)Ct−udu (15)

where

• As u goes to infinity, both κ(u) and ζ(u) go to zero at a geometric rate,

• For 0 ≤ u < T , ζ(u) = a
Tb · exp(− a

Tbu),

• The function ζ(u) is bounded and switches sign at least once on any interval longer

than T .

Proof. See the Appendix.

There are three linear equations linking the variables C, F , X and W net: an ac-

counting identity, the habit rule (12), and the consumption rule (13). These allow us

to express any of the four variables as a linear function of current and lagged values

of any other. This is the idea of the proof. The condition a < b in the proposition

is used to ensure that the coefficients ζ(.) go to zero asymptotically.8 This condition

roughly corresponds to the case where commitment consumption is typically less than

food consumption, as shown by equations (12) and(13). Since the parameters a and b

are derived from the underlying parameters of the model, we need to demonstrate that

the proposition has content, that is, there are underlying parameters for which a < b

holds. It is easy to see that when the utility weight of commitment consumption, µ = 0,

there is no commitment consumption, therefore a = 0. By continuity, for small enough

µ the consumer cares relatively little about commitments, hence a < b continues to hold.

However, the condition a < b is restrictive because the data suggests that commit-

ments may constitute a higher share of total consumption than non-commitments. In

the next subsection we consider a different version of the model, where the equivalent of

Proposition 3 holds without such a restriction. Nevertheless, the result of the proposi-

tion is interesting in that it provides a close link to the Constantinides model of habit

formation, where habit is a geometrically weighted average of past consumption levels.

Here the geometric decay is explicitly present for the near past and asymptotically for

the distant past. However, in between the weight function ζ(u) fluctuates and periodi-

cally becomes negative. Thus habit in the commitments model corresponds more closely

8We believe that the proposition is true under more general conditions.
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to the average past growth rate of total consumption: a weighted average of consump-

tion in the past is subtracted from a weighted average of nearer-term past consumption.

Because of the geometric decay, consumption levels in the distant past matter little.

2.3 Model and Aggregation with a Stochastic Adjustment Rule

In this section, we continue to assume that consumption commitments are adjusted

according to a time dependent rule, but allow that rule to be stochastic. At the cost

of some additional assumptions, this new model yields a more useful aggregation result,

which makes the connection with habit persistence stronger.

In particular, suppose that during a short interval dt, the consumer can adjust her

level of commitment consumption with probability λdt. With remaining probability,

she cannot adjust. One interpretation of the stochastic adjustment rule can be random

shocks to the household that make moving out of commitments costless. An example of

such a shock can be a new job offer with relocation benefits. This specification is similar

to the Calvo-pricing rule common in macroeconomics.

The preferences and technology of the consumer are otherwise the same as before,

as summarized in (2). We assume that there is a continuum of consumers whose adjust-

ment dates are independently distributed, and that markets are complete. Note that

market completeness held by design in the previous model, because the only source of

uncertainty was the risky asset. In contrast, here consumers face additional uncertainty

in that adjustment dates arrive randomly. Thus the market completeness assumption

is potentially quite restrictive. It implies that consumers can insure all the risk that is

coming from the uncertainty related to when exactly they can adjust their commitment

consumption. The risky and the riskless asset introduced in the previous section con-

tinue to be traded, and are in perfectly elastic supply. All other insurance is in zero

net supply, but because consumers are heterogenous, they will form individual-specific

portfolios of those assets. The complete markets assumption is a modelling tool; it is

useful because it allows for a simple aggregation of consumers.

Due to power utility and the stationarity of the problem, on an adjustment date, a

consumer will find it optimal to choose a level of commitment consumption that is a

constant proportion of her current wealth (the only state variable when adjusting). Call

this proportion a′.
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This yields the following aggregation result.

Proposition 4 The aggregate consumption dynamic of the economy is the same as the

optimal consumption of a representative consumer economy with habit formation utility

function

maxE
∫ ∞

0
e−ρt (Ct −Xt)1−γ

1− γ
dt

where habit Xt evolves according to the path of aggregate commitment consumption

Xt = e−λtX0 + a′λ ·
∫ t

0
e−λu Wt−udu. (16)

Proof. Aggregation follows the same way as in Theorem 2. Because markets are

complete, there is a unique stochastic discount factor, which equals the ratio of marginal

utilities over food consumption for each individual consumer; and these ratios can be

aggregated the same way as earlier.

The only part that needs to be proved is that aggregate consumption indeed evolves

according to (16). Note that at time t, the number of people who last adjusted during

the short time interval [s, s+ dt] is λdt · e−λ(t−s). These people were representative of

the population at time s, because the adjustment shock is independent of past history.

Thus their average wealth at time s was exactly Ws, and their average commitment

consumption a′ ·Ws. But this continues to be their commitment consumption at time t

too, because they have not adjusted since s. In addition there are e−λt people who have

not adjusted since date zero; because they were representative of the whole population

at date zero, their contribution to aggregate commitments is e−λtX0. This explains the

formula, and the proof is complete.

Under some conditions, the aggregate representative consumer model can be solved

analytically. Define η′ to be the smaller real root of

0 = η′2a′λ− η′(λ+ r) + 1

if it exists, and let

ψ′ =
γ/(1− γ)

ρ
1−γ −

1
2

π2

γσ2 − r + a′η′λ
(17)

and

A = r − a′η′λ+
π2

γσ2
− ψ′−1 + λa′ψ′. (18)

Then
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Theorem 3 If η′ exists, and

ρ

γ − 1
+

1
2
π2

γσ2
+ r − a′η′λ > 0 (19)

holds, then the optimal consumption and investment policy are

Ct = Xt + ψ′−1(Wt − ηXt) (20)

and

αt =
π

γσ2

(
1− η′

Xt

Wt

)
(21)

and the aggregate consumption dynamic can be written as

dCt

Ct
=

{
A− Xt

Ct

[
λ− a′η′λ+A

]}
dt+

π

γσ

Ct −Xt

Ct
dz. (22)

Moreover, if

(γ − 1)
π2

γ2σ2
+ λ+ r − 2η′λa′ − ψ′−1 > 0 (23)

holds, then the share of commitment consumption Zt = Xt/Ct has an invariant distri-

bution with density pZ(Z) given in the Appendix.

Proof. See the Appendix.

The intuition behind the result is similar to that of Theorem 1. Because of habit,

the individual holds a certain amount of wealth η′X in the riskless asset, to guarantee

that she is able to finance habit consumption in all circumstances. Optimal policies then

become a function of the state variable W −η′X, and the linearity of the policy rules is a

consequence of power utility. The parameter ψ′, a measure of the marginal propensity to

consume, is identical to its equivalent in the single-good Merton consumption problem,

except for the additional term a′η′λ. That term decreases the marginal propensity

to consume due to the presence of commitments. Once the optimal policy has been

identified, we follow Constantinides (1990) in deriving the invariant distribution of the

habit share.

Using the results of the theorem, we can calculate the unconditional mean and vari-

ance of aggregate consumption growth to be

E(dCt/Ct)
dt

= A−
[
λ− a′η′λ+A

] ∫ 1

0
Z · pZ(Z)dZ (24)
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and
var(dCt/Ct)

dt
=

(
π

γσ

)2 ∫ 1

0
(1− Z)2 · pZ(Z)dZ. (25)

As in the previous model, under some circumstances the habit dynamics can be

rewritten to depend only on past levels of aggregate consumption.

Proposition 5 If η′ exists and (19) holds, and further

a′η′ − a′ψ′ − 1 < 0 (26)

then aggregate commitment consumption can be expressed as

Xt = e−dtX0 +D ·
∫ ∞

0
e−du Ct−udu (27)

where D, d > 0 are constants that depend on the underlying parameters of the model.

Proof. See the Appendix.

Using the analytic solution of the model, total consumption can be expressed as a

function of current and past levels of wealth. The proof inverts that formula and uses

the habit rule (16).

This last proposition underlines the strong connection between the commitments

model and habit formation. Under some conditions, the preferences and the habit dy-

namics in our model are exactly the same as those in Constantinides (1990). The only

difference is that Constantinides has internal habit formation while aggregating the com-

mitments model yields external habit.

A few words on modelling choices: The first adjustment specification is convenient

in that the individual consumer problem can be solved analytically, and no additional

assumptions are required about the existence of insurance markets. The cost of this

model is that in the aggregate, we need to worry about the initial wealth distribution

and that the habit adjustment rule is somewhat unusual. The convenience of the second

adjustment specification is twofold. First, the aggregate habit rule is simple and easily

linked to the literature. Second, the aggregate model can be solved analytically, lending

itself to easier calibration. These advantages come at the cost of assuming a very rich

set of markets. The fact that both models yield similar suggests that the restrictive

assumptions are only necessary for technical reasons. The two models thus complement

each other in illustrating the key intuition of the paper.
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3 Calibration and the Equity Premium Puzzle

We have shown that in an economy populated by a continuum of agents with consump-

tion commitments, aggregate dynamics coincide with those a representative consumer

economy with habit formation. This result has some interesting implications.

First, our model provides micro-foundations for habit persistence. We arrive at

habit formation in the aggregate by assuming standard preferences over two goods at

the individual level and frictions in adjusting commitment consumption in the short run.

Costly adjustment thus suffices to provide micro-foundations for habit persistence while

retaining the standard framework of neoclassical economics.

Second, our results suggest that consumption commitments can be viewed as part

of habit. Certain goods have physical commitment features, such as adjustment costs.

Other goods may have mental or psychological adjustment costs, and yet another part of

consumption may be pure habit. Hence, the distinction between habit and consumption

commitments is somewhat blurred: total habit could be a sum of physical commitments,

mental commitments and pure habit.9

These observations suggest that a “blind” calibration of the commitments model may

be useful in evaluating its performance. By “blind” calibration we mean that we do not

aim to pin down the level of X from data, but rather construct a time series X such

that the implied consumption and return dynamics match aggregate data.

The objective of the calibration exercise is to match the first and second moments

of consumption, stock returns and bond returns. We take the data on these returns

from Constantinides (1990), who relies on the estimates of Mehra and Prescott (1985).

Constantinides uses a riskfree rate of r = .01 per year and an equity premium of π = .06,

with an annual standard deviation of stock returns σ = .165. The mean and variance

of annual consumption growth are E(dC/C)/dt = .0183 and var(dC/C)/dt = (.0357)2.

Campbell (2002) reports consumption moments that are roughly in line with these data

for the 1889-1998 sample.10

9Reis (2003) argues that when there are information processing or planning costs to adjusting con-

sumption, the optimal policy is a time dependent rule. Thus mental commitments may correspond to

goods with higher planning costs.
10Looking only at postwar data, Campbell reports a much lower variance of consumption growth of

(.01073)2. Part of the difference may be due to the fact that his measure only includes nondurable

consumption. Given that the focus of this paper is commitment consumption, we choose statistics for
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We calibrate the model with the stochastic adjustment rule because it admits an

analytic solution in the aggregate. We need to choose two standard preference param-

eters, the risk aversion parameter γ and the rate of time preference ρ. Note that γ

here measures the relative risk aversion of an unconstrained consumer, who is free to

adjust both kinds of consumption. There are also two commitment related parameters

to be chosen. Parameter λ measures the horizon of commitment consumption: 1/λ is

the mean waiting time between two adjustments. Parameter a′ measures the preference

for consumption commitments, in the sense that at every adjustment date the household

sets commitments to equal a share a′ of current wealth.11

In this model, equity returns are exogenous and aggregate consumption is endoge-

nous. Thus, we fix the parameters r, π and σ at the levels described above, and for each

set of values (λ, a′, γ, ρ) calculate the implied mean and variance of consumption growth.

We check that η′ exists and conditions (19) and (23) are met for all sets of parameters.

