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Abstract

In standard expositions of the equity premium, risk-free rate, and excess volatility

puzzles, the subjective distribution of future growth rates has its mean and variance cal-

ibrated to past sample averages. This paper shows that proper Bayesian estimation

of uncertain structural growth parameters introduces an irreducible fat-tailed back-

ground uncertainty that can explain all three puzzles parsimoniously by one uni�ed

theory. The Bayesian statistical-economic equilibrium has just one degree of freedom,

yet all three values of the equity premium, risk-free rate, and excess volatility derived

from the model match simultaneously the stylized facts observed in the time-series

data.

1 Introduction: the Role of Structural Uncertainty

The �equity premium puzzle�refers to the spectacular failure of the standard neoclassical

representative-agent model of stochastic economic growth to explain the large historical dif-

ference between the average return to a representative stock market portfolio and the average

return from a representative portfolio of relatively safe stores of value. The consumption-

based general-equilibrium paradigm predicts an equity risk premium that is orders of magni-

tude lower than what is observed. The discrepancy is so large and so pervasive as to suggest

strongly that something is fundamentally wrong with the standard formulation of the prob-

lem in terms of a non-bizarre, comfortably-familiar coe¢ cient of relative risk aversion, say

with values 
 � 2� 1:
�(e-address: mweitzman@harvard.edu) For helpful detailed comments on an earlier draft of this paper,

but without blaming them for remaining defects, I am grateful to Andrew Abel, Gary Chamberlain, Xavier
Gabaix, Alfred Galichon, John Geweke, Joseph Kadane, Naranya Kocherlakota, and Jonathan Parker.
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The �risk-free rate puzzle�represents another big disappointment with the standard neo-

classical model. The stochastic generalization of the basic Ramsey formula from equilibrium

growth theory predicts a risk-free interest rate far higher than what is actually observed,

hence the puzzle. To further compound the conundrum, alterations of the model that might

lessen the discrepancy in the risk-free rate anomaly tend to increase the discrepancy in the

equity premium anomaly, and vice versa. Thus, for example, to eliminate the equity pre-

mium puzzle requires an astronomically high rate of relative risk aversion, while to eliminate

the risk-free rate puzzle calls for a microscopically low rate of relative risk aversion.

The "excess volatility puzzle" stems from the generic idea that stock returns should

re�ect expectations of underlying fundamentals. In the form most relevant to the macro

framework of this paper, aggregate returns on comprehensive economy-wide equity should

mirror fundamental growth expectations about the underlying real economy. But this

seemingly-intuitive idea is belied in the time-series data because returns on a representative

stock market index are an order of magnitude excessively more volatile than the growth-rate

"fundamental" that should be driving them.

Taken together, this unholy trinity of puzzles is devastating for the credibility of the neo-

classical paradigm. The proper interpretation of these equity macro-puzzles has important

rami�cations throughout all of economics. The three intuitively-related paradoxes are fairly

crying out that something is deeply wrong with our standard paradigm for understanding

the most basic discounting of time and risk. Some critical element, which would capture

the characteristic that appears to make stocks comparatively so risky, seems to be missing

from the standard model. At least for asset pricing applications, a consensus has developed

among economists that the standard model is seriously �awed.

Not surprisingly therefore, this family of equity macro-puzzles has stimulated a lot of

economic research. In attempting to explain the paradoxes, an enormous post-puzzles litera-

ture has developed, which is �lled with some imaginatively fruitful variations on the standard

model. To overcome one or another equity puzzle, many new models feature exotic (and com-

plicated) reverse-engineered formal (or behavioral informal) preferences having aggregated

coe¢ cients of relative risk aversion that are typically very high, time-varying, and correlated

with the real economy. Some valuable insights have come out of these recent models, but

it still seems fair to say that no new consensus has yet emerged from within the economics

profession as a whole that the puzzles have been satisfactorily resolved.

The point of departure for this paper is to note that, throughout the expository litera-

ture, the equity premium and the risk-free rate are typically calibrated by plugging into the

relevant formulas the sample mean and sample variance of past growth rates. But strictly

speaking, the correct procedure requires inserting the full subjective probability distributions
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of uncertain structural parameters of the model, not just their point estimates. Missing from

the framework is a formal incorporation of the decision-theoretic speci�cation required to

make a rigorous statistical-economic general-equilibrium growth model. In e¤ect, the im-

plicit statistical methodology assumes that the time series are long enough that the law of

large numbers allows substituting the sample moments of past growth rates for the popula-

tion moments of future growth rates. This intuitive methodology may well be justi�ed for

many economic applications. But the paper will show that such point calibration is a fatally

�awed procedure for the particular application of analyzing aversion to model-structure risk,

which underlies (or, more accurately, should underlie) all asset-pricing calculations. The core

problem is that calibrating population moments to sample frequencies can understate enor-

mously the researcher�s (and the investor�s) marginal-utility-weighted predictive uncertainty,

which spills over into severely biased forecast-expectation pricing-kernel formulas, which in

turn produces the dramatically incorrect asset valuations that then give rise to the equity

family of �puzzles.�

This paper attempts to shed light on the equity-premium, risk-free-rate, and excess-

volatility puzzles by rooting all three issues together deeply into the common ground of

Bayesian statistical inference. The basic idea is that structural-parameter model uncertainty

introduces a form of Bayesian posterior background risk, which is inherited from the prior and

which, counter-intuitively, does not converge uniformly to zero as the number of subsequent

observations increases to in�nity. Such ubiquitous background risk fattens critically the

tails of the posterior distribution of future growth rates and acts strongly upon asset prices

to increase signi�cantly the value of both the equity premium and excess volatility, while

simultaneously decreasing sharply the risk-free interest rate.

To convey the essential statistical insights as sharply as possible, the simplest imaginable

speci�cation of the interplay between Bayesian statistical inference and stochastic general

equilibrium growth is modeled. Thus, to ease the computational burdens from delivering

its basic message the model analyzes a very stark competitive equilibrium over just two

time periods, with a single representative agent, for a pure endowment-exchange economy

(no genuine production or investment), where the return to representative equity equals the

growth of aggregate consumption and both are i.i.d. normal, where the utility function is

isoelastic, and so forth. For analytical tractability the only change made from this standard

stochastic speci�cation (wherein all parameter values are assumed known) is to have the

model include a consistent Bayesian treatment of just two of its structural parameters: the

mean and the variance of the normally distributed future growth rate, whose uncertain values

represent the primitive distribution of interest basically driving the behavior of the entire

system.
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In this model the prior probability density of growth rates is essentially characterized by

a single critical positive number �, whose inverse 1=� quanti�es the amount of background

uncertainty that later shows up in the Bayesian posterior distribution. As the modeler (or the

representative investor) decreases this �-coe¢ cient continuously (which amounts to moving

from a normal distribution of future growth rates towards a fatter-tailed t distribution),

the equity premium and excess volatility both increase without limit while the risk-free

rate simultaneously decreases, also without limit. Furthermore, the same numerical value

�� simultaneously generates, almost exactly, the equity premium, risk-free rate, and excess

volatility that are observed in the time-series data. Although the formal model employs only

familiar, analytically tractable, garden-variety speci�cations in order to be able to derive

a relatively transparent expression for the family of equity discrepancies, it will become

apparent that the basic insights have much broader applicability.

