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Abstract

Dynamic structural trade-o¤ models commonly invoke �nancial trans-

actions costs in order to explain observed leverage �uctuations. This

paper o¤ers an alternative explanation for this pattern: real options. In

the model, the only �nancial friction is a tax advantage to debt. How-

ever, the model incorporates two investment frictions: irreversibility and

�xed costs of investment. Despite its parsimony, the model is broadly

consistent with observed �nancing patterns. First, market leverage ratios

are negatively related to pro�tability in the cross section. Second, lever-

age ratios in the simulated �rms are mean-reverting and depend on past

stock returns. Third, gradual and lumpy leverage adjustments occur in

the absence of �nancial transactions costs. Fourth, debt tends to be the

primary source of external �nancing for new investment. The predictive

power of the model highlights the necessity of incorporating real frictions

into structural models of corporate �nancing decisions.
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Introduction

The techniques of real options have fundamentally altered the way economists

think about �rms�real investment decisions. Leaving theoretical elegance aside,

the appeal of real options techniques is found in its ability to explain empirical

investment regularities. It has long been noted that theories of investment

in which the buy and sell price of capital are equalized, e.g., Tobin�s (1969)

Q-theory, cannot explain investment behavior. Early attempts to remedy this

weakness focused on the convex costs of adjusting the capital stock, e.g., Hayashi

(1982). However, even this framework cannot replicate observed investment

patterns. A recent paper by Cooper and Haltiwanger (2005) shows that in

order to replicate observed investment patterns, it is necessary to introduce real

frictions, such as wedges between the buy and sell prices of capital and/or �xed

costs of adjustment, as in the model of Abel and Eberly (1994).

Since Modigliani and Miller (MM hereafter) (1958) published their �nancial

irrelevance result, theorists have focused their attention on violations of the MM

assumptions in order to understand corporate �nancing choices. Motivated by

this literature, empiricists have looked to taxes and �nancial frictions for an

explanation of observed �nancial behavior. For example, it is commonly argued

that transactions costs are responsible for wide �uctuations in leverage ratios

over time. This is because �rms will adjust �nancing variables infrequently if

doing so forces them to incur costs, e.g., underwriting fees on new debt �otations.

In this paper, I show that the same technological factors (real frictions) that

explain the investment decisions of �rms can also explain their �nancial behav-

ior. In particular, there is no need to appeal to large �nancial frictions in order

to explain observed �nancing patterns.1 Rather, a much simpler explanation

is available: real frictions. The attractive feature of my model is that it can

successfully explain both �nancing behavior and real investment decisions. In

contrast, theories relying on transactions costs cannot explain investment be-

havior. In particular, theories relying exclusively upon transactions costs cannot

explain why surges in �nancing activity tend to be correlated with surges in real

investment. Empirically, �rms tend to issue debt as they invest. For example,

Shyam-Sunder and Myers (1999) show that a �nancing gap is matched almost

dollar-for-dollar by new debt in their sample.

To illustrate the main argument, I develop a dynamic model of optimal �-

1Transaction costs in most structural models are high. This is because the cost is levied
on the full value of new debt rather than on the change in the value of debt.
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nancial structure in the presence of real frictions. The model is parsimonious

on the �nancial side, featuring: zero transactions costs, convex corporate in-

come taxes, and a linear tax on interest income. As such, the model features

a single violation of the MM assumptions: there is a tax advantage to debt.

Setting transactions costs to zero well illustrates the main argument in this

paper. Anticipating, I will show that real frictions are su¢ cient to replicate ob-

served �nancing patterns. To illustrate the implications for statistical inference

regarding �nancial frictions, note that lumpy adjustments of leverage ratios are

commonly attributed to the high �xed costs of debt �otations. However, I show

that lumpy �nancial behavior can also be explained by the �xed costs of real

investment.

The model can explain what Myers termed �long drifts away from target�

absent any transactions costs. The argument relies on two real-world consider-

ations in addition to the existence of real options. First, Graham (2000) shows

that loss limitations in the tax code cause the expected marginal corporate tax

rate to increase with taxable income. For a healthy company, there is a tax

advantage to debt. However, when taxable income is su¢ ciently low, there is

a tax disadvantage to debt, as the tax rate on interest income at the individ-

ual level exceeds the expected marginal corporate rate. The second important

consideration is that only installed capital (assets in place) generates taxable

revenue for the �rm. Future growth options increase the value of equity but do

not yet generate taxable revenues.

With these facts in mind, consider a �rm that experiences a positive demand

shock. Real frictions, such as a wedge between the buy-sell price of capital, cause

the �rm to delay installing additional capital. Consequently, the value of growth

options increases at a faster rate than taxable revenues. Under the optimal tax

planning strategy, the �rm increases debt service in proportion to increases in

taxable revenues. Hence, debt value increases more slowly than equity value.

That is, while the �rm is in the region of �optimal investment inaction,� the

market leverage ratio falls in response to positive shocks. Note that transactions

costs are not necessary to produce this e¤ect.