Since (26) also holds for all parameters we consider, aggregate habit can be written as a

time average of past consumption levels.

We first discuss a set of baseline results for the case in which the consumption vari-

ances estimated in the data coincide with the instantaneous variance in the model. We

then turn to results of a simulation in which we incorporate the fact that consumption

data is only observed at a low frequency and therefore does not directly relate to the

instantaneous variance implied by the model.

3.1 Baseline Results

Table 2 reports the implied mean and standard deviation of consumption growth for a

set of parameter vectors. The mean share of commitment consumption in total con-

sumption is also reported. In the first four columns, the mean and standard deviation

of consumption growth are calculated using formulas (24) and (25), with the integration

performed numerically. In the first two columns, the unconstrained individual level risk

aversion parameter is set at γ = 2, while we vary λ. Under these circumstances, with

appropriate choice of a′ and ρ, we are able to match both the .0357 standard deviation

the broader consumption measure. However, we note that a lower consumption volatility can be matched

with a sufficiently high commitment share in total consumption.
11Note that a′ is a function of the underlying parameters of the model, in particular it is increasing in

µ. Since we do not have a closed form expression for a′, we use it directly in the calibration.
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and the .0183 mean of log consumption growth. The results are not particularly sensitive

to the choice of λ, the expected time between adjustments. The value of λ = .33 in the

first column corresponds to an adjustment on average every three years; whereas a value

of λ = 1 in the second column means that households update on average every year.

We are able to achieve almost identical results for intermediate values of λ as well as a

λ as high as 2, meaning adjustments on average every six months. If we interpret the

average time between adjustments as a measure of adjustment costs, the table suggests

that even small adjustment costs can make aggregate consumption fairly smooth in the

short run.12

Note that in the first two specifications, the rate of time preference, ρ, is chosen to

be quite small (around .007). The reason is the risk-free rate puzzle of Weil (1989): in

the standard consumption based asset pricing model, high risk aversion implies a low

intertemporal elasticity of substitution. Thus, consumption does not grow fast along

the optimal path. Although our model relaxes the direct connection between the risk

aversion parameter and the intertemporal elasticity of substitution, this is insufficient to

completely account for the riskfree rate. In order to make consumption grow faster, we

require patient consumers. This motivates our choice of low levels of ρ throughout the

calibration.

In order to match the low standard deviation of aggregate consumption with small

risk aversion, we need a high share of commitments in total consumption. As the last

row in the table shows, when γ = 2, approximately 80% of total consumption must be

committed. According to the summary statistics for expenditure in Table 1, physical

commitment goods constitute less than 80% of the typical household’s consumption.

However, in line with our interpretation of commitment consumption as part of habit,

the rest of the 80% may be constituted of goods that involve mental or psychological

adjustment costs.13

The model is also capable of matching the equity premium with a lower share of

commitments in total consumption if we assume that unconstrained risk aversion is

12This is in line with the findings of Marshall and Parekh (1999), who report calibration results with

small adjustment costs.
13The 80% share of habit in total consumption is the roughly same as what Constantinides (1990)

finds in his calibration with γ = 2.2. This is not surprising, since the only difference between his model

and the one calibrated here is that ours has external habit formation.
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higher. The empirical results presented in Section 4 provide some evidence that the

unconstrained individual risk aversion parameter is in the ballpark of γ = 4.17. For this

reason, columns 3 and 4 of Table 2 report calibration results with γ = 4 and γ = 5.

With these parameters, the equity premium puzzle can be resolved with a consumption

share of commitments as low as 60% or 50%. Remarkably, these numbers are similar

to the share of physical commitments in total consumption, when commitment goods

are defined as housing, transportation excluding gas and maintenance, utilities, health

insurance and education (see Table 1). All of these goods involve either transaction costs

or contracts that make their adjustment costly and infrequent.

However, even at the low rate of time preference ρ = .005, we are not able to match

mean consumption growth perfectly: we only get annual growth of 1.2-1.4% as opposed

to the true value of about 1.83%. Again, the reason for this is the riskfree rate puzzle.

A higher γ implies more consumption smoothing, making it more difficult to match the

observed mean consumption growth in the data even with patient consumers. We discuss

some alternative explanations of the riskfree rate puzzle below.

3.2 Calibration to Annual Data

One potential problem with the results discussed thus far is that the volatility of con-

sumption growth calculated using (25) may not correspond to the volatility measured in

the data. There are two sources of differences. First, (25) expresses the instantaneous

variance, which may differ from the variance of quarterly or annual consumption growth

unless the consumption process follows a random walk. Since consumption and wealth

are co-integrated, we expect the variance of consumption to rise to the variance of wealth

over longer horizons in the model (i.e., the random walk condition may fail to hold). In

this situation, the consumption volatility reported in columns 1-4 may understate con-

sumption volatility measured over a quarterly or annual horizon. Second, (25) is an

unconditional variance, which takes into account the unconditional uncertainty in the

surplus consumption ratio 1 − Z. However, the surplus consumption process is mean

reverting. Therefore we expect its variance to fall over longer horizons. This effect would

bias the reported consumption volatilities in columns 1-4 upwards.

For these reasons, in the final two specifications of Table 2 we simulate the aggregate

consumption dynamics as given by equation (7), with a sampling frequency of one day.
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We then aggregate over time to get annual consumption, and calculate the implied mean

and variance of (annual log) consumption growth. For each of the final two columns, the

representative consumer economy is simulated fifty times for a 100 year horizon. The

measured consumption means and variances are then averaged across all runs.

The results of columns 3 and 4 largely carry over to our new measure of annual

consumption, if we decrease the parameter λ to 0.2. This corresponds to an adjustment

of commitments on average every five years. A lower λ is required because less frequent

adjustments make aggregate consumption react more slowly to shocks. This mitigates

the problem of increasing variance over longer horizons, while allowing for the effect of

mean reversion in surplus consumption.

Of course, at even longer horizons, the volatility of consumption growth will rise

to match the volatility of wealth, which in particular implies positive autocorrelation

in consumption growth at lower frequencies. As emphasized for example in Campbell

(2002), there is no evidence for such autocorrelation in the data. We can present two

arguments in defense of our results. First, in our model, although the volatility of

wealth over longer horizons is high, it is far from being as high as the volatility of the

stock market, because consumers hold a large share of safe assets in their portfolio. For

example, in the simulation corresponding to column 6 in the table, the (annualized)

ten year standard deviation of log wealth growth is about .055. This is about fifty

percent higher than the measured standard deviation of consumption, .0357, but still

much lower than the standard deviation of the stock market, .165. The reason is that

the representative consumer holds more than two-thirds of her wealth in safe assets.

Second, the increase in consumption volatility over longer horizons is a common

property of asset pricing models with exogenous i.i.d. returns (including Constantinides,

1990 and Gabaix and Laibson, 2001). One way the literature has dealt with this problem

is by introducing mean reversion in returns, for instance in the habit formation model

of Campbell and Cochrane (1999). Thus, the increase in consumption variance is not a

consequence of our commitments story per se, but rather a consequence of our modelling

choice of exogenous, i.i.d. returns. It is likely that the commitments model with mean

reversion in asset returns would help resolving asset pricing puzzles while avoiding in-

creasing consumption variance over longer horizons. However, in this paper we restrict

attention to the analytically tractable i.i.d. specification.
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3.3 The riskfree rate puzzle

We found that the commitments model is able to resolve both the equity premium and

riskfree rate puzzles only with a high share of commitment consumption. With a lower

commitment share of 50-60%, the model only partially resolves the riskfree rate puzzle.

It is helpful to explore some omissions from our highly parameterized model that

could account for the riskfree rate puzzle. First, note that Campbell reports an estimated

riskless interest rate of .0202 for the time period 1881-1998, which is approximately dou-

ble the rate we use in the calibration. In other words, the true riskfree rate is measured

with noise in the data. A riskfree rate higher than .01 would obviously increase the per-

formance of our model in matching all moments of consumption, even with a low share

of commitments. Second, there may be other frictions in the economy, not modelled in

our paper, that generate high consumption growth. For instance, borrowing constraints

increase precautionary savings and lead to higher consumption growth (see e.g., Gollier,

2001, pages 269-283). Introducing borrowing constraints into the commitments model

may increases implied consumption growth, providing a better fit to the data. The role

of borrowing constraints in mitigating the riskfree rate puzzle has also been emphasized

in a recent paper by Constantinides, Donaldson and Mehra (2002). Their simulations

indicate that the mean bond return roughly doubles when borrowing constraints are

relaxed, a large effect. Finally, relaxing the link between the EIS and risk aversion at

the individual level could directly allow us to explain the riskfree rate puzzle.

In summary, the calibration exercises indicate that when appropriately parameter-

ized, the commitments model can generate risk premia and consumption patterns that

are consistent with aggregate data. Of course, the empirical importance of commitments

as an explanation for these puzzles depends on the extent to which they affect house-

holds’ portfolio allocation decisions in practice. The remainder of the paper addresses

this question.

4 Empirical Evidence

The key testable prediction of our model is that an exogenous increase in an agent’s

level of commitment consumption – e.g., housing – causes him to choose to hold fewer

risky assets (stocks) relative to safe assets (bonds). When x is determined exogenously,
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(5) continues to hold and implies the following estimating equation for our empirical

analysis:

portfolio risk = α+ β × commit + θ × wealth + controls + ε. (28)

Here portfolio risk denotes a measure of the riskiness of a portfolio (e.g., value of stocks

owned or share of stocks in the portfolio), commit measures the agent’s level of com-

mitment consumption (e.g., size of house or mortgage), and wealth is a measure of the

lifetime wealth of the agent. In the estimation procedure, we will consider both simple

wealth measures and more flexible parametrizations of liquid and illiquid wealth. In

addition, we control flexibly for other factors that could be correlated with risk aver-

sion and portfolio choice such as age, education, occupation, etc. The noise term ε

captures unobserved individual characteristics that may affect portfolio choice, such as

heterogeneity in risk aversion or background income risk, as well as measurement er-

ror in wealth. The theory predicts that β < 0, and the magnitude of β quantifies the

importance of commitments for portfolio allocation.

Our empirical representation of commitment is the mortgage debt outstanding on the

agent’s house. Note that higher mortgage debt is equivalent to owning a more expensive

home when home equity and the interest rate are held fixed, since home equity is defined

as property value minus outstanding mortgage. As our benchmark specifications hold

home equity fixed and do not exploit variation in interest rates, unless otherwise noted,

we will use the terms “house size” and “mortgage” interchangeably.14

It should be noted that identifying the exact empirical counterpart of the commit

variable in (28) is somewhat difficult. In a purely time-dependent framework, the natural

measure of commitment is the total expected user cost of the commitment good until

the next reset date. If an agent consumes his entire house before moving, home value

would be an appropriate measure of commitment. If he were to sell before this point,

commitment would rise by less than $1 for every $1 increase in property value. Hence,

the correct measure of commitment is some proportion of housing value. Rather than

attempting to calculate this proportion, we observe that our estimates using variation in

mortgage debt – which is equivalent to using variation in property value, as noted above

– will understate the effect of the commit variable on portfolio choice when an agent can

14When interest rates are held fixed, households that have larger mortgages are not poorer, since they

also have a more expensive housing asset in their portfolios.
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resell his house.

The main difficulty in estimating (28) is that our commitment measure, mortgage

debt, is itself endogenously chosen by the household. It may therefore be correlated with

both unobserved household characteristics and measurement error in wealth, violating

the orthogonality condition necessary for OLS. To deal with this endogeneity problem,

we seek exogenous variation in our commitment measure. We generate such variation

in mortgage debt using an individual’s age at marriage as an instrument for his house

size. Recognizing that age at marriage may be directly related to portfolio choice, we

test the hypothesis that marriage age and ε are uncorrelated by using ”control” groups

for whom our first-stage relation breaks down. As discussed in detail below, our results

support the claim that the variation in house size that we exploit is truly exogenous and

its effects on portfolio choice are causal.