This paper is far from being the �rst to investigate the e¤ects of Bayesian statistical

uncertainty on asset pricing. Earlier examples having a Bayesian �avor include Barsky and

DeLong (1993), Timmerman (1993), Bossaerts (1995), Cecchetti, Lam and Mark (2000),

Veronesi (2000), Brennan and Xia (2001), Abel (2002), Brav and Heaton (2002), Lewellen

and Shanken (2002), and several others. Broadly speaking, these papers indicate or hint,

either explicitly or implicitly, that the need for Bayesian learning about structural parameters

tends to reduce the degree of one or another equity anomaly. What has been missing from

this literature, however, is an appreciation of the incredibly strong force that tail-fattening

structural parameter uncertainty brings to bear on asset pricing, by its potentially irresistible

domination over any calculation involving expected marginal utility. In e¤ect, the direction

of this Bayesian �strong force�of structural model uncertainty is (somewhat) appreciated in

the literature, but not the overwhelming magnitude of its strength.

The single exception that stands out is an important note by Geweke (2001), who applies

a Bayesian framework to the most standard model prototypically used to analyze behavior

towards risk and then demonstrates the extraordinary fragility of the existence of �nite

expected utility itself.1 In a sense the present paper begins by accepting this non-robustness

insight, but pushes it further to argue that the inherent sensitivity of the standard prototype

formulation constitutes an important clue for unraveling what may be causing the equity

puzzles and for giving them a uni�ed general-equilibrium interpretation that simultaneously

�ts the stylized time-series facts.

This paper will end up arguing that there are no equity �puzzles�as such arising from

1I wish to express my gratitude to two readers of a previous draft of this paper for making me aware
of Geweke�s pioneering earlier article, after noticing that I had independently derived results with a similar
�avor.
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within a Bayesian framework. Instead, the arrow of causality in a uni�ed Bayesian expla-

nation is reversed: the �puzzling�numbers being observed empirically are trying to tell us

something important about the implicit background prior distribution of structural model-

parameter uncertainty that is generating such data. In the �nal section of the paper the

three �puzzling�time-series sample averages of the equity premium, risk-free rate and excess

volatility are inverted to back out the implicit subjective probability distribution of the fu-

ture growth rate. Measured in the appropriate welfare-equivalent state space of expected

utility, a world view about the subjective uncertainty of future growth prospects emerges

from this Bayesian calibration exercise that is much closer to what is being suggested by the

relatively stormy volatility record of stock market wealth than it is to the far more placid

smoothness of past consumption.

2 The Family of Equity Puzzles

To cut sharply to the analytical essence of the equity macro-puzzles, a super-stark model is

used here. This prototype model is a drastically pruned-down version of the textbook work-

horse formulation used throughout the �nancial economics literature. Here everything else

except the core structure will be set aside. Essentially, it is fair to say that the models used

in this literature are generically isomorphic to the ultra-bare reduced form model presented

here.2

In this core prototype model, there are two periods, the present and the future. (Math-

ematically speaking, the �rst-order conditions from a multi-period version must decompose

anyway into an overlapping sequence of �rst-order conditions from the two-period model,

with the details being inessential to the main message of this paper while the resulting clut-

ter of notation is distracting.) The population consists of a large �xed number of identical

people. Present per-capita consumption is given as C0, while future per-capita consump-

tion is the random variable C1. The utility U of consumption C is speci�ed by the Von

Neumann-Morgenstern utility function U(C). The pure-time-preference multiplicative fac-

tor for discounting future utility into present utility is �.

Future consumption C1 is a random variable having some present subjective probability

distribution, but whose future realization is presently unknown. The growth rate of this

2See, for example, the survey articles of Campbell (2003) or Mehra and Prescott (2003), both of which
also give due historical credit to the pioneering originators of the important set of ideas used throughout
this paper. Citations for the many sources of these (and related) seminal asset-pricing ideas are omitted
here only to save space, and because they are readily available, e.g., in the above two review articles and in
the textbook expositions of Du¢ e (2001), Cochrane (2001), or Gollier (2001).
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simple endowment-exchange economy is the random variable

g � lnC1 � lnC0; (1)

while the expected growth rate is calculated as E[g] = E[lnC1]� lnC0:
The primitive driving force throughout this model is the unknown growth rate g, which

quanti�es the future state of the system and serves as its sole "fundamental." A one-period

asset � is viewed abstractly here as being a security promising to pay a contingent claim in

future state g equal to the gross payo¤ ��(g), denominated in units of consumption. The

expression ��(g) symbolizes the unit payo¤ function for asset �. Let the price of this asset

be P�. Then the corresponding asset return function is

R�(g) =
��(g)

P�
: (2)

Within this model all asset markets are in some sense phantom entities, because no one

actually ends up taking a net position in any of them. They exist as shadow exchange

possibilities, but in this pure endowment economy there is no avoiding the ultimate reality

that everyone�s future consumption will end up being the future endowment, no matter how

the asset markets equilibrate. The fundamental Euler equation of asset-pricing equilibrium

for this economy is

U 0(C0) = �E[U 0(C1)R�(g)]: (3)

For practical purposes of analysis, throughout the paper expressions like (3) will be

further simpli�ed by following the literature in choosing the utility function to be of the

standard iso-elastic form

U(C) =
C1�


1� 

(4)

with corresponding marginal utility

U 0(C) = C�
; (5)

where the coe¢ cient of relative risk aversion is the positive constant 
. Plugging (1), (2),

and (5) into (3) and rearranging terms gives the expression

P� = �E[exp(�
g)��(g)]: (6)
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Plugging (6) into (2) and taking the expected value results in the basic relationship

E[R�(g)] =
E[��(g)]

�E[exp(�
g)��(g)]
: (7)

An immediate application of (7) is to derive the risk-free interest rate. For this situation

we use the standard notation � = f to indicate that we are treating here the special case of

a deterministic asset paying one unit of consumption in the future. The corresponding unit

payo¤ function here is

�f (g) = 1; (8)

for which case (7) becomes

Rf =
1

�E[exp(�
g)] : (9)

Another important application of formula (7) is to the special case of a comprehen-

sive broad-based equity index representing the entire economy. Throughout this paper, the

abstraction is made that the one-period-ahead payo¤ to comprehensive (or representative)

equity is essentially a claim on the future aggregate output of the underlying real economy.

In this case we use the standard notation � = e to indicate that we are treating the situation

of economy-wide equity. The corresponding unit payo¤ function here is

�e(g) = exp(g); (10)

for which case equation (7) becomes

E[Re] =
E[exp(g)]

�E[exp((1� 
)g]
: (11)

Dividing (11) by (9), the equity premium in ratio form is

E[Re]

Rf
=

E[exp(g)] E[exp(�
g)
E[exp((1� 
)g)]

: (12)

The meaning given in the literature to result (12) goes along the following lines. Interpret

the left hand side of equation (12) as the actual risk premium ratio that is observed histori-

cally in the real world. Interpret the right hand side of equation (12) as a theoretical formula

for calculating this risk premium, given any coe¢ cient of relative risk aversion 
, and, more

importantly here, given the true subjective probability distribution of the uncertain future

growth rate g.
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Concerning the relative-risk-aversion parameter 
, there seems to be some agreement

within the economics profession that an array of evidence from a variety of sources suggests

that it is somewhere between about one and about three. More accurately stated, any pro-

posed solution which does not explain the equity premium for 
 � 3 would likely be viewed
suspiciously by most members of the broadly-de�ned community of professional economists

as being dependent upon an unacceptably high degree of risk aversion. By way of contrast,

there is much less consensus about what is the true probability distribution of future growth

rates. The reason for this traces back to the unavoidable truth that, even under the best of

circumstances (with a known, stable, stationary stochastic speci�cation that can accurately

be extrapolated from the past onto the future), we cannot know the critical structural pa-

rameters of the distribution of g unless there is an in�nitely long time series of historical

growth rates.