Despite its parsimony, the model is able to replicate a broad set of styl-

ized facts. First, I show that the model replicates the empirically observed

inverse relationship between pro�tability and leverage. This e¤ect is commonly

attributed to �rms delaying action due to reluctance to incur �nancial transac-

tions costs. In my model, the market leverage ratio falls with positive shocks

due to increases in the value of growth options. The relationship reverses when
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growth options are �nally exercised. However, the infrequent lumpy investment

in my simulated cross section of �rms causes the �rst e¤ect to dominate.

Second, the simulated �rms exhibit mean reverting leverage ratios, which

is also consistent with empirical observation. Mean reversion is a re�ection of

the investment cycle. Intuitively, leverage ratios decline when the �rm is in the

investment inertia region. Low leverage �rms have valuable growth options and

are likely to invest in the near future. However, they do not re�exively add

more debt simply because equity value is relatively high. The leverage ratio

only spikes upwards at the time that the �rm exploits its growth options. The

reason is simple. It is only optimal to increase debt once new productive capacity

comes on-line and starts generating taxable revenues. In contrast, equity value

increases continuously in the underlying state variable�re�ecting the capitalized

value of future growth options. This increase in equity value is not met with a

proportional increase in debt within the inertia region. The leverage ratio only

reverts to the mean at the time the real option is exploited.

Third, I �nd that, consistent with empirical observation, the market leverage

ratio depends on the path of past stock returns. For example, a �rm that

experiences a run-up in stock price followed by a decline is predicted to have a

high leverage ratio. This is because the �rm operates with excessive capacity

that cannot be shed. For such a �cash cow��rm, debt value is high because

taxable revenues are high. At the same time, the value of growth options is

low since the �rm is far away from the endogenous investment threshold. The

result is that �rms in sectors where the state variable (demand) has declined

signi�cantly relative to historic highs are predicted to have high leverage ratios.

This leads to a path-dependent leverage ratio.

Aside from shedding light on empirical observation, the model also casts

doubt on a popular �folk-theorem� of corporate �nance. Based upon MM

(1963), it is commonly argued that, in a world where the only �nancing friction

is a tax advantage of debt, the optimal �nancial structure entails 100% debt

�nance. In my model, the tax advantage accorded to debt is the only �nancing

friction. However, the market leverage ratio generally falls between 43% and

73%. The intuition is based on two observations. First, debt is proportional to

current revenues from assets in place, while equity value incorporates expecta-

tions regarding growth in revenues from assets in place. This e¤ect has already

been noted by Ross et al. (2002) and Berens and Cuny (1995). In addition to

this previously noted e¤ect, my model illustrates the importance of growth op-

tions. In particular, the fact that growth option value is capitalized into equity
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value, but not debt value, causes the leverage ratio to fall below that predicted

in MM (1963).

The primary contribution of my paper is to illustrate the necessity of in-

corporating real investment decisions and real frictions into dynamic structural

models of corporate �nancial decisions. Table 1 provides an overview. This

paper builds on extensive literature on dynamic capital structure. Fisher et al.

(1989) and Goldstein et al. (2001) develop tractable multi-period models in-

corporating dynamic debt restructuring. However, neither model incorporates

real investment decisions. Leary and Roberts (2005) show that the model of

Fisher et al. can be reconciled with observed �nancing patterns under a suit-

able parameterization of transactions costs. Similarly, Strebulaev (2005) shows

that a variant of the model of Goldstein et al. can also be reconciled with a

number of observed �nancing regularities. All of these models share a reliance

upon �nancial transactions costs to explain the stylized facts. My paper o¤ers

an alternative explanation.

Three closely related papers by Titman and Tsyplakov (2002) and Hennessy

andWhited (2005a, 2005b) use dynamic programming to analyze a broad variety

of capital structure e¤ects. The central factor di¤erentiating the models is that

my framework strips away all �nancing frictions, aside from taxes, and augments

these models with irreversible real investment. Results presented in Hennessy

and Whited (2005b) support the argument made in this paper. In particular,

they �nd that their structural model can �t �nancing moments reasonably well,

but tends to overshoot the variance of real investment. The types of real frictions

discussed in my paper o¤er a plausible resolution of this problem.

The empirical literature largely focuses on cross-sectional leverage determi-

nants and simple tests aimed at distinguishing the trade-o¤ theory from alter-

natives. The stylized facts I focus on are as follows. Titman and Wessels (1988)

and Rajan and Zingales (1995) document an inverse relationship between prof-

itability and leverage. Shyam-Sunder and Myers (1999) and Fama and French

(2002) document mean-reversion in leverage ratios. Welch (2004) documents

the dependence of leverage ratios on past stock returns.

I now provide some detail on the model and simulation methodology. I �rst

consider a simple setting in which the �rm holds a single growth option. The

reader can gain from this model much intuition about the causal mechanics

of the general model with multiple growth options. In subsequent sections, I

relax this assumption and consider a �rm holding