An additional complication in using housing as a measure of commitment is that the

house is itself an asset in the agent’s portfolio. Consequently, leaving aside commitment

effects, owning a larger home can directly affect an agent’s optimal portfolio. We address

this issue by showing empirically that houses appear to be treated as riskless assets in

portfolio choice. If houses are indeed riskless, a $1 increase in mortgage causes a $1

increase in riskless debt coupled with a $1 increase in riskless assets and leaves the risk

properties of the overall portfolio unchanged. Hence, in this case, every dollar shifted

from stocks to bonds when an agent owns a larger home reflects a $1 shift in the overall

portfolio towards safer assets.

The discussion of estimating β is organized as follows. The data and key sample

selection procedures are described in the next subsection. We then discuss the age at

marriage instrument for house size and test its validity by estimating first-stage and

reduced-form equations for control groups. In the third subsection, we present two-stage

least squares estimates of (28). The fourth subsection uses data on cross-city differences

in home price risk to show that the shift to safer assets when one owns a bigger house is

due to the commitment effect rather than greater exposure to risk in the housing market.

Finally, we show how the risk aversion parameter (γ) used in the calibration exercises

can be imputed from our empirical estimates of β.
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4.1 Data and Sample Selection

The data used in this study are from the 1990-1996 panels of the Survey of Income

and Program Participation. The SIPP collects asset and liabilities information from

a sample of approximately 30,000 households at least once in each panel. Other data

about the demographic and economic characteristics of each household are also collected.

The main advantages of the SIPP relative to other commonly used micro datasets on

financial characteristics such as the SCF and PSID are its large sample size and the

ability to identify a household’s geographic location up to the metropolitan statistical

area (MSA) level. These geographic identifiers turn out to be useful in distinguishing

the commitment effect of owning a bigger house from the effect of greater exposure to

price risk in the housing market.

We make two exclusions on the original sample of survey respondents to arrive at the

core sample used in our instrumental variables analysis. First, since our model abstracts

from transaction costs for participation in asset markets, it has no direct implications

for households not participating in the stock market. We therefore focus only on stock-

holders, who constitute approximately 20% of all households. Second, since our IV

strategy relies on changes in the outstanding home mortgage due to variation in age at

marriage, we are forced to restrict attention to homeowners who are or were married.15

Approximately 84% of families who own stocks own homes, and of these, 90% are or

were married. This leaves 15,297 households in the core sample.

One potential concern is that selective inclusion into the sample might bias estimation

results. To deal with this problem, we repeat all the regressions reported below for the

full sample that includes non-stockholders and renters.16 All the qualitative results we

find for the core sample of households are preserved in the full sample. The effect of

commitment on stockholding becomes smaller – since non-stockholders cannot respond

at all – but remains statistically significant. Importantly, all of our validity checks for

the marriage age instrument also continue to hold on the full sample. These findings

suggest that the selection bias introduced by our sample exclusions is negligible.

15We also look at renters to test the exclusion restriction that age at marriage is not directly related

to portfolio choice.
16We continue to select households who are or were married because our IV strategy forces us to do

so.
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Table 3 gives summary statistics for our core sample of ever-married homeowners who

are stock market participants in 1990 dollars. Since stockholders tend to be wealthier

than the average family in the US, mean net worth is quite high in this sample ($248,361).

On average, approximately 1/3 of this wealth is held in the form of home equity and

another 15% is held in illiquid assets such as cars and other real estate. Of the remaining

$123,795 held in liquid wealth, approximately 55% is in stocks, 15% in savings accounts,

10% in bonds, 15% in IRA assets, and 5% in “other” liquid assets. These other assets can

be further broken down into checking accounts (5%), US savings bonds (10%), debt owed

to the household (35%), and equity in other financial investments (50%).17 Importantly,

401k wealth is omitted, as the 90-93 SIPP panels do not collect data for this category.

While it is possible that our estimates are biased due to this omission, we find that

investments in other retirement accounts (IRAs and Keoghs) do not offset the portfolio-

shifting effects documented below. To the extent that investment behavior does not vary

across different types of retirement accounts, the lack of data on 401k investments is not

highly problematic.

The individuals in this sample have higher incomes, more education, and are older

than the average individual in the US, but presumably reflect the characteristics of the

stockholding population in whom we are most interested. Note, however, that our data

understates the true skewness of the distribution of income and wealth because these

variables are topcoded to protect confidentiality. 18 Most importantly for our purposes,

our key independent variable, home mortgage, is topcoded for 4% of our sample, while

our key independent variable, stockholding, is not topcoded. All results reported below

are robust to inclusion or exclusion of the topcoded group.

4.2 Estimation Strategy

We begin our analysis by illustrating the endogeneity problem that plagues the OLS

estimation of (28). In this regression, as in most others below, we use the total value of

stocks as the dependent variable rather than the portfolio share of stocks. Portfolio-share

regressions effectively weight high-wealth households less than low wealth households,

17Since it is difficult to classify equity in “other financial investment” as safe or risky, we show that

our results are robust to the classification of this asset.
18For instance, the 1996 panel topcodes primary home property value at $550,000 – any individual

who owns a home that costs more that $550,000 has home value coded as $550,000.
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but high-wealth households are those that matter most from an asset pricing perspec-

tive. Indeed, it is shown below that portfolio-share regressions understate the aggregate

shift in portfolios caused by commitments since this shift is much larger for high-wealth

households. Since the error terms of the levels regressions are heteroskedastic, we always

report Huber-White sandwich estimates of standard errors.

Strikingly, even when control carefully for liquid and illiquid wealth using 10 piece

linear splines, and include other demographics such as a spline for age, industry and

occupation dummies, and controls for education and income, the estimated effect of

owning a large home (i.e., having a bigger mortgage) on stockholding is positive. The

coefficient on mortgage, which is marginally significant, implies that a $1 increase in

home value is correlated with holding 8 cents more in stocks, all else held equal. The

corresponding regression of bonds on the same right hand side variables reveals a negative

relationship between home mortgage size and investment in safe assets.

As noted earlier, the reason that OLS is likely to yield biased estimates of the causal

effect of commitments on portfolio allocation is that the choice of house size is endoge-

nous: the error term ε is correlated with mortgage size. Agents who choose to commit

a large fraction of their expenditure to a big house are likely to be more risk loving and

have less background income risk than others. These agents are also the ones who are

likely to hold the most risky portfolios, creating a positive correlation between house size

and stockholding. In addition, a more subtle endogeneity problem arises because lifetime

wealth is noisily measured: A higher level of commitment could proxy for having higher

unobservable safe assets, such as a larger stream of anticipated stable labor income, and

may therefore be associated with holding a riskier portfolio of liquid assets.19

In view of these biases, we need a source of variation in housing size that is exoge-

nous in that it is uncorrelated with the error term, ε, in the estimating equation. We

create such variation using age at marriage as an instrument for housing commitment,

conditioning on current age to eliminate life-cycle effects. This results in the following

first-stage regression specification:

mortgage debt = δ + ξ ×marriage age + ω × wealth + controls + ν (29)

19See e.g., Davidoff (2003), who shows that higher covariance between labor income and house prices

is associated with smaller house purchases.
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The intuition underlying this first-stage relationship is as follows. Marriage is a strong

determinant of the home purchase decision: in our sample, 30% of married stockholders

bought their current home within five years after getting married. Now, consider two

fifty year old married homeowners, Adam and Bob, who are identical except for the year

they got married. Adam got married at age 30 and Bob got married at age 35. The data

reveals the following strong and highly statistically significant relationship: Holding fixed

home equity, Bob has a bigger mortgage than Adam; in other words, Bob owns a bigger

house. This is presumably because households are more likely to have the credit and

resources necessary to buy a bigger home later in life, and adjustment costs in housing

create stickiness in housing consumption over time.

Given this first-stage relationship, the key identifying assumption for our strategy

to yield a consistent estimate of the casual effect of mortgage size on portfolio choice

is that age at marriage is uncorrelated with unobserved individual characteristics and

measurement error in wealth:

E [marriage age× ε] = 0. (30)

A potentially important concern with our empirical analysis is that this orthogonality

condition is violated because age at marriage itself is not randomly assigned. Marriage

age may directly affect portfolio choice because it is correlated with risk attitudes or

measurement error in wealth. We test the orthogonality condition (30) by examining

two “control” groups for whom the first-stage relationship between age at marriage and

house size breaks down. The only way marriage age could affect portfolios for these

groups is through a direct effect, i.e., if age at marriage is correlated with ε. In both

control groups, we find insignificant effects of marriage age on portfolio risk. Under the

assumption that the relationship between age at marriage and ε is the same in our control

groups and the “treatment” group used in our main analysis, these results confirm the

validity of our instrument.

We first define a “treatment” group for whom the first-stage relationship between

age at marriage and house size is strong. To do so, we split our core sample into two

by the median number of years since the last marriage (25 years). The treatment group

is the set of more recently married individuals, for whom the effect of marriage age on

mortgage (house size) is strong and positive. Estimates of this first stage regression is

reported in column 1 of Table 4. For this group, when controlling flexibly for wealth,
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home equity, and other observables such as age, occupation, industry, year, income, etc.,

marrying one year later is associated with owning a home that is $481 larger on average.

The instrument is statistically powerful: the Huber-White t-statistic is 5.1.20

Importantly, for the treatment group, a reduced form regression of stocks on marriage

age reveals a strong and significant negative relationship. This is illustrated in columns 2

and 3 in Table 4. Column 2 is a minimal specification with only age and liquid wealth as

controls; this specification should allay concerns that our results are due to controlling for

a large set of endogenous variables. Column 3 has the full set of controls. The coefficient

of marriage age is virtually identical in the two regressions: we find that getting married

one year later implies about $630-$640 less in stockholding. The first stage and reduced

form regression are the underpinnings of our two-stage estimates in the next section.

We now turn to the control groups to test the orthogonality condition for the instru-

ment. The first control group is homeowners who got married a long time ago (more than

the median of 25 years). According to column 4 in Table 4, the first stage regression of

mortgage on age at marriage breaks down in this group. This finding is intuitive: People

who have been married for a long time are likely to have moved out of the home they

bought when getting married, breaking the link between age at marriage and current

home size. Hence, marriage age cannot affect portfolio choice through the commitment

channel here. To test whether marriage age has a direct effect on portfolio choice, we

ran the reduced form regression of stocks on marriage age for this control group. The

point estimate, which is statistically insignificant, suggests that in this group, marrying

one year later is associated with $253 more invested in stocks (column 5).

Our second control group is married renters. There are 2,037 stockholders in the data

who do not currently own homes (but may have in the past) and are or were married.

Since these individuals have not purchased homes, there is by construction no first-stage

relationship between age at marriage and housing commitment for this group. Column

6 reports estimates of the reduced-form relationship between stocks and age at marriage

for this group. Marrying a year later has a statistically insignificant positive effect of

$250 on stockholding for renters.

20The effect is not due to variations in interest rates; when we hold the interest rate fixed, the rela-

tionship between age at marriage and home mortgage is unchanged. The reason we do not control for

interest rates in our primary specifications is that doing so forces us to drop all households who have

paid off their mortgage (for whom we have no interest rate data).
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The data thus suggests that there is no direct effect of marriage age on stockholding

in both control groups. This supports the key identification condition (30), provided that

age at marriage has the same correlation with the error term ε, i.e., with risk preferences

and unobserved wealth, for the treatment and control groups. Renters or homeowners

who married a long time ago are not perfect control groups in that their average char-

acteristics differ from those homeowners who married recently. Renters tend to have

less liquid wealth and stocks, while long-married homeowners have more liquid wealth

and more stocks. The recent-married have on average about $48,000 in stockholdings,

while long married have $81,000 and renters have $31,000. But the standard deviation

of stockholding in each of these groups is quite large ($250,000 in the treatment and

$357,000 and $85,000, respectively, in the control groups) suggesting there is quite a bit

of overlap across groups. Moreover, the fact that our treatment group is sandwiched in

the middle along these demographics implies that an endogeneity story that is to explain

away our findings would have to be fairly complicated. Specifically, it would require a

correlation between marriage age and stockholding that changes non-linearly along the

above demographics and is unique to homeowners.