At this point in the story, the best anyone can do is to infer from the past some estimate

of the probability distribution of g . The rest of the story hinges on specifying the form of

the assumed density function of g, and then looking to see what the data are saying about

its likely parameter values. The functional form that naturally leaps to mind is the normal

probability density function

g � N(�; V ); (13)

which is the ubiquitous benchmark case assumed throughout this literature. The only

di¤erence in this paper is that � and V are treated as unknown parameter values that must

be estimated statistically from past data.

When (13) is assumed but � and V are viewed as random variables, then using the formula

for the expectation of a lognormal distribution, cancelling the many redundant terms, and

taking logarithms transforms the theoretical equity premium formula (12) into the formula

lnE[Re]� rf = lnE[exp(
V )]; (14)

where the expectation operator on the right hand side of equation (14) is understood here

as being taken over V and

rf � lnRf : (15)

From the exponential function on the right hand side of equation (14) being convex

in V , a mean-preserving spread of V increases the theoretically-calculated equity premium.

Therefore, plugging the mean of V into (14) biases the formula in the direction of predicting

that the point-calibrated equity premium is always too low. The equity-premium literature

generally proceeds from (14) by ignoring the bias-producing uncertainty inherent in using

8



point estimates of V . Instead, the usual practice calibrates (14) by plugging in the sample

variance from n previous observations on growth rates, and then proceeds as if normality

still holds (in place of substituting into (14) the relevant inverted-gamma distribution to

account for the sampling error from estimating the unknown structural parameter V ).

The observed sample variance is

bV =
1

n

nX
i=1

(gi � bg)2; (16)

where bg = 1

n

nX
i=1

gi (17)

is the sample mean. Implicitly in the equity premium literature, the sample size n is

presumed large enough to make (17) and (16) su¢ ciently accurate estimates of the underlying

true values, but no formal attempt is made to de�ne �su¢ ciently accurate�or to con�rm

exactly what happens to formula (14) in this model if the estimates, and therefore the

approximations, are not �su¢ ciently accurate.�In the expository literature the value of (14)

is calculated to be what it reduces to when there is no structural uncertainty and V is

known exactly to be equal to bV . After canceling terms, the as-if-deterministic-V version of

the theoretical formula (14) then becomes

lnE[Re]� rf = 
 bV ; (18)

and for this special case the equity premium puzzle is readily stated.

Taking the U.S. as a prime example, in the last century or so the average annual real

arithmetic return on the broadest available stock market index is E[Re] � 7%.3 The histor-
ically observed real return on an index of the safest available short-maturity bills is about

1% per annum, implying for the equity premium that lnE[Re]� rf � 6%. The mean yearly
growth rate of U.S. per capita consumption over the last century or so is about 2%, with

standard deviation about 2%, meaning bV � 0:04%. Suppose 
 � 2. Plugging these values
into (18) gives a calculated value 
 bV � 0:08%.
Thus, the actually observed equity premium on the left hand side of equation (14) exceeds

the estimate (18) of the right hand side by some seventy-�ve times. If this were to be

explained with the above data by a di¤erent value of 
, it would require the coe¢ cient of

relative risk aversion to be 150, which is away from acceptable reality by about two orders of

3These numbers are from Prescott and Mehra (2003) and/or Campbell (2003), who also show essentially
similar summary statistics based on other time periods and other countries (but most of which naturally
have somewhat lower values of E[Re] than �America in the American century�).
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magnitude. This is the equity premium puzzle, and it is apparent why characterizing this

result as �disturbing�for the standard neoclassical paradigm may be putting it very mildly.

Plugging in some reasonable alternative parameter values can have the e¤ect of chipping

away at the puzzle, but the overwhelming impression is that the equity premium is o¤ by

at least an order of magnitude. There just does not seem to be enough variability in the

recent past historical growth record of advanced capitalist countries to warrant such a high

equity premium as is observed.

Of course, the underlying model is extremely crude and can be criticized on any number

of valid counts. Economics is not physics, after all, so there is plenty of wiggle room for

a paradigm aspiring to be the �standard economic model.�Still, two orders of magnitude

seems like an awfully large base-case discrepancy to be explained away ex post factum.

Turning to the risk-free rate puzzle, the meaning given in the literature to equation (9)

parallels the interpretation given to the equity premium formula. Interpret the left hand side

of equation (9) as the actual risk-free interest rate that is observed historically in the real

world, while the right hand side represents a theoretical formula for calculating this risk-free

interest rate, given 
 and the subjective probability distribution of the future growth rate

g. Concerning the behavioral risk-aversion parameter 
, a value that would be accepted by

the economics profession as a whole is about two, roughly. By contrast, the true subjective

probability distribution of the future growth rate g is unknown and the best that can be

done is to make some statistical inference about the likely probabilities of g from observing

its past realizations.

When the normality assumption (13) is made but � and V are viewed as random variables,

then using the formula for the expectation of a lognormal distribution, cancelling redundant

terms, and taking logarithms transforms the theoretical risk-free interest rate formula (9)

into

rf = �+ 
E[�]� lnE[exp(
2V=2)]; (19)

where

� � � ln � (20)

is the instantaneous rate of pure time preference, while the expectations on the right hand

side of equation (19) are understood as being taken over � and V .

From the exponential function on the right hand side of equation (19) being convex in V ,

a mean-preserving spread of V decreases the theoretically-calculated risk-free interest rate.

Therefore, plugging the mean of V into (19) biases the formula in the direction of predicting

that the point-calibrated risk-free rate is always too high.

The literature typically proceeds from (19) by ignoring the statistical uncertainty inherent
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in measuring � and V . Instead, these two structural parameters are usually treated by

plugging into (19) their point estimates and then pretending that normality still holds.

Substituting the sample mean bg and the sample variance bV into (19) gives

rf = �+ 
bg � 1
2

2bV ; (21)

which is a ubiquitous generic formula appearing in one form or another throughout stochastic

growth theory. (Its origins trace back to the famous neoclassical Ramsey model of the 1920�s.)

Non-controversial estimates of the relevant parameters appearing in (21) (calculated on an

annual basis) are: bg � 2%, bV � :04%, � � 2%, 
 � 2. With these representative parameter
values plugged into the right hand side of (21), the left hand side becomes rf � 5:9%. When
compared with an actual real-world risk-free rate rf � 1%, the theoretical formula is too

high by � 4:9%.
This gross discrepancy is the risk-free rate puzzle. With the other base-case parameters

set at the above values, the coe¢ cient of relative risk aversion required to explain the risk-free

interest rate discrepancy is essentially negative, while the coe¢ cient of relative risk aversion

required to explain the equity-premium discrepancy estimated from (18) is 
 = 150. The

simultaneous existence of two strong contradictions with reality, which, in addition, are

strongly contradicting each other, might be characterized as disturbing times three.