Importantly, the reduced form estimates for our treatment and control groups not

only have the opposite sign but are also statistically distinguishable. The 95% confidence

interval of the reduced-form treatment estimate does not overlap with the corresponding

confidence interval in either of the control groups. Moreover, the point estimates of

the two treatment groups are positive and virtually identical, suggesting that our two

control groups are quite similar along the relevant dimensions. If there is a direct effect of

marriage age on stockholdings, it is slightly positive, working against us finding support

for the commitments hypothesis.21

The reason for these positive point estimates may be related to the fact that marriage

age is positively related to measured wealth, such as liquid wealth and income in the

data. A negative relation between marriage age and unobserved wealth, ε, would re-

quire that the correlation between marriage age and measured wealth and that between

marriage age and unmeasured wealth have opposite signs. This seems implausible, again

suggesting that if marriage age and ε are at all related, the relationship is positive.

21More precisely, if the correlation between marriage age and the error term ε is positive, the IV

regression yields an estimated β coefficient that is biased upward.
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Theories of age at marriage provide some intuition for why the correlation between

marriage age and ε could be positive. The “sociological” theory of marriage suggests that

individuals who are less affluent and educated tend to choose to marry earlier for cultural

reasons. The “economic” theory of marriage, pioneered by Becker (1973), argues that

individuals weigh search costs against the benefits of being married in determining when

to get married. To the extent that more informed and well educated people have higher

opportunity costs of search and take longer to establish observable wealth prospects, they

are likely to marry later. Empirical studies of marriage age corroborate the predictions

of both theories: the key determinants of marriage age are education, occupation, and

mother’s age at marriage (see e.g., Kiernan and Eldridge (1987) and Keeley (1979)).

These theories imply that marrying later is related to being more sophisticated and

well educated. In addition, more sophisticated individuals face less background risk and

have greater future labor income, which is typically thought of as a “safe” asset. For

both of these reasons, selection effects should result in late marriers having more stocks.

In summary, the evidence suggests that the key orthogonality condition for our IV

estimation holds, or is violated in a direction that works against us finding support

for the commitments hypothesis. We therefore proceed to use age at marriage as an

instrument for house size below.

4.3 Instrumental Variables Estimates

Table 5 presents IV estimates of the effect of house size on stock ownership. In these

specifications, we use the core sample of ever-married homeowners (both recent and

long-married) to avoid unnecessary sample selection. Results are even stronger if we

restrict attention to recent-married homeowners, the subsample that drives most of the

first stage relationship.

We begin by discussing the estimates of specification (1), which are typical, and then

discuss a series of robustness checks. As above, all standard errors are robust to arbitrary

heteroskedasticity of error terms. In specification (1), we regress the level of stockholding

on outstanding home mortgage, which is instrumented using age at marriage in this and

all subsequent specifications. To address concerns that endogenous regressors may be

affecting results, this specification has a minimal set of controls: liquid wealth and age.

The estimates indicate that at the mean, a $1 exogenous increase in home value, holding
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fixed home equity and other wealth, causes a 95 cent reduction in stockholding.22 This

estimate is statistically significant at the 1% level.

Specification (2) shows that this result is robust to the inclusion of a rich set of

controls: ten piece linear splines for liquid wealth, home equity, and age; controls for

education and income; and year, occupation, and industry dummies. Under this spec-

ification, a $1 increase in home value, holding total wealth fixed, is estimated to cause

a 74 cent shift out of stockholding with a standard error of 34 cents.23 This effect is

extremely large. To see this, recall that the standard deviation of home mortgages is

approximately 50,000, implying that a one standard deviation increase in mortgage leads

to a $37,000 portfolio reallocation from stocks to less risky assets. Although it is dan-

gerous to extrapolate to the case of zero commitment, which is far out of sample, these

results suggest that models of portfolio choice and asset pricing that ignore commitment

effects may drastically overstate the level of risk that agents should be willing to take.

Specification (3) reports estimates of the regression that corresponds to (2) with

bonds as the dependent variable. It shows that a $1 increase in home size causes a 52

cent increase in holding bonds. These results confirm that we are identifying an actual

shift in portfolio composition and not spurious correlations in levels. The discrepancy

between the 74 cent shift out of stocks and 52 shift into bonds is accounted for by an

increase in debt owed to the household. Since it is unclear whether this debt is risky or

safe, we conclude that the shift in asset composition from risky to safe assets is between

52-74 cents.

To shed further light on the mechanism through which higher commitments lead

to safer portfolio allocation, specification (4) of Table 5 estimates the effect of owning a

larger home on the probability of participation in the bonds market. We estimate a linear

probability model for the bondholder dummy, with the same independent variables as in

specification (3). The participation effect is very strong and statistically significant: a

22As emphasized by Imbens and Angrist (1994), IV only estimates a ”local” average treatment effect

for the “compliers” who respond to the treatment, in this case the group of individuals who buy larger

homes as a result of marrying later. However, the estimates here may be close to average treatment effects

in the population since our first-stage relationship remains strong across income groups and various other

demographics.
23Since we are controlling for wealth, this portfolio shift is not the result of having more debt. The

household’s balance sheet is unaffected if the home is a riskless asset because home mortgage debt is

secured by the house itself (see subsection 4 below).
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$10,000 increase in mortgage causes a 3.6 percentage point increase in the probability of

owning bonds; for comparison, the average probability of owning bonds in this sample

is 22%. Hence, a significant fraction of the shift from stocks to bonds when individuals

have more commitments appears to be driven by the opening of bond accounts.

These results are also robust to a number of other specification checks that are not

reported in the table. First, since we do not have data on the portfolio composition of

IRAs, one might worry that households with larger commitments are taking more risk in

retirement accounts to offset less risk exposure elsewhere. We establish that this is not

driving our results by restricting attention to the subsample who has zero IRA assets

(approximately 45% of households) and finding the same estimates. Second, since the

risk properties of “other assets” such as other financial equity and debt owed to the

household are ambiguous, we drop the households who report such wealth and find that

the results continue to hold. Third, results remain similar if we restrict attention to

those homeowners who still have a strictly positive amount of mortgage debt to be paid

off and control for the interest rate on their loan. Fourth, to allay the concern that our

results may be driven by transitory effects when individuals buy houses, we condition on

having a tenure of at least five years in the current home and find similar results. Fifth,

as noted above, our results are qualitatively unchanged in the large sample that includes

non-stockholders. However, it should be noted that estimating a linear probability model

for the stock market participation reveals no relationship between mortgage size and

stock market participation (potential reasons are discussed below). In summary, the

data reveal a strong and robust effect of exogenous changes in the level of commitment

on portfolio choice: holding all else fixed, a $1 increase in commitment causes a shift of

approximately 50-70 cents in an agent’s portfolio from risky to bonds.24

To benchmark our results relative to the more common portfolio-share specifications

in the existing literature, we also present IV results for regressions run in shares. In these

regressions, the dependent variable is the share of stocks in total wealth (stocks/total

24To the extent that housing commitments are positively correlated with other commitments – e.g.,

furniture and utilities – our estimates overstate the effect of commitments on stockholding. If housing is

complementary to these other commitment goods, a $1 increase in home value corresponds to more than

a $1 increase in commitment. Although nonzero, this effect is unlikely to change the magnitude of the

estimates significantly insofar as the elasticities of furniture and utility expenses with respect to house

value are small.
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wealth) and all the independent wealth-related variables are included as shares of total

wealth as well. As in specifications (1)-(3), we control flexibly for home equity, so that

the change in mortgage share corresponds to owning a larger house. Since wealth is in

the denominator, we drop the 66 households that report negative or extremely low values

of total wealth (less than $1000) in specification (5).25 Though statistically significant,

the coefficient on home mortgage is now only -0.07. This is because portfolio-share

regressions weight high-wealth households less than low wealth households. Indeed, a

levels regression similar to that in column 2 on the restricted sample of households

with liquid wealth below the median ($50,000) shows that the effect of commitments on

stockholding is small and statistically insignificant for this group. This reasoning is also

confirmed by specification (6), which shows that the shares regression yields estimates

similar to those of the levels regression when we restrict the sample to households that

have total wealth above $150,000. Given that people who do not hold stocks tend to

be poorer, this evidence is in line with the lack of a significant relationship between

mortgage size and stock market participation.

There are a number of reasons why the portfolios of the relatively poor may not be

very sensitive to variations in commitments. First, there is a fair amount of evidence that

the savings and portfolio decisions of the rich are substantially different from those with

moderate wealth. Carroll (2000) and Guiso, Japelli and Terlizzese (1996) find that the

share of risky assets in a household’s portfolio rises, perhaps dramatically, with wealth.

One potential reason emphasized by Carroll is decreasing relative risk aversion, which is

also supported by the findings of Ogaki and Zhang (2001) in a risksharing context. With

DRRA utility, poorer households will exhibit lower sensitivity of portfolios to variations

in commitment levels. This is because commitments essentially reduce effective wealth,

and households with higher risk aversion invest a smaller fraction of their marginal dollar

of wealth in risky assets, as shown by (5).

Second, poor households are more likely to be borrowing constrained. When close

to the constraint, such households have a high marginal propensity to consume out of

cash-on-hand, and accordingly have a low marginal propensity to invest. This effect also

attenuates the sensitivity of stockholding to changes in commitments.

25Inclusion of these households causes standard errors to explode since they are heavily-weighted

outliers in a least-squares regression.
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Third, as argued by Gabaix and Laibson (2001), there may be fixed costs to adjusting

financial portfolios. These fixed costs matter less for wealthy people with large portfolios.

Thus we expect moderate-wealth households to adjust their portfolios less frequently,

especially if the required adjustments are also small, as suggested both by the borrowing

constraint and DRRA utility stories.

Finally, mismeasurement of wealth may be proportionally much larger for poor than

for rich households; note that the sample contains 66 individuals with wealth less than

$1000, and several of them actually have negative wealth. Such measurement error would

bias the coefficient of wealth towards zero for low wealth households. Since mortgage

debt is correlated with wealth, its coefficient would partially compensate for that effect,

and thus get biased upward toward zero. In fact, we do find a much lower coefficient on

liquid wealth in the poorer half of the sample, confirming this argument.

It should be noted that this is not the first study to examine the relationship be-

tween housing and portfolio choice. Fratantoni (1998), Cocco (2000), Flavin and Ya-

mashita (2002), and Kullmann and Siegel (2002) document a weak relationship between

housing and portfolio allocation in the cross section. However, as we have noted, the

cross-sectional results are strongly biased by endogeneity. Another important distinc-

tion between our results and theirs is that prior work has regressed stock ownership on

home value, without holding home equity fixed. This makes these estimates difficult to

interpret in the context of testing the commitments hypothesis: as mentioned above, we

would ideally compare households that have the same level of liquid and illiquid wealth.