As if all of the above were not vexing enough, we have the additional enigma of a form

of "excess volatility puzzle." In the endowment-exchange economy of this paper, which

is a modi�cation of the seminal Mehra and Prescott (1986) model (itself a modi�cation

of the seminal Lucas (1978) fruit-tree model), there is no genuine distinction between: 1:

consumption; 2: output; 3: endowments; 4: dividends; 5: payo¤s. All �ve "fundamentals"

here have the same growth rate given by the random variable g, which therefore represents

the sole genuine "fundamental" of the system. Intuitively, the return on equity should have

the same variability as its underlying "fundamental," which for this super-simple model

means g. In the data, however, the (geometrically-calculated) standard deviation of equity

returns b�[re] � 17% is much bigger than the (geometrically-calculated) standard deviation of
growth rates b�[g] � 2%. The relevant macroeconomic form of an "excess volatility puzzle"

(as translated into the ultra-stark fruit-tree model of this paper) is interpreted here to be

the empirical fact that the return to comprehensive equity re counterintuitively appears

to be almost an order of magnitude more volatile than the underlying fundamental of an

aggregate-output growth payo¤ g, from which it is conceptually constituted.

Summing up the scorecard for the standard neoclassical model, all in all we have three

strong contradictions with reality and at least one serious internal contradiction, making the
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grand total add up to being a conundrum that is disturbing times four. It was previously

noted that uncertainty in V has the qualitative e¤ect of diminishing simultaneously the

magnitude of both the equity-premium and risk-free-rate discrepancies. We next examine

what happens quantitatively to the family of equity puzzles when the structural parameters

� and V take on the standard familiar sampling distributions that arise naturally when n

sample points are drawn randomly from a normal population.

3 Subjective Expectations of Future Growth

As a preliminary guide to indicate roughly where the argument is now and where it is

heading, the outline of the ultimate full model is here sketched. The Euler equation (3)

is presumed to hold in subjective expectations for the utility function (4). The assumed

probability distributions are: g � N(E[g]; V [g]) and re � N(E[re]; V [re]). The following

�ve quasi-constants of the model are e¤ectively assumed known: E[re], V [re], rf , �, 
. The

following two structural parameters are unknown and must be estimated statistically: E[g],

V [g]. This section derives the Bayesian subjective distributions of E[g] and V [g], which will

then be applied to the model throughout the remainder of the paper.

Assuming the normal speci�cation (13), de�ne the random variable

W � 1=V; (22)

which is commonly called the precision of a normal probability distribution. Given any W ,

and given any random variable e�, which represents the unknown mean of g, we can write
g = e�+ "; (23)

where " � N(0; 1=W ).

Purely for simplicity here suppose that initially, before any observations are made, the

Bayesian pre-sample estimate of the random variable e� is distributed as a non-informative
di¤use prior. Let g1; : : : ; gn be a random i.i.d. sample corresponding to the normal prob-

ability structure (23), which is drawn from a normal distribution with known precision W ,

but whose Bayesian pre-sample estimate of e� is a di¤use-normal distribution. With a known
variance, the posterior distribution of e� after n independent sample observations is

e� � N(bg; 1=nW ): (24)

From (23) and (24), E[g] = E[e�] = bg. For given values of both W and e�, the random
12



variable g is distributed according to (23) as

g � N(e�; 1=W ); (25)

while, for any given value of W alone, the random variable e� is distributed according to
(24). Combining these two quasi-independent realizations of normal processes, the random

variable g must be distributed normally with mean bg and variance equal to the sum of the

variance of normal process (24) plus the variance of the conditionally-independent normal

process (25). After adding together the two variances (1=nW from (24) plus 1=W from (25)),

the posterior distribution of g comes out to be

g � N(bg; (n+ 1)=nW ): (26)

Thus far, the speci�cation has proceeded as if W were known. When W is not known,

Bayesian statistical theory has developed a rigorous and elegantly symmetric counterpart

to the classical statistics of the familiar linear-normal regression setup.4 The Bayesian dual

counterpart to classical statistics works with a normal-gamma family of so-called "natural

conjugate" distributions. For reasons that later will become apparent, we work here with

a three-parameter generalization of the two-parameter gamma distribution, which forms a

normal-truncated-gamma family of natural conjugate distributions.

Consider a non-negative random variable w representing the precision. Let � be a non-

negative parameter representing an arbitrarily imposed lower-bound support for the Bayesian

prior distribution of w. Assume that the Bayesian prior distribution of the precision is a

truncated-gamma probability density function (with truncation parameter �) of the form:

'0(w) =
wa0�1 e�b0w

1R
�

wa0�1 e�b0w dw

(27)

for w � �,while '0(w) = 0 for w < �: When choosing � to be positive, the model is dog-

matically eliminating a priori all variances above 1=�. The technical reason for declaring

impermissible worlds of unboundedly high variance is to make the integral de�ning the mo-

ment generating function of g converge to a �nite value. An economic rationale presumably

has to do with the di¢ culty of envisioning the unbounded loss function arising from possibly

unlimited variability in growth rates. Whatever the reason, the implicit subtext is that the

appropriate value of the parameter �, which implicitly bounds expected utility, is far from

4Among several other places, clear expositions of Bayesian-classical duality are contained in DeGroot
(1970), Zellner (1971), Leamer (1978), Hamilton (1994), Poirier (1995), or Koop (2003).
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being known a priori.

The three non-negative parameters �, a0, b0 of the truncated gamma distribution (27)

represent prior beliefs about the precision. In the limit as � ! 0+, the mean of the truncated-

gamma prior (27) approaches a0=b0, while the variance approaches a0=b02. Thus, at least for

small �, the prior mean and variance can be assigned any values just by judiciously selecting

a0 and b0. Classical statistical analysis is exactly isomorphic to the limiting case of a non-

informative di¤use prior: � ! 0+, a0 ! 0+, b0 ! 0+. Therefore, the analysis presented here

can be viewed as paralleling the classical speci�cation very closely, except that it is slightly

more general by allowing positive parameter values other than the limit 0+.

Let 'n(w) be the posterior distribution of the precision w at a time just after observing

the n independent realizations g1; : : : ; gn. When � = 0, it is well known (see any of the

references cited in footnote 4) that the normal-gamma distribution constitutes a conjugate

family of priors. When � > 0, we have the same conjugate family of priors, except that w is

subject to a lower-bound constraint. Therefore, the posterior is of the same form as the prior,

and subject to the same bounding constraint. The modi�cation of a basic conjugate-prior

result in the Bayesian statistical literature needed for this paper is the following lemma
(stated here without proof):

'n(w) =
wa�1 e�bw

1R
�

wa�1 e�bw dw

; (28)

for w � �;while 'n(w) = 0 for w < �. The parameters a and b are de�ned by the equations

a =
n

2
+ a0 (29)

and

b =
1

2

nX
i=1

(gi � bg)2 + b0: (30)

It is analytically very convenient (and, in the context of this model, comes at the cost of

only an insigni�cant loss of generality) to presume that there is no reason to believe that the

observed sample precision is biased relative to the distribution of the prior precision. This

assumption allows compressing the two parameters a0 and b0 of the prior truncated-gamma

distribution into just one parameter, by e¤ectively imposing the additional conditions

a0 =
m

2
(31)
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and

b0 =
m

2
bV ; (32)

where the single parameter m now quanti�es the one remaining degree of freedom. With the

above unbiasedness speci�cation, m has a natural interpretation �as if� bV were the sample

variance calculated from a pre-observation �ctitious earlier sample of size m drawn from the

same underlying population that generated the data. Under this interpretation, m quanti�es

the �degree of prior con�dence� in the value bV (of V ), which was in fact calculated from

the n �real� sample points that were actually observed. The overall situation is then �as

if� bV were the sample variance from a total sample of size m + n. With this unbiasedness

simpli�cation, the prior distribution of the precision is now characterized by just two non-

negative parameters: � and m.