More recently, Yamashita (2003) also fits TSLS models using age, age2, family size,

tenure in home, and home price growth rates as instruments and obtains comparable

estimates to his OLS regressions. However, we note that the validity of these instruments

is questionable insofar as age may directly affect portfolio choice (e.g., individuals shift

to bonds as a guaranteed source of income later in life). Indeed, when using Yamashita’s

instruments on our sample, we find a positive statistically significant coefficient of 0.2

on the home mortgage variable, controlling for home equity.26 Moreover, conditional on

the validity of our age at marriage instrument, a Hausman specification test rejects the

hypothesis that TSLS estimates using Yamashita’s set of instruments are consistent with

26When we replicate Yamashita’s specification of regressing stock ownership on property value without

controlling for home equity, we find a coefficient of -0.01 on property value, with a confidence interval

that contains his estimate of -0.07.
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a p value of 0.028.

4.4 Commitments or Housing Price Risk?

The empirical evidence indicates that an exogenous increase in house size causes a sig-

nificant portfolio reallocation toward safer assets. If homes were riskless investments,

the agent’s overall portfolio – including the housing asset – would be less risky after an

exogenous increase in mortgage debt. This would confirm our hypothesis that larger

commitments cause agents to hold less risky portfolios. However, homes are actually

volatile assets: Flavin and Yamashita (2002) report a standard deviation of 16% on the

growth rate of home prices. Hence, it is not immediately clear that households actually

choose a lower overall exposure to risk when they experience an exogenous increase in

home size. Put differently, the reallocation from stocks to bonds may occur not because

of the commitment effect but simply because greater exposure to risk in the housing

market causes risk-averse agents to hold allocate the remainder of their portfolio more

conservatively. This raises the question of whether the evidence reported in the previous

section is actually due to commitments or the competing theory of risk exposure in the

housing market.

The implications of the existing theoretical literature for the magnitude of the hous-

ing risk effect on portfolio choice are mixed. Flavin and Yamashita report simulations

of optimal portfolio choice in a mean-variance framework and find that a larger house

implies a sharp reduction in optimal stockholding, even in a neoclassical model where

housing is freely adjustable. One shortcoming of their analysis is that it does not incor-

porate the natural hedge homeowners have in owning an asset whose value fluctuates

with the price of housing, which could greatly reduce the actual riskiness of owning a

home. Sinai and Souleles (2003) present evidence suggesting that this hedging motive is

quite important: they find that people are more likely to buy homes (rather than rent)

in cities where price volatility is high, suggesting that homes may not be as “risky” as

suggested by Flavin and Yamashita.

Discerning the relative importance of these two effects requires independent variation

in exposure to risk and house size. We obtain such variation by exploiting regional

differences in the volatility of house prices. In particular, we use annual home price data

from 1975-2002 from the Freddie Mac repeat sales house price index at the metropolitan
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statistical area (MSA) level to construct measures of the standard deviation of the real

growth rate of house prices, σhg, in each MSA.27 We have home price data on 91 MSAs,

which account for 9,465 of the households in our original sample. The mean value of σhg

in our sample is 5% and the standard deviation of σhg is 2.5%, creating a considerable

amount of exploitable variation in the riskiness of housing.

Before turning to the empirical evidence, it is helpful to formalize our method of

distinguishing the housing-price risk theory from the commitments effect. Let H denote

an agent’s initial house value and gt denote the growth rate of housing prices in year t.

This agent’s exposure to risk in the housing market is captured by the standard deviation

of the annual change in his housing assets:

σH = stdev(Hg) = Hσhg. (31)

The existing literature on housing risk uses variation in H to estimate the effect of σH on

portfolio choice. Those estimates are biased insofar as H directly affects portfolio choice

through the commitment effect modelled in this paper. Our strategy is to instead use

cross-city variation in σhg to create variation in σH while holding the value of H fixed.28

This permits us to separate the commitment and housing risk effects and identify their

relative importance for portfolio choice.

We begin by demonstrating that our measure of housing market price volatility affects

behavior by showing that demand for housing is weaker in cities that have high price

volatility. Column 1 of Table 6 reports OLS estimates of the effect of an increase in

home price volatility on the value of the property households purchase. This and all

subsequent specifications in Table 6 have a rich set of controls: liquid wealth and age

splines, industry, occupation, and year dummies, income education, average home price

growth in MSA, and other measures of wealth.29 In addition, all standard errors are

27Using alternate measures of housing risk, such as the covariance of house prices with consumption

does not affect our results.
28One potential weakness of using city-level measures of price risk is that they do not capture idiosyn-

cratic price risk for individual homeowners, which could potentially have different effects on portfolio

choice decisions. However, under the reasonable assumption that the degree of idiosyncratic risk is pro-

portional to the degree of MSA-level risk, finding that MSA level house risk does not significantly impact

portfolio choice also implies that idiosyncratic risk is not an important factor in these decisions.
29The key coefficient estimates reported in Table 6 are robust to a variety of different specifications

and controls for MSA and household-level characteristics.
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robust to arbitrary heteroskedasticity and serial correlation within MSAs. The estimates

indicate that a 1 percentage point increase in σhg is associated with a $4,112 reduction

in home prices on average.30 This estimate is statistically significant with p < 0.01. A

similar effect is observed for renters: a one percentage point increase in σhg is associated

with a $25 reduction in the monthly rent an individual pays.

Given that agents consume less housing in areas of high price volatility, the key

question for our purposes is the extent to which agents living in high price volatility cities

also choose to take less risk in the stock market. Specification (2) replicates (1) with level

of stocks as the dependent variable. The effect of home price volatility on stockholding

is statistically insignificant. The lower bound of the 95% confidence interval implies that

at most, a 1 percentage point increase in σhg causes a $900 reduction in stockholding.

We can gauge the magnitude of this effect using (31). Since the mean of σhg is 5%, a 1

percentage point increase in σhg creates an increase in σH that is equivalent to buying

a home that is 20% larger. The mean home value is $150,000, implying that a $30,000

increase in home value will cause the same change in exposure to housing risk as a 1

percentage point increase in σhg. It follows that a $30,000 increase in home value causes

at most a $900 reduction in stockholding due to greater exposure to housing risk. This

effect is an order of magnitude smaller than the effect we estimate due to commitments,

which would cause roughly a $15,000 reduction in stockholding.31 These results therefore

strongly suggest that the estimates of Table 5 identify the causal effect of commitments

on portfolio choice rather than variations in housing risk.

It is informative to contrast the effect of housing market price risk on portfolio choice

for homeowners with that for renters. Specification (3) replicates (2) for the set of

ever-married renters for whom we can identify MSA. Strikingly, a one percentage point

increase in σhg causes a $2,812 reduction in the value of stocks held by renters. This

30These estimates simply confirm that a rise in price volatility causes an inward shift in the demand

for housing. Since the price of housing is endogenous, they do not tell us how much less an individual

will spend on a house when the standard deviation of house prices increases, holding the mean price

fixed.
31Taking the behavioral response of spending less on housing when price volatility is high into account

does not change this conclusion. Based on the estimates of specification (1), a 1 percentage point increase

in σhg causes approximately a $5,000 decrease in home spending, which means that the $900 reduction

would occur after a $25,000 increase in home value through the risk exposure channel. The commitment

effect continues to dwarf this estimate.
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effect is statistically significant with a robust t-value of 2.6. This result should allay the

concern that MSA price volatility is not a precise measure of an agent’s exposure to risk

in the housing market; were this the case, we would not see an effect on portfolio choice

for renters.

An important identification assumption in the preceding analysis is that the volatil-

ity of home prices in an individual’s city of residence is not directly related to his risk

preferences. This assumption would be violated if, for instance, more risk averse in-

dividuals migrate away from high volatility cities while risk lovers go in the opposite

direction. This selection effect could bias our estimates of the effect of price volatility

on stockholding upward and artificially work against the housing risk theory.

To overcome this form of selection bias, we exploit the strong relationship between

an individual’s state of birth and current residence. In particular, we instrument for

housing risk in an individual’s MSA by the housing risk in his state of birth.32 The

exclusion restriction for the IV is that state of birth is uncorrelated with risk prefer-

ences, conditional on all observables. Specification (4) shows that the point estimate for

the effect of housing risk on stockholding in the IV regression for homeowners remains

essentially unchanged relative to the OLS specification, although standard errors rise

given the weakness of the instrument. Specification (5) shows that even in the IV, high

housing risk appears to cause lower stockholding for renters, although this effect is only

marginally significant because of the imprecision of the estimates. These results suggest

that selection bias is not a first-order concern and that housing risk does in fact have a

relatively minor effect on behavior in asset markets.

In our view, it is not surprising that the portfolio of renters is highly sensitive to the

degree of housing market risk whereas the portfolio of homeowners is not. Since they

own an asset whose price fluctuates contemporaneously with their wealth, homeowners

have a natural hedge against price risk insofar as they plan to live in the same house

or neighborhood for a long time. In other words, the covariance properties of housing

risk with wealth are quite favorable. On the other hand, since renters do not have this

type of insurance against price fluctuations, it is intuitive that they choose to bear less

risk in financial markets when living in high price-volatility areas. This intuition is

not reflected in Flavin and Yamashita’s calibrations since they consider a static mean-

32State level data is used because more detailed data on birthplace is unavailable.
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variance optimization framework instead of using the derived utility of consumption.

The final specification of Table 6 reports estimates of an IV regression that attempts

to directly contrast the explanatory power of the commitments hypothesis with the

competing housing-price risk theory put forth in the recent literature by Flavin and

Yamashita (2002), Kullmann and Siegel (2002), and others. The dependent variable

in this regression is again the level of stockholding. The key explanatory variables of

interest are outstanding home mortgage debt and exposure to home price risk, σH . We

instrument for mortgage debt and σH using age at marriage, σhg, and the interaction

of these two variables. Thus, conditional on the exclusion restrictions for these two

instruments, the specification gives separate estimates of the causal effects of changes in

house size and housing risk on portfolio choice. The point estimate on the mortgage debt

coefficient actually rises relative to that reported in Table 5 when the degree of housing

risk is held fixed.33 A $1 increase in home size is estimated to causes a $1.13 dollar shift

out of stocks. In contrast, the estimate on the σH coefficient is small and statistically

insignificant. The magnitude of σH can be interpreted by using (31) to observe that a $1

increase in home value causes a .05 increase in σH . Based on the point estimate in (6),

this yields a .05× 3.4 = 17 cent reduction in stockholding. In summary, a horse race of

the commitments hypothesis versus the housing-price risk hypothesis favors the former

as the primary reason that housing size has a causal effect on portfolio choice.

4.5 Imputing Risk Aversion from the Estimates

Our empirical specifications coincide precisely with equation (5) for optimal portfolio

choice derived from our model. A structural interpretation of the regression equation al-

lows us to pin down the coefficient of the commitment variable as a function of underlying

parameters of the model.

The key step in connecting the empirical estimates to the model’s parameters is

identifying how the measure of commitments in the model, x, relates to our empirical

measure, home mortgage debt. In equation (5), the measure of commitments is ηx.

This is the outstanding value of commitments the individual needs to pay before the

next adjustment. If we interpret the house one owns as the physical commitment good,

33Standard errors rise because we have lost more than one third of the sample in focusing on MSAs

for which we have price data and because of clustering by MSA.
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the outstanding value of commitments roughly corresponds to the outstanding value of

mortgage debt, as long as the individual plans to move out of the house only in the

distant future. The model therefore implies that the coefficient of home debt in the

regressions equals π/γσ2.

The most conservative point estimate for the commitment coefficient is .527 in Col-

umn 3 of Table 5, the specification with bonds. Substituting in the estimates π = .06 and

σ = .165 for the equity premium and market volatility used in Section 3, the imputed

value of γ = 4.17. As noted in the calibration, values of γ between 4 and 5 generate

observed equity premiums and consumption volatility when the share of commitments

in total consumption is 50-60%, which is consistent with the expenditure data reported

in Table 1.

5 Conclusion

This paper has shown that consumption commitments – goods whose consumption can

be adjusted only at a cost – make individuals more risk averse and demand higher

equity premiums. The key theoretical result is that aggregating a microeconomic model

of commitments yields aggregate dynamics that coincide with those that arise from a

representative consumer model with habit formation.

In calibrating this model to aggregate data, we find that it can resolve both the

equity premium and riskfree rate puzzles with a high commitment share (80%). With a

lower commitment share (50%), the model still explains the equity premium puzzle, but

only partially resolves the riskfree rate puzzle.34

The commitment microfoundations generate a wealth of testable implications. Using

age at marriage as an instrumental variable, we found that a $1 exogenous increase in

commitment consumption (housing) causes agents to shift 50-70 cents from stocks to

bonds, consistent with the model’s key prediction. We reject the hypothesis that this

portfolio reallocation occurs primarily because of greater exposure to housing risk, in

contrast to recently proposed theories of the relationship between housing and portfolio

choice.
34Allowing for a more flexible specification of utility that breaks the link between intertemporal sub-

stitution and risk aversion or incorporating borrowing constraints would presumably bring us closer to

explaining both puzzles even with a low commitment share.
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Other implications for time- and cross-sectional return variation in asset pricing and

macroeconomic consumption dynamics remain to be explored.
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Appendix

Proof of Theorem 1

Denote the value function of the consumer by Vt(wt, xt). For the purposes of this proof only,

assume that t stands for time elapsed since the last reset date, as opposed to calendar time. The

Bellman equation for the maximization problem between two reset dates is

ρVt = max
f,α

{(
ft

1−γ

1− γ
+ µ

xt
1−γ

1− γ

)
+ EdV

}
which yields, using Ito’s lemma, to

ρVt = max
f,α

{(
ft

1−γ

1− γ
+ µ

xt
1−γ

1− γ

)
+
dV

dt
+
dV

dw
[(r + αtπ)wt − ct] +

1
2
dV 2

d2wt
(αtσwt)

2

}
. (32)

We guess that the value function is of the form

Vt(wt, xt) = ϕt
(wt − ηtxt)1−γ

1− γ
+ µ

x1−γ
t

1− γ
·
[
1− e−ρ(T−t)

ρ

]
where ϕt and ηt are deterministic functions to be determined. Note that the second term is just

the utility value of outstanding consumption commitments before the next reset date (discounted

by the subjective discount factor ρ).

The first order condition from maximizing (32) yields the consumption rule

f−γ
t =

dVt

dwt
= ϕt(wt − ηtxt)−γ

or equivalently

ft = ϕ
− 1

γ

t (wt − ηtxt) (33)

and the investment rule

αt =
π

γσ2

(
1− ηt

xt

wt

)
. (34)

Plugging these back into the Bellman equation and simplifying yields

ρϕt
1

1− γ
= ϕ

γ−1
γ

t

1
1− γ

+
dϕt

dt
· 1
1− γ

− ϕ
1− 1

γ

t +
1
2
ϕt

π2

γσ2

+ ϕtr(w − ηtx)−1

{
w − x

r
− dηt

dt

x

r

}
.

In order for this equation to hold, we need that

wt − ηtxt = wt −
xt

r
− dηt

dt

xt

rt

is satisfied. Equivalently,
dηt

dt
= rηt − 1
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which can be solved and gives

ηt =
1
r
−K1 · ert

where K1 is a constant of integration. Because we need ηT = 0, the solution has to be

ηt =
1
r

{
1− e−r(T−t)

}
.

Note that ηt as defined here is the present discounted value of a cash-flow of 1 every period up

to the next reset date. This squares with our intuition that the consumer needs to put away ηx

dollars in the riskless asset to be able to finance commitment consumption until the next reset

date comes.

Using the formula for η, the Bellman equation implies (after some calculations)

·
ϕt

ϕt
= −γϕ

−1
γ

t + ρ− (1− γ)
{

π2

2γσ2
+ r

}
.

This is a differential equation. Denote

ρ− (1− γ)
{

π2

2γσ2
+ r

}
= L,

then the solution can be written as

ϕt =
( γ
L

+ e
L
γ tK2

)γ

where K2 is a constant. The value of K2 will be pinned down by the value matching condition

that needs to hold at a reset date. Note that

ϕ0 =
( γ
L

+K2

)γ

.

Let us now examine what happens on a reset date. We have

V0(w0) = max
x

ϕ0
(w0 − η0x)1−γ

1− γ
+ µ

1− e−ρT

ρ
· x

1−γ

1− γ
.

The first order condition from the maximization gives

ϕ0η0(w0 − η0x)−γ = µ
1− e−ρT

ρ
· x−γ

so that

x = w0 ·
1[

µ 1−e−ρT

ρ

]−1
γ

η
1
γ

0

(
γ
L +K2

)
+ η0

. (35)

If we denote the constant multiplying w0 by K3, then the value becomes

V0(w0) =
w1−γ

0

1− γ

{
ϕ0(1− η0K3)1−γ + µ

1− e−ρT

ρ
·K1−γ

3

}
.
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If our guess for the value function was correct, then value matching on the reset date needs to

be satisfied

ϕT
w1−γ

0

1− γ
= V0(w0).

This, coupled with the previous equation, implies that

ϕ0(1− η0K3)1−γ + µ
1− e−ρT

ρ
·K1−γ

3 = ϕT

and using our formulas for ϕt( γ
L

+K2

)γ

(1− η0K3)1−γ + µ
1− e−ρT

ρ
·K1−γ

3 =
( γ
L

+ e
L
γ TK2

)γ

.

Note that K3 depends on K2 in this equation. It is easy to check that as K2 goes to infinity, the

right hand side dominates. Moreover, if K2 is chosen such that the right hand side is zero, the

left hand side, which can be calculated to equal 1[
µ 1−e−ρT

ρ

] 1
γ

η
1− 1

γ

0

(
γ
L +K2

)1/(γ−1) +
(

γ
L +K2

)γ/(γ−1)


1−γ

+

+ µ
1− e−ρT

ρ
·

 1[
µ1−e−ρT

ρ

]−1
γ

η
1
γ

0

(
γ
L +K2

)
+ η0


1−γ

is still positive. It follows that there is at least one value of K2 for which the equation is satisfied.

Thus we have found an optimal policy of the maximization problem.

Now go back to our assumption that t measures the time elapsed since the last reset date.

Note that the functions ϕ and η only depend on the time elapsed since the last reset date, ∆.

Defining ψ∆(t) = ϕ
− 1

γ

∆(t) and χ = K3 formulas (33), (34) and (35) above show that the optimal

policy is indeed as claimed in the theorem.

The implied dynamics for the net wealth of a particular cohort between adjustments is

d(wt − η∆(t)xt) = [(r + απ)wt − ct] dt+ ασwtdz − dη∆(t)xt

and using the ODE for η we get

d(wt − η∆(t)xt)
wt − η∆(t)xt

=
{
r − ϕ

− 1
γ

∆(t) +
π2

γσ2

}
dt+

π

γσ
dz.

Denoting wnet
t = wt − η∆(t)xt also yields

wnet
t = wnet

s exp
{
π

γσ
(zt − zs) +

(
r +

π2

γσ2
− 1

2
π2

γ2σ2

)
(t− s) +

∫ t

s

ϕ
− 1

γ

∆(u)du

}
(36)

for s ≤ t provided there is no adjustment between s and t.
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As to consumption, we have

dft = ψ′∆(t)(wt − η∆(t)xt)dt+ ψ∆(t)d(wt − η∆(t)xt) =

=

{
ψ′∆(t)

ψ∆(t)
+ r − ψ∆(t) +

π2

γσ2

}
ftdt+

π

γσ
ftdz

so that
dct
ct

=

{
ψ′∆(t)

ψ∆(t)
+ r − ψ∆(t) +

π2

γσ2

}
ft

ct
dt+

π

γσ

ft

ct
dz.

This completes the proof.

Proof of Proposition 1 and Proposition 2

At any point in time t, index each agent by ∆, that is, by the time elapsed since the agent last

made a reset.35 We can also index agents by their cohorts. We say that an agent is in cohort q

if at time zero, the time elapsed since her last reset is exactly q: if her ∆ at zero is q. Clearly,

t−∆ ≡ q modulo T . Moreover, denote the value of t modulo T by τ . When we need to emphasize

that ∆ depends on calendar time, we write ∆(t); occasionally we write ∆(t, q) if we are interested

in the ∆ of a particular cohort.

In the rest of this proof, when we use individual level variables, we will explicitly refer to the

individual in notation, unless not doing so causes no confusion. We can refer to an individual

in two ways: by referring to her ∆, or by referring to her cohort q. For instance the food

consumption of individual ∆ at time t would be ft(∆), but occasionally we may use ft(q) too.

Start by fixing a cohort q. Note that at an adjustment, net wealth is multiplied by a factor

1− η0K2. Call this factor ξ, then from (36)

wnet
t = wnet

s · ξ[
t−∆−s

T ]+1 exp

{
π

γσ
(zt − zs) +

(
r +

π2

γσ2
− 1

2
π2

γ2σ2

)
(t− s) +

∫ ∆

∆−(t−s)

ϕ
− 1

γ
u du

}

where we have rewritten the integral of ϕ to make it depend on calendar time (extending peri-

odically the function so that it is defined on the whole real line). Let

Zt = exp
{
π

γσ
zt +

(
r +

π2

γσ2
− 1

2
π2

γ2σ2

)
t

}
then

wnet
t = wnet

s · ξ[
t−∆−s

T ]+1 exp

{∫ ∆

∆−(t−s)

ϕ
− 1

γ
u du

}
· Zt/Zs.

35Note that typically, the agents indexed by ∆ in times t and s will be different.
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Define s+(q, s) to be the first adjustment date after s of the cohort q we are focusing on. Clearly

that only depends on q and s. Then the exponential term can be written as

exp

{∫ ∆

∆−(t−s)

ϕ
− 1

γ
u du

}
= exp

{∫ ∆−(t−s+(q,s))

∆−(t−s)

ϕ
− 1

γ
u du

}

× exp

{∫ 0

∆−(t−s+(q,s))

ϕ
− 1

γ
u du

}
× exp

{∫ ∆

0

ϕ
− 1

γ
u du

}

= m(q, s)× ξ
[ t−∆−s

T ]+1

1 × y(∆)

where m(q, s) clearly only depends on q and s, ξ1 = exp
{∫ T

0
ϕ
− 1

γ
u du

}
and y(∆) only depends

on ∆. Define ξ2 = ξ · ξ1 so we can write

wnet
t = wnet

s ·m(q, s) · ξ[
t−∆−s

T ]+1

2 y(∆) · Zt/Zs. (37)

We first aggregate the population starting from an arbitrary initial wealth distribution.

Choose s = 0, and aggregate across all cohorts q to get

W net
t = Ztξ

t
T
2

∫
q

wnet
0 (q) ·m(q, 0) · ξ[

t−∆(t,q)
T ]− t

T +1

2 f(∆(t, q))dq.

Note that the integral term on the right hand side only depends on t modulo T , because the

integrand is easily seen to be pointwise identical at t + T to its value at t. Recall that τ is the

value of t modulo T , then we can write

W net
t = Zt · ξ

t
T
2 · b(τ)

with an appropriate function b(.). Individual net wealth of cohort q is then

wnet
t (q) = wnet

0 (q) ·m(q, 0) · ξ[
t−∆(t,q)

T ]− t
T +1

2

y(∆)
b(τ)

· .W net
t .

Because the cohort of an agent can be deduced from her ∆ and calendar time t, the factor

multiplying W net
t in this expression only depends on τ and ∆, hence with appropriately chosen

g(∆, τ) we have

wnet
t (∆) = g(∆, τ) · .W net

t .