We now can summarize the posterior distribution of the precision w as being given by

the probability density function

 n(w j �;m) = k� w
a�1 e�bw; (33)

for w � �;while  n(w j �;m) = 0 for w < �. The parameters k�; a and b are de�ned by the

equations

1=k� =

1Z
�

wa�1 e�bw; (34)

and

a =
n+m

2
(35)

and

b =
n+m

2
bV: (36)

From combining (33) with (26), the unconditional or marginal posterior probability den-

sity function of g is

fn(g j �;m) = k0�

1Z
�

exp(�(g � bg)2nw=2(n+ 1)) wa� 1
2 e�bw dw; (37)

where a and b are de�ned by (35) and (36), while k0� is just the constant of integration

satisfying

1=k0� =

1Z
�1

dx

1Z
�

exp(�x2nw=2(n+ 1)) wa� 1
2 e�bw dw: (38)
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The two non-negative parameters � and m are highlighted in formulas (33) and (37)

merely to remind us that (among many other things, such as bV and n, which o¤hand seem

like they should end up being far more important in practice) the posterior probability den-

sity function of the future growth rate depends in principle on the lower bound � and the

�ctitious-sample size m that are conceptualized by us today as characterizing the prior dis-

tribution of the precision prescribed (by �them�) n periods ago. Of course nobody today

has the slightest notion about what reasonable values of � or m might have been way back

then, before anyone looked at any data. It is for just this reason that everyone�s favorite

candidate today is the non-informative di¤use prior � ! 0+ and m ! 0+, which corre-

sponds exactly to familiar dual-classical statistical regression analysis. In this dual-classical

case, straightforward integration shows that (37), (38) reduces to the (non-standardized) t

distribution

fn(g j 0; 0) =
�((n+ 1)=2)

�(n=2)
p
�bV n

"
1 +

(g � bg)2
(n+ 1)bV

#�n+1
2

; (39)

whose moment generating function is unboundedly large because the relevant integral di-

verges to plus in�nity. (It is essentially in order to make this moment-generating integral

converge that the condition � > 0 is imposed in the �rst place.)

Of course this entire preliminary discussion of the future consequences of what people

now think that people long ago �might have been thinking�about such things as an upper

bound on V (of 1=�) or a degree of prior con�dence in bV (of m) has an unreal tone about it.
In practice this issue ought to be non-operational �and therefore not worth contemplating

�because the intervening n observations should have bleached the prior parameters out of

the posterior distribution. Thus, if the number of data points n is large enough, it �should

not matter�what values of � or m we select now to represent past beliefs. This �should not

matter�intuition is true, it turns out, for the parameter m, whose e¤ects on expected utility

converge uniformly in n for all m > 0. However, the parameter � behaves fundamentally

di¤erently, because its e¤ects on expected utility do not converge uniformly in n for all � > 0.

In this sense there is a critical distinction, which is crucial for all expected-utility asset-pricing

implications, between not knowing what value to assign now to the prior parameter m and

not knowing what value to assign now to the prior parameter � .

The fact that expected utility is not uniformly convergent in n for all positive � has great

signi�cance for the interpretation of this paper. A prior distribution is our imputation now

of what �they might have�imposed n years ago during the pre-data past. It is essentially a

mental arti�ce for framing a subjective thought-experimental dialogue between the present

and the past about what to expect from the future. In such a setting, pointwise convergence

of expected utility in n for a given � is not nearly enough to guarantee a robust prior, because
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the prior is a subjective creature of our imagination now, not an objective unchangeable real-

ity that a real person carved in stone n periods ago to represent some intrinsic characteristic

of the then-observable world.

To have faith in the standard practice of calibrating means and variances of normal

distributions to past historical averages presupposes a robustness in the interpretation of

observable data with respect to whatever values of � or m are chosen. Therefore, a necessary

precondition for the validity of the classical statistical idea to just �let the data speak for

themselves� is that the e¤ects of � or m should be negligible for su¢ ciently large n. This

condition holds (in the space of subjectively-expected utility) for m, but such a robustness

condition does not hold (in the space of subjectively-expected utility) for �. The value

of � that has now been chosen to represent the past manifests itself as a piece of current

background risk that refuses to go away with the passage of time. From a Bayesian viewpoint,

we �let the data speak for themselves� in a di¤erent sense from the classical statistical

interpretation of this phrase. Here, data �speak for themselves�by telling us what is the

implied value of � that real-world investors must implicitly be using in their priors, in order

to be compatible with what we researchers are observing in the data.

To summarize, within the Bayesian framework appropriate for thinking about basic issues

of risk aversion and asset pricing (which underlies the entire family of equity puzzles), the sub-

jective element involved in choosing a prior distribution of structural parameters cannot be

disentangled from the calibration process. Non-uniform convergence in stochastic-discount-

factor space means that the �ckle whimsicality of current investors concerning what value of

the structural parameter � to select for representing the model�s initial con�guration never

loses its critical impact on subsequent behavior under risk, regardless of the amount of data

accumulated during the interim. This tremendous sensitivity to the �background shadow of

��permeates every aspect of asset pricing and represents the critical component of a uni�ed

Bayesian theory capable of resolving simultaneously all three of the so-called equity puzzles.

Taking (33) and (37) as our subjective posterior probability density functions, we are

now ready to compute the Bayesian equity premium, the Bayesian risk-free interest rate,

and Bayesian excess volatility. The next three sections of the paper do these calculations, in

turn. In the last section of the paper implicit parameter values of the subjective probability

distribution of future growth rates are backed out of the data by Bayesian inverse calibration.

For each application, the sharpest insight comes from having in mind the mental image

of a limiting situation where m is very big, while simultaneously � is very small. This

limiting situation comes arbitrarily close to the standard familiar textbook case of normally

distributed purely-stochastic growth-rate risk, but, as we shall see, it never quite gets there.

When m is �very big�(but less than in�nity), the subjective Bayesian distribution of future
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growth rates is essentially unchanged by the arrival of a new datum point. Such a limiting

situation nulli�es sampling error and focuses the mind sharply on understanding the core

Bayesian structural model-uncertainty mechanism driving the entire family of equity puzzles.