Then aggregate commitment consumption can be written as

Xt =
∫

∆

xt(∆)d∆ =
∫

∆

χwnet
t−∆(∆)d∆ =

∫
∆

χg(0, τ −∆) · .W net
t−∆d∆ =

=
1
T

∫ T

0

a(τ −∆) · .W net
t−∆d∆

which corresponds is equation (10). Aggregate food consumption is

Ft =
∫

∆

ft(∆)d∆ =
∫

∆

ψ∆(t)w
net
t (∆)d∆ = W net

t ·
∫

∆

ψ∆(t)g(∆, τ)d∆ =

= b(τ) ·W net
t
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for an appropriate b(.) function, because the integral only depends on τ .

We now turn to the balanced wealth distribution case. Recall that the net wealth of cohort

q at time t is given by (37). We will consider a double continuum of these agents, indexed by

their cohort q and s, where s ranges from zero to T . Let the initial wealth levels be

wnet
s (q, s) =

Zs

m(q, s)
ξ

s/T
2

then

wnet
t (q, s) = ξ

t/T
2 · Zt · ξ

[ t−∆−s
T ]+1− t−s

T

2 y(∆). (38)

We need to aggregate wealth over q and s. Clearly, integrating over s is the same as integrating

over t − s. Let us integrate then first over t − s, then over ∆. The only thing that depends on

t− s is the power term; and importantly, the integral of that will only depend on ∆, but neither

on t nor on s. Integrating that over ∆ gives us that aggregate wealth is

W net
t = M · ξt/T

2 · Zt

for some constant M . The wealth of the cohort corresponding to ∆ = 0 is given by

(wt − ηtxt)|∆=0 = ξ
t/T
2 Zt ·N

for some N , because again, the integral of ξ[
t−s
T ]+1− t−s

T

2 over t − s will not depend on t or s.

Hence the wealth of that cohort can be written as

(wt − ηtxt)|∆=0 =
N

M
W net

t .

Next consider commitment consumption:

xt = wt−∆ · χ

and aggregating gives

Xt = χ
N

M

∫ T

0

W net
t−udu.

This shows that with an appropriate initial wealth distribution the desired habit rule can be

achieved.

Regarding food consumption, from (38) we have that

ft(q, s) = ξ
t/T
2 · Zt · ξ

[ t−∆−s
T ]+1− t−s

T

2 y(∆) · ψ∆

and integrating first over t− s then over ∆ we get that

Ft = b ·W net
t

for some constant b.
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Proof of Proposition 3

Let us assume that the model was started some time before date zero, so that all variables are

defined for −T < t < 0 too. We need an ζ(u) function such that for t > T

Xt = κ(t)W net
0 +

∫ t

0

ζ(u)Ct−udu = κ(t)W net
0 +

∫ t

0

ζ(u) [Ft−u +Xt−u] du

= κ(t)W net
0 +

∫ t

0

ζ(u) · bW net
t−udu+

∫ t

0

ζ(u) · a
T

∫ t−u

t−u−T

W net
s ds du

=
∫ T

0

W net
t−u

[
b · ζ(u) +

a

T

∫ u

0

ζ(s)ds
]
du+

∫ t

T

W net
t−u

[
b · ζ(u) +

a

T

∫ u

u−T

ζ(s)ds
]
du+

+ κ(t)W net
0 +

∫ t+T

t

W net
t−u

a

T

∫ u

u−t

ζ(s)dsdu.

By equation (12), we need that

a

T
= b · ζ(u) +

a

T

∫ u

0

ζ(s)ds (39)

for 0 ≤ u < T ,

0 = b · ζ(u) +
a

T

∫ u

u−T

ζ(s)ds (40)

for T ≤ u, and

κ(t) =
1

W net
0

· a
T

∫ 0

−T

W net
s

∫ t

t−T−s

ζ(u)ds du. (41)

From the first equation, with u = 0 we get that ζ(0) = a/Tb. Differentiating that equation with

respect to u, we get an ODE

ζ ′(u) = − a

Tb
ζ(u)

thus for 0 ≤ u < T we have that

ζ(u) =
a

Tb
exp(− a

Tb
u).

From equation(40) we have that when T < u

ζ(u) = − a

Tb

∫ u

u−T

ζ(s)ds.

This implies that ζ(u) cannot have the same sign on any interval of length larger than T : if it

were e.g., positive on [u− T, u] then ζ(u) would have to be negative. The equation also implies

that as long as a < b, ζ(u) goes to zero geometrically, because

|ζ(u)| ≤ a

Tb
· max
[u−T,u]

|ζ(v)| .

let us turn to the boundedness issue. Differentiating (40) in u we get

ζ ′(u) = −a
b

(ζ(u)− ζ(u− T )) .
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Define β(u) = exp
(

a
Tbu

)
ζ(u), then the previous ODE implies after some calculations that

β′(u) =
a

Tb
e

a
b · β(u− T ).

One solution of this ODE is β(u) = exp
(

a
Tbu

)
. Using Gronwall’s lemma, we can then bound the

absolute value of the true solution by K4 · exp
(

a
Tbu

)
with some positive constant K4. It follows

that |ζ(u)| < K4 · exp
(

a
Tbu

)
· exp

(
− a

Tbu
)

= K4 which shows that ζ(u) is indeed bounded.

Finally, let us turn to κ(t). The formula is given in equation (41), and clearly, as long as ζ(.)

goes to zero geometrically, so will κ(.). The reader may have noticed that the formula for κ(.)

involves levels of net wealth before date zero. However, in fact the shape of κ(.) only depends on

the cross sectional distribution of net wealth at date zero, because that completely determines

the stochastic dynamics of all variables for all t > 0. Since κ(.) can be expressed as the difference

of functions of those variables, κ(.) itself is completely determined by them. Furthermore, κ(.)

is a deterministic function, as shown by the formula (41).

Proof of Theorem 3

Let us first solve the aggregate model

max
∫ ∞

0

(Ct −Xt)1−γ

1− γ

where

Xt = e−λtX0 + a′λ

∫ ∞

0

e−λuWt−udu.

The Bellman equation is

ρV (Wt, Xt) = max
C,α

{
(Ct −Xt)1−γ

1− γ
+

dV

dWt
[(r + αtπ)Wt − Ct] +

dV

dXt

dXt

dt
+

1
2
dV 2

d2W
(αtσW )2

}
.

Note from the habit rule that

dXt

dt
= −λe−λtX0 + a′λ · d

dt

∫ t

−∞
e−λ(t−u)Wu du =

= −λe−λtX0 + a′λ ·
[
Wt − λ

∫ t

−∞
e−λ(t−u)Wu du

]
= λ [a′Wt −Xt] .

Now guess the solution to the problem

V (W,X) = ϕ′
(W − η′X)1−γ

1− γ

then the implied consumption and investment rules (from the first order conditions) are

Ct −Xt = ϕ′−
1
γ (Wt − ηXt)

and

αt =
π

γσ2

(
1− η′

Xt

Wt

)
.
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Plugging back into the Bellman equation and simplifying yields

(Wt − η′Xt)1−γ

{
ρϕ′

1− γ
− ϕ′

γ−1
γ

1− γ
− ϕ′

π2

γσ2
+ ϕ′

γ−1
γ +

1
2
γϕ′

π2

γ2σ2

}
=

= ϕ′(Wt − η′Xt)−γ [rWt −Xt − η′λ (a′Wt −Xt)] .

This requires that

[rWt −Xt − η′λ (a′Wt −Xt)] = K5 · (Wt − η′Xt)

holds, where K5 is some constant, so that

η′ =
1− η′λ

r − a′η′λ
.

Equivalently, we have

0 = η′2a′λ− η′(λ+ r) + 1

η′ =
(λ+ r)±

√
(λ+ r)2 − 4a′λ
2a′λ

and a solution exists as long as

λ2 + (2r − 4a′)λ+ r2 > 0.

When λ = 0, the correct solution has to be η′ = 1/r; this is the one that comes from the smaller

root of the quadratic equation. By continuity, we should always select the smaller root.

When there is a solution, we have

K5 = r − a′η′λ =
1− η′λ

η′
.

Going back to the Bellman equation, we have

(Wt − η′Xt)1−γ

{
ϕ′

[
ρ

1− γ
− 1

2
π2

γσ2

]
− ϕ′

γ−1
γ

γ

1− γ

}
= ϕ′K5(Wt − η′Xt)1−γ .

or equivalently

ϕ′
[

ρ

1− γ
− 1

2
π2

γσ2
−K5

]
− ϕ′

γ−1
γ

γ

1− γ
= 0

so that

ϕ′
1
γ =

γ/(1− γ)
ρ

1−γ − 1
2

π2

γσ2 − r + a′η′λ

which has to be a positive number, in order for a solution to exist. This is condition (19).

Just like in the proof of Theorem 1, we can derive the wealth dynamic

d(Wt − η′Xt)
Wt − η′Xt

=
[
r − a′η′λ+

π2

γσ2
− ϕ′−

1
γ

]
dt+

π

γσ
dz

54



and therefore the consumption dynamic

dCt

Ct
= {A− Zt [λ− a′η′λ+A]} dt+

π

γσ
(1− Zt)dz.

From these we can show that

dZt = (1− Zt)

{
ϕ′

1
γ λa′ + Zt

[
η′λa′ − λ−A+

(
π

γσ

)2

(1− Zt)

]}
dt− π

γσ
Zt(1− Zt)dz.

Define Yt = Zt/(1− Zt). The dynamics of Yt can be shown to be

dYt =

{
ϕ′

1
γ λa′ + Yt

[
ϕ′

1
γ λa′ + η′λa′ − λ−A+

(
π

γσ

)2
]}

dt− π

γσ
Ytdz.

The Kolmogorov forward equation for the distribution p(Y ) of this process is the following:

1
2
d2

dY 2
t

[(
π

γσ
Yt

)2

p(Yt)

]
− d

dYt

[{
ϕ′

1
γ λa′ + Yt

[
ϕ′

1
γ λa′ + ηλa′ − λ−A+

(
π

γσ

)2
]}

p(Yt)

]

=
dp(Yt)
dt

.

Applying the technique developed by Wong (1964), the stationary distribution is the solution to

the following Pearson equation

1
2
d

dYt

[(
π

γσ
Yt

)2

p(Yt)

]
=

{
ϕ′

1
γ λa′ + Yt

[
ϕ′

1
γ λa′ + ηλa′ − λ−A+

(
π

γσ

)2
]}

p(Yt)

subject to the normalization ∫ ∞

0

p(Y )dY = 1.

Rewriting the ODE gives

1
2

(
π

γσ
Yt

)2

p′(Yt) =
{
ϕ′

1
γ λa′ + Yt

[
ϕ′

1
γ λa′ + ηλa′ − λ−A

]}
p(Yt).

The solution is given by

p(Y ) = K6 exp

− 2ϕ′
1
γ λa′(

π
γσ

)2

Y

 · Y
2

[
ϕ
′ 1

γ λa′+ηλa′−λ−A

]
/( π

γσ )2

where the constant K6 is

K−1
6 =

2ϕ′
1
γ λa′(

π
γσ

)2


1+2

[
ϕ
′ 1

γ λa′+ηλa′−λ−A

]
/( π

γσ )2

Γ

[
−2

[
ϕ′

1
γ λa′ + ηλa′ − λ−A

]
/

(
π

γσ

)2

− 1

]

where Γ(.) is the gamma function. Then the density of Z = Y/(1 + Y ) is

pZ(Z) =
1

(1− Z)2
pY (

Z

1− Z
)
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which gives

pZ(Z) = K6 exp

{
2ϕ′

1
γ λa′

(
π

γσ

)−2
}

(1− Z)
−2

[
ϕ
′ 1

γ λa′+ηλa′−λ−A+( π
γσ )2

]
/( π

γσ )2

· Z
2

[
ϕ
′ 1

γ λa′+ηλa′−λ−A

]
/( π

γσ )2

exp

− 2ϕ′
1
γ λa′(

π
γσ

)2

Z

 .