4 The Bayesian Equity Premium

We now use the statistical apparatus developed in the last section of the paper to compute the

Bayesian equity premium. For �xed m and n, let 	(�) represent the value of lnE[Re]�rf as
a function of � that is obtained from formula (14) for V = 1=w when the probability density

function of w is  n(g j �;m) de�ned by equation (33). Plugging (33) into (14) for V = 1=w,
we obtain

	(�) = ln

1Z
�

exp(
=w) k� w
a� 1

2 e�bw dw: (40)

We then have the following proposition.

Theorem 1 Suppose that 
 > 0 and m+ n <1. Let lnE[Re]� rf be any positive value of
the equity premium. Then there exists some positive �e such that

lnE[Re]� rf = 	(�e): (41)

Proof. It is readily apparent from examining (40) that 	(0) = +1. At the other extreme
of �, it is apparent that 	(1) = 0+, because there is no equity premium when there is no

uncertainty. The function 	(�) de�ned by (40) is continuous in �. Since

	(1) < lnE[Re]� rf < 	(0); (42)

condition (41) follows.

The essence of the Bayesian statistical mechanism driving the theorem can be intuited by

examining what happens in the limiting case. As � ! 0+, the limit of (37) is a t distribution

of the form (39) �except that m+n replaces n. With the presumed case of large m+n and

small �, the central part of the t-like distribution (37) is approximated well by a normal curve

with standard deviation b�[g] �tting the data in its middle range. However, for applications
involving the implications of risk aversion, such as calculating the equity premium, to ignore

what is happening away from the middle of the distribution has the potential of wreaking

havoc on the calculations. For these applications a normal distribution may be a very bad

approximation indeed, because the relatively fatter tail of the dampened-t distribution (37)

is capable of producing an explosion in formulas like (9) or (12), implying in the limit as
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� ! 0+ an unboundedly large equity premium. In this framework, therefore, the statistical

fact that the moment generating function of a t-distribution is in�nite has the extremely

important economic interpretation that model-structure uncertainty is potentially far more

important for asset pricing than purely-stochastic risk. The representative agent may be

incomparably more averse to the �strong force�of statistical uncertainty about the future

growth process (with unknown structural parameters) than is this agent averse to the �weak

force�of the pure risk per se of being exposed to a stochastic growth process (with known

structural parameters).

An explosion of the equity premium does not happen in the real world, of course, but

a tamed near-explosive outcome remains the mathematical driving force behind the scene,

which imparts the statistical illusion of an enormous equity premium incompatible with

the standard neoclassical paradigm. When people are peering into the future they are also

peering into the past, and they are intuitively sensing there the spooky background presence

of a low-� prior volatility that could leave them holding the bag by wiping out their stock-

market investments. This eerie sensation of low-� background structural shadow-risk cannot

easily be articulated, yet it frightens investors away from taking a more aggressive stance

in equities and scares them into a position of wanting to hold instead a portfolio of some

safer stores of value, such as cash, inventories of real goods, precious metals, or government

treasury bills �as a hedge against low-consumption states. Consequently, these relatively-

safe assets bear very low, even negative, rates of return.

I do not believe that it will be easy to dismiss such type of Bayesian statistical expla-

nation. The equity premium puzzle is the quantitative paradox that the observed value of

lnE[Re] � rf is too big to be reconciled with the standard neoclassical stochastic growth

paradigm. But compared with what is the observed value of lnE[Re] � rf �too big�? The

answer given in the equity-premium literature is: �compared with the right hand side of

formula (18).�Unfortunately for this logic, the point-calibrated right hand side of (18) is

in practice a terrible estimate of the true value of lnE[Re] � rf as given by equation (14).

Anyone wishing to downplay this line of reasoning in favor of the status quo ante would

be hard pressed to come up with their own Bayesian rationale for calibrating variances of

non-observable subjectively-distributed future growth rates by point estimates equal to past

sample averages. In e¤ect, the frequentist-inspired approach that produces the family of

equity puzzles avoids the consequences (on marginal-utility-weighted asset-pricing kernels)

of non-uniform convergence (in m + n, for any positive �) only by imposing from the very

beginning the pointwise-convergent extreme case m+ n =1.
In an important early attempt to explain the equity premium puzzle, Rietz (1988) argued

that we cannot exclude the possibility that our sample size is not large enough to describe
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adequately the full macro-risk of unknown future growth rates. The impact on �nancial

equilibrium of a situation where there is a tiny probability of a catastrophic out-of-sample

event has been dubbed the �peso problem.� In a peso problem, the small probability of a

disastrous future happening (such as a collapse of the presumed structure from a natural or

socio-economic catastrophe) is taken into account by real-world investors (in the form of a

�peso premium�) but not by the model, because such an event is not in the sample.

I think Theorem 1 is trying to tell us that the statistical architecture of a peso prob-

lem is genetically hardwired into the �deep structure� of how Bayesian inferences about

exponential processes (of future economic growth, at unknown rates) interact with a curved

utility function. Bayesian inferences from �nite data fatten the posterior tails of probability

density functions with dramatic consequences when expressed in expectation units of future

marginal utility �as the example of replacing the workhorse normal distribution by its t-like

posterior distribution demonstrates. This �Bayesian-statistical peso problem�means that it

may not be so absurd to believe that no �nite sample size is large enough to capture all of

the relevant structural model uncertainty concerning future economic growth. I think the

Bayesian peso problem is trying to tell us that to calibrate an exponential process having an

unknown growth rate, which is essentially intended to describe future worldwide economic

prospects, by plugging the sample variance of observed past growth rates into a �very bad�

approximation of the subjectively-distributed stochastic discount factor, is to underestimate

�very badly�the comparative risk of a real world gamble on the state of the future world�s

economy relative to a safe investment in a near-money sure thing.

Of course, what is being presented here is just one illustrative example of the economic

consequences of such a tail-fattening e¤ect, but I believe that it is very di¢ cult to get around

the moral of this story. For any �nite value of n, however large, the e¤ects of Bayesian

tail-fattening will cause the equity premium to be highly sensitive to seemingly innocuous

and negligible changes in the assumed prior of the precision �within a very broad class of

non-dogmatic probability distributions obeying standard regularity conditions. The driving

statistical-economic force is that seemingly thin-tailed probability distributions, which actu-

ally are only thin-tailed conditional on known structural parameters of the model, become

thick-tailed after integrating out the parameter uncertainty. Intuitively, no �nite sample

can eliminate the possibility of fat tails, and therefore the attitude of a risk-averse Bayesian

agent towards investing in various risk-classes of assets may be driven to an arbitrarily large

extent by this unavoidable feature of Bayesian uncertainty. The important result in Schwarz

(1999) can be interpreted as saying that, for essentially any model whose conclusions are in-

variant to measurement units, the moment generating function of the posterior distribution

is in�nite (i.e., the posterior distribution has a "thick" tail), even when the random variable
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is being drawn from a thin-tailed parent distribution whose moment generating function is

�nite. People are potentially much more afraid of not knowing what is inside the black box

driving the purely-stochastic risk than they are averse to the purely-stochastic risk itself.

When investors are modeled as perceiving and acting upon these inevitably-thick-tailed sub-

jective posterior distributions, then a fully-rational general equilibrium interpretation has

more than enough explanatory power to weave together a uni�ed Bayesian theory of the

entire family of equity �puzzles,�as the next three sections of the paper will show in turn.