Proof of Proposition 5

Define

X̃t = X0e
−dt +D

∫ t

0

e−duCt−udu

with

d = −λ
[
a′η′ − a′ϕ′

1
γ − 1

]
and

D = a′λϕ′
1
γ .

Then

dX̃t

dt
= −dX0e

−dt +D · d
dt

∫ t

0

e−d(t−u)Cu du = −dX0e
−ωt +D ·

[
Ct − d

∫ t

0

e−d(t−u)Cu du

]
=

= DCt − dX̃t.

Using the consumption rule and the formulas for d and D we can write

DCt − dX̃t = D
(
Xt + ϕ′−

1
γ (Wt − η′Xt)

)
− dX̃t = Dϕ′−

1
γ Wt + (D − d−Dϕ′−

1
γ η′)Xt + d(Xt − X̃t) =

= a′λϕ′
1
γ ϕ′−

1
γ Wt + (a′λϕ′

1
γ + λ

[
a′η′ − a′ϕ′

1
γ − 1

]
− a′λϕ′

1
γ ϕ′−

1
γ η′)Xt + d(Xt − X̃t) =

= λ [a′Wt −Xt] + d(Xt − X̃t).

Because X̃0 = X0 and dXt/dt = λ [a′Wt −Xt], the above equation shows that dX̃t/dt =

dXt/dt. Thus the two processes are identical with probability one. Equivalently, we can write

Xt in the form stated in the proposition. To ensure that d > 0 we require condition (26) to hold.
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TABLE 1
MEAN HOUSEHOLD EXPENDITURE SHARES

Income Group
Category $30-40K $50-70K >$70K Overall Mean
Shelter 0.20 0.19 0.21 0.20
Transport (excluding gas and maint) 0.16 0.17 0.16 0.16
Utilities, fuels, and public services 0.07 0.07 0.06 0.07
Health care 0.06 0.05 0.04 0.06
Education 0.01 0.02 0.02 0.02
Food 0.16 0.15 0.14 0.15
Apparel 0.05 0.05 0.06 0.15
Household supplies and furniture 0.06 0.08 0.10 0.06
Entertainment 0.05 0.06 0.06 0.05
Miscellaneous 0.02 0.02 0.02 0.02
Cash contributions 0.03 0.03 0.05 0.04
Mean annual expenditure $15,369 $32,609 $64,134 $35,930
Mean take-home pay $6,858 $29,720 $90,748 $41,531

   aSource: BLS tabulations from Consumer Expenditure Survey, 2000
   bTake-home pay defined as gross income net of taxes and mandatory insurance/pension 
   contributions
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TABLE 2
CALIBRATION OF THE COMMITMENTS MODEL

 TO EQUITY PREMIUM AND CONSUMPTION DYNAMICS

Specification
Parametersa (1) (2) (3) (4) (5) (6)
λ (adjustment horizon) 0.33 1 .33 .33 .2 .2
α' (pref for commit) .0315 .033 .0149 .011 .0155 .01
γ (risk aversion) 2 2 4 5 4 5

ρ (time preference) .007 .0072 .005 .005 .005 .005
Mean Cons. Growth .0182 .0182 .0146 .0127 .0135 .0122

(true value=.0183)
S.D. Cons. Growth .0358 .0359 .036 .036 .0356 .0351

(true value=.0357)
Mean Commit. Share .8063 .8036 .6054 .506 .6148 .4504
  aOther parameter values are the riskfree rate r =.01, the equity premium π = 0.06 and the
  annual standard deviation of stock returns σ = 0.165. All parameters are measured per year.
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TABLE 3
DESCRIPTIVE STATISTICS FOR EVER-MARRIED STOCKHOLDING HOMEOWNERSa

Variableb Mean Median
Household net worthc 248,361.40 163,058.20 396,541.90
Home equity 83,510.68 65,808.16 68,895.05
Home mortgage outstanding 40,828.15 24,206.94 48,586.63
Liquid wealthd 123,795.20 52,896.43 351,091.80
Stocks 64,837.94 12,864.17 310,008.40
Savings accounts, CDs, and money market 19,082.17 6,432.09 29,405.59
Municipal and corporate bonds 12,215.43 0.00 53,260.76
IRA wealth 17,099.09 1,356.75 34,740.86
Other assetse 10,560.54 499.81 86,807.28
Other real estate 24,427.70 0.00 69,579.90
Business equity 10,525.37 0.00 55,687.11
Vehicle equity 10,022.04 8,440.80 8,548.38
Unsecured debt 3,919.61 416.51 25,177.12
Annual income 55,226.93 46,562.19 43,435.50
Years of education 14.13 14.00 2.75
Age 53.59 52.00 14.91
Age at marriage 27.07 24.00 9.18
1 = currently married 0.78 1.00 0.42
Children at home 0.41 0.00 0.84

     aSource: Survey of Income and Program Participation 1990-96 Asset Topical Modules. N=15,297
     bAll variables are in 1990 dollars
     dNet worth is total household wealth minus unsecured debt
     dLiquid wealth is total wealth minus home equity, other real estate, business equity, and vehicle equity
     eOther assets comprise money owed to respondent, savings bonds, checking accounts,
     and equity in other investments

Standard 
Deviation
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TABLE 4
FIRST STAGE AND REDUCED-FORM REGRESSIONS FOR AGE-AT-MARRIAGE INSTRUMENT

(1) (2) (3) (4) (5) (6)
Recent-Married  (<25 years ago) Long-Married Renters

First-stage Reduced-form Reduced-form First-stage Reduced-form Reduced-form

Dependent var: mortgage stocks stocks mortgage stocks stocks

age at marriage 481.451 -645.817 -632.167 86.769 253.221 250.935
(93.925) (222.638) (275.741) (52.733) (203.641) (231.245)

liquid wealth 0.758
(0.097)

age -539.242
(512.677)

other real estate 0.032 -0.050 0.027 -0.074 -0.095
(0.011) (0.059) (0.007) (0.023) (0.062)

business equity 0.007 -0.010 -0.005 0.012 -0.034
(0.013) (0.039) (0.011) (0.023) (0.028)

vehicle equity -0.048 -0.279 -0.098 -0.274 0.253
(0.073) (0.269) (0.053) (0.153) (0.276)

unsecured debt 0.104 -0.180 0.017 0.019 0.095
(0.044) (0.217) (0.044) (0.017) (0.061)

annual income 0.262 -0.092 0.213 -0.290 -0.157
(0.021) (0.060) (0.021) (0.049) (0.075)

years of schooling 3,149.289 -944.527 1,152.793 -1,516.937 742.053
(262.629) (482.985) (145.136) (370.781) (559.834)

Sample Size 7565 7565 7565 7369 7369 2037

NOTE-Huber-White standard errors are reported in parentheses.  Columns 1-3 include stockholders who
own homes and got married less than 25 years ago.  Columns 4 and 5 include homeowning stockholders 
who were married more than 25 years ago.  Column 6 includes married renters who own stocks.  Columns
1, 3-6 include 10-piece linear splines for liquid wealth, home equity, and age.  These columns also include
year, occupation and industry dummies.
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TABLE 5
HOUSING COMMITMENT AND PORTFOLIO ALLOCATION

INSTRUMENTAL VARIABLES ESTIMATES

(1) (2) (3) (4) (5) (6)
With With Bond Portfolio Shares

Base case Controls Controls Participation Shares Wealthy only

Dependent variable: stocks stocks bonds bondholder* stk share stk share

mortgage debt -0.950 -0.738 0.527 0.036
(0.249) (0.344) (0.224) (0.012)

mortgage debt share -0.071 -0.446
(0.035) (0.196)

liquid wealth 0.839
(0.043)

age -2464.354
(456.606)

other real estate -0.064 -0.001 0.000
(0.025) (0.011) (0.000)

business equity 0.003 -0.013 -0.001
(0.025) (0.010) (0.001)

vehicle equity -0.356 0.173 0.015
(0.161) (0.073) (0.005)

unsecured debt -0.009 -0.047 -0.001
(0.053) (0.032) (0.003)

years of schooling 430.888 -249.5 0.010 -0.000 0.003
(795.225) (499.741) (0.002) (0.001) (0.001)

annual income 0.009 -0.051 -0.005 -0.000 -0.000
(0.100) (0.058) (0.003) (0.000) (0.000)

other real estate share -0.459 -0.273
(0.146) (0.230)

business equity share -0.459 -0.281
(0.146) (0.227)

vehicle equity share -0.346 -0.248
(0.166) (0.285)

unsecured debt share 0.046 0.143
(0.023) (0.058)

Sample size 15297 15297 15297 15297 15206 8280

NOTE-For scaling purposes, coefficients in column 4 are for a $10,000 increase in monetary variables
Huber-White standard errors are reported in parentheses.  Columns 2-6 include industry, occupation 
and year dummies.  Columns 2-4 have a 10-piece linear spline for liquid wealth, age, and home equity.
Columns 5 and 6 have splines for age and shares of liquid wealth and home equity.  Shares are defined
as level divided by total wealth.  Column 5 excludes observations with total wealth below $1000; column
6 those with wealth below $150,000.  All columns use age at marriage to instrument for mortgage debt.
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TABLE 6
COMMITMENTS VS. HOUSING RISK 

(1) (2) (3) (4) (5) (6)
OLS OLS Birthplace IV IV

House size Homeown Renters Homeown Renters Horse race

Dependent variable: propty value stocks stocks stocks stocks stocks

σhg = MSA stdev house price -4,112.332 312.063 -2,812.232 689.550 -8,520.640
growth    (1,608.475) (598.978) (1,078.113) (1,779.665) (5,278.069)

mortgage debt -1.125
(0.568)

σH = MSA mortgage risk -0.034
(0.019)

MSA avg house price growth 35,777.740 -2,841.184 339.894 -7,651.679 2,475.511 13,032.296
(9,477.428) (2,994.141) (5,201.115) (15,592.905) (31,261.779) (9,705.645)

MSA avg house price growth2 -1,679.179 920.679 823.117 2,191.792 1,331.480 1,225.211
(1,887.182) (779.864) (1,427.407) (3,939.442) (7,838.833) (1,656.425)

other real estate 0.102 -0.080 -0.096 -0.072 -0.109 -0.041
(0.012) (0.029) (0.143) (0.032) (0.057) (0.038)

business equity 0.061 0.018 -0.021 0.001 -0.033 0.056
(0.019) (0.019) (0.035) (0.014) (0.053) (0.033)

vehicle equity 0.796 -0.307 0.316 -0.370 0.285 -0.242
(0.113) (0.207) (0.398) (0.297) (0.484) (0.211)

unsecured debt 0.007 -0.051 0.149 -0.171 0.211 -0.021
(0.038) (0.025) (0.082) (0.202) (0.119) (0.075)

years of schooling 4,413.739 -1,163.990 1,009.525 -1,315.577 1,511.899 1,735.308
(212.063) (445.766) (959.259) (515.083) (1,116.449) (1,629.492)

annual income 0.370 -0.180 -0.228 -0.163 -0.244 0.141
(0.026) (0.060) (0.112) (0.051) (0.116) (0.158)

Sample size 9465 9560 1322 8440 1154 9560

NOTE-Huber-White standard errors, reported in parentheses, are clustered by MSA in 1-3,6 and by birth
state in 4-5.  All columns include splines for age and liquid wealth and industry, occupation, and year
dummies. Column 6 includes a spline for home equity.  Columns 1-3 are OLS. In columns 4-5, MSA vars
are instrumented using corresponding state of birth variables as described in text.  In column 6, mortgage
debt and mortgage risk are instrumented using σhg, age at marriage, and σhg*age at mar, while controlling 
for home equity risk. Mortgage risk is product of mortgage and σhg, home equity risk is product of home 
equity and σhg.

65