5 The Bayesian Risk-Free Rate

We can use the same mathematical-statistical apparatus to calculate the Bayesian risk-free

interest rate. For �xed m and n let �(�) be the value of rf as a function of � that comes out

of formula (19) when bg is substituted for E[�] and the probability density function (33) is
used to evaluate the distribution of V = 1=w. Plugging bg and (33) into the right hand side
of equation (19), the result is

�(�) = �+ 
bg � ln 1Z
�

exp(
2=2w) k� w
a� 1

2 e�bw dw: (43)

We then have the following proposition.

Theorem 2 Suppose 
 > 0 and m + n < 1 . Let rf be any value of the risk-free interest

rate that satis�es rf < �+ 
bg. Then there exists a positive �f such that
rf = �(�f ): (44)

Proof. As � is made to approach zero, the integral on the right hand side of (43) becomes
unbounded. Therefore, �(0) = �1. At the other extreme of � is the deterministic Ramsey
formula �(1) = �+ 
bg. Thus,

�(0) < rf < �(1); (45)

and, since �(�) de�ned by (43) is continuous in �, the conclusion (44) follows.

The discussion of Theorem 2 so closely parallels the discussion of Theorem 1 that it is

largely omitted in the interest of space. The driving mechanism again is that the random

variable of subjective future growth rates behaves somewhat like a t statistic in its tails and

carries with it a potentially explosive moment generating function re�ecting a strong aversion

to high-volatility low-precision situations. The bottom line once more is that a �Bayesian

peso problem� causes classical-like rational-expectations inferences, which are based upon
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the observed historical behavior of past growth rates, to underestimate greatly just how much

riskier than safe stores of value is a real-world Bayesian gamble on the growth-structure of

an unknown future economy.

6 Bayesian Excess Volatility

The methodology in this section of the paper unavoidably stretches the mind more than what

was previously encountered, because we are forced now to �ush out logical inconsistencies

and to confront conceptual modeling problems previously swept under the rug. We begin

with the standard de�nition

re(g) � lnRe(g); (46)

and then apply (2) and (10) to obtain

re � E[re] = g � E[g]: (47)

In the ultra-stark macro-economy being modeled in this paper, the only genuine "funda-

mental" of the system is the growth rate g. Stocks are being understood here as representing

claims on future g. The idea that stock returns should re�ect underlying "fundamentals"

�nds expression in this bare-bones macro-model by equation (47). (A further decomposition

of stock returns into conventional dividends plus capital gains �lls in some interesting and

useful supplementary details, but otherwise obscures the intended focus of this paper on the

core structural-uncertainty message.) According to (47), for an economy-wide comprehen-

sive stock index, which represents a claim on the future aggregate output of the underlying

real economy, the representative agent should be subjectively perceiving the variability of

future growth rates as being equal to the variability of equity returns. Yet this "perception"

appears to be strongly violated in the data. For the super-simple fruit-tree model of this

paper, the "excess volatility puzzle" is taken to be the empirical fact that b�[re] is about an
order of magnitude larger than b�[g]. This section of the paper essentially poses and answers
the basic question: which one of these two volatilities �b�[re] or b�[g] �captures better the
not-directly-observable subjective volatility of future growth rates?

Because b�[re]� b�[g], clearly expression (47) cannot be interpreted as representing equal-
ity between random variables in a realized-frequency sense. However, what is required by

the relevant theory is not this ex-post frequency interpretation per se, but rather that the

equality in (47) be ex-ante subjectively perceived as holding in expectations. The Euler equa-

tion imposes restrictions upon perceived expectations of stochastic-discount-factor-weighted

equity returns, not upon past realizations of equity returns, growth rates, or pricing-kernel
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errors per se. In this model g is a subjectively-distributed random variable, whose perceived

"strong force" of marginal-utility-weighted subjective variability is much greater than what

might appear to be indicated by point calibration to its un-weighted past sample average.

The representative agent here understands that, due to the "Bayesian peso problem," the

realized sample variance understates signi�cantly (in marginal-utility units) the true parent-

population variance, which includes the out�of-sample tail-probability-weighted low-g (or

high-g) extreme outliers that have not yet been experienced. Throughout what follows, it

is essential to realize that there is no excess volatility �puzzle� in (47) if the variability of

returns on a comprehensive equity index, which is being subjectively perceived as represent-

ing the entire economy, matches consistently the subjectively-perceived variability of that

same economy�s future growth rate, which is being drawn from the full parent-population

distribution of subjectively-expected future growth rates.

Let

gN � N(E[gN ]; V [gN ]) (48)

be a random variable representing the subjective perception of a normally-distributed future

growth rate with known parameters E[gN ] and V [gN ]. Let

�N(gN) � exp(gN) (49)

be the subjective perception of a payo¤representing a claim on lognormally distributed future

aggregate output. Such a claim gives rise to the subjective perception of a (geometrically

measured) return on equity rN(gN) satisfying the equation

rN � E[rN ] = gN � E[gN ]; (50)

which is exactly the mathematical counterpart here of (47).

The following proposition establishes an important type of observational and welfare

equivalence between gN and g. This last theorem of the paper can be interpreted as pro-

viding a rationale for telling an as-if parable where the representative agent has a subjective

perception, which is consistent with (50), "as if" the future growth rate is gN with known

variability equal to the variability of returns on equity.

Theorem 3 Suppose m + n <1 . For any given positive value of b�[re], there exists some
positive �N such that the following four conditions are simultaneously satis�ed:

E[gN ] = E[g]; (51)
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E[rN ] = E[re]; (52)

�[rN ] = b�[re]; (53)

E[U(C0 exp(gN))] = E[U(C1)]: (54)

Proof. De�ne S(�) to be the implicit solution of the equation:

1p
2�S(�)

1Z
�1

exp((1� 
)gN � (gN � bg)2=2S(�))dgN = 1Z
�1

exp((1� 
)g)fn(g j �;m)dg (55)

and note that for this de�nition (51) and (54) are satis�ed by construction.

It is straightforward to prove from (10) that

E[re] = �� lnE[exp((1� 
)g)]; (56)

and from (49) that

E[rN ] = �� lnE[exp((1� 
)gN)]; (57)

so that (52) then follows from (55).

For � = 1, the integral on the right hand side of equation (55) becomes exp((1 � 
)bg),
implying S(1) = 0: As � ! 0, the integral on the right hand side of equation (55) becomes

unbounded, implying S(0) =1: Thus,

S(1) < b�[re] < S(0); (58)

and, by continuity of the function S(�), there must exist a �N > 0 satisfying

S(�N) = b�[re]; (59)

which proves (53) and concludes the proof.

The force behind Theorem 3 is the same �strong force�that is driving the previous two

theorems: intense aversion to the structural parameter uncertainty embodied in fat-tailed t-

distributed subjective future growth rates of consumption. Compared with the t-distribution

g � fn(g j 0;m), a representative agent will always prefer � for any �nite S �the normal
distribution g � N(bg; S2). Theorem 3 results when the limiting explosiveness of the moment
generating function of fn(g j 0;m) is contained by the substitution of fn(g j �N ;m) with
�N > 0.

In this setup the standard deviation of normally-distributed equity returns is presumed

known, while the standard deviation of the growth rate is unknown, but has been observed
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in the sample to be b�[g]. To convey a very sharp mental image of what Theorem 3 is saying
here, picture the following thought experiment. Imagine drawing a future time-series data

sample from the prototype limiting case of the model where m is extremely big (but less

than in�nity), while simultaneously � is extremely small (but greater than zero). Being

arbitrarily close to (but not quite at) the stationary limit, the subjective distribution of

the precision of future growth rates is arbitrarily close to a point mass and remains almost

unchanged as new data arrive over time.

With the above near-stationary setup, the data generating process for future g has the

t-like properties of (37), meaning that for very large m the data being generated are sta-

tistically indistinguishable from a normal random variable with standard deviation b�[g].
Simultaneously in this thought experiment, the observed time series of equity returns is re-

con�rming (up to sampling error) that the distribution of rN appears to be normal with

standard deviation �[rN ] = b�[re]. The excess volatility of equity being generated by this

setup is S(�N)� b�[g]. Therefore, since
b�[re]� b�[g] = S(�N)� b�[g]; (60)

the observed excess volatility of equity matches statistically what the theory predicts. Result

(60) seems extremely counterintuitive in this thought experiment, because year after year

of newly-generated data are con�rming that g appears as if it is normally distributed with

standard deviation b�[g], yet fully-rational investors nevertheless continue to maintain in
their mind�s eye an unshakably-consistent welfare-equivalent subjective mental image as if

�[gN ] = S(�N) = b�[re].
7 Some Bayesian Calibration Exercises

Given the free parameter �, the model endogenously derives theoretical partial-equilibrium

formulas for three economic quasi-constants of interest: the equity premium as the function

	(�), the risk-free rate as the function �(�), and equity return variability as the function

S(�). Theorem 1 proves the existence of a �e that makes 	(�e) match the empirically-

observed equity premium. Theorem 2 proves the existence of a �f that makes �(�f )match the

empirically-observed risk-free rate. And Theorem 3 proves the existence of a �N that makes

S(�N) match the empirically-observed variability of equity returns �all in the context of

an internally consistent welfare-equivalent story about as-if-normally-distributed subjective

future growth rates.

The following empirical question then arises naturally from the three partial-equilibrium
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Quasi-Constant Parameter Value
Mean arithmetic return on equity E[Re] � 7%
Geometric standard deviation of return on equity �[re] � 17%
Risk-free interest rate rf � 1%
Implied equity premium lnE[Re]� rf � 6%
Mean growth rate of per-capita consumption E[g] � 2%
Standard deviation of growth rate of per-capita consumption �[g] � 2%
Rate of pure time preference � � 2%
Coe¢ cient of relative risk aversion 
 � 2

Table 1: Some Stylized Economic Facts

theorems. Can the same value of the exogenous primitive � = �� explain simultaneously the

actually-observed values of the three economic-�nancial variables, so that lnE[Re] � rf �
	(��), rf � �(��), and �[re] � S(��)? In other words, can the three degrees of freedom

represented by 	(�), �(�), and S(�) be explained empirically by the one degree of freedom

represented parsimoniously by � = �� in this theory? The answer is �yes,�which we now

proceed to show.

We are testing whether the welfare-equivalent interpretation that the future growth rate

g is subjectively distributed as if it were the normal random variable gN with standard

deviation �[gN ] = S(�N) = b�[re] renders, along with (50), a consistent as-if story connecting
together the actual parameter values of our economic world. In Table 1, parameter settings

have been selected that, I think, represent values well within the �comfort zone� for most

economists. All rates are real and represented by annual values. The data are intended to

be a stylized approximation of what has been observed for many countries over long periods

of time.

The model is explaining endogenously three quasi-constants 	(�), �(�), and S(�) as

functions of the one free parameter �. We do not observe the underlying primitive value of

� directly, although we know that it is operationally indistinguishable from zero when m is

conceptualized as being very large because m ! 1 implies � ! 0+. However, and more

usefully, � can be calibrated indirectly by setting any one of the three quasi-constants 	(�),

�(�), and S(�) equal to its observed value in Table 1 and then backing out the implied values

of the other two by using the as-if-lognormal formulas (18) and (21).

De�ning �N to be the implicit solution of

S(�N) = 17%;
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we then have, from (18) with bV � S(�N)
2,

	(�N) = 
S(�N)
2 = 5:8%;

and, from (21) with bV � S(�N)
2,

�(�N) = �+ 
bg � 1
2

2S(�N)

2 = 0:2%:

De�ning �e to be the implicit solution of

	(�e) = 6%;

we then have, from (21) and (18),

�(�e) = �+ 
bg � 
�(�e)=2 = 0%;

and, from (18) with bV � S(�N)
2,

S(�e) =
p
	(�e)=
 = 17%:

De�ning �f to be the implicit solution of

�(�f ) = 1%;

we then have, from (21) and (18),

	(�f ) = 2[�+ 
bg � �(�f )]=
 = 5%;
and, from (21) with bV � S(�N)

2,

S(�f ) =
q
2[�+ 
bg � �(�f )]=
 = 16%:

As a rough test for overall consistency and raw �t, the results of these Bayesian as-if-

lognormal calibration exercises speak for themselves.

Continuing with the above as-if-lognormal scenario, next consider a purely hypothetical

thought experiment in which the magic trick is performed of eliminating all future macro-

economic variability about the trend growth rate. Applying the formula for the expectation

of a lognormal random variable to (4), the resulting welfare gain is then equivalent to a
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change in the trend growth rate of

�g =

 � 1
2

�2[g]: (61)

When 
 � 2 and the historical value of �[g] � 2% is used in (61), then �g � 0:02%,

which is roughly the order of magnitude of numbers widely cited as indicating that even the

complete removal of macroeconomic uncertainty might be worth very little. Such a number,

however, captures only the �weak force�of purely stochastic growth-rate risk. The trend-

growth welfare equivalent of a strictly hypothetical elimination of all uncertainty about the

future growth process, which includes the �strong force�of structural parameter uncertainty,

is more accurately assessed by using the subjective value �[g] = �[re] � 17% in formula (61),
which paints a very di¤erent picture since in this case �g � 1:45%.

8 Conclusion

The �-theory model of this paper is predicting that, when viewed through the lens of the

standard frequentist calibration paradigm, there will simultaneously appear to be an �excess

volatility puzzle,� a �risk-free rate puzzle,� and an �equity premium puzzle,�whose mag-

nitudes of discrepancy are very close numerically to what is actually observed in the data.

This paper shows that such numerical �discrepancies�are puzzles, however, only when seen

through a non-Bayesian lens. From a Bayesian perspective, the �puzzling�numbers being

observed in the data are telling an internally-consistent fully-rational story about the implicit

prior distribution of background structural-parameter risk stemming from the uncertain fu-

ture growth process that is generating such data.

In principle, consumption-based representative agent models provide a complete answer

to all asset pricing questions and give a uni�ed theory integrating together the economics of

�nance with the real economy. In practice, consumption-based representative agent models

with standard preferences and a traditional degree of relative risk aversion work poorly when

the variance of the growth of future consumption is point-calibrated to the sample variance

of its past values. The theme of this paper is that there is an internally consistent theoretical

justi�cation for treating the non-observable variance of the subjective future growth rate as

if it were equal to the observed variance of a comprehensive economy-wide index of equity

returns, for which interpretation the simple standard neoclassical model has the potential to

work well in practice.
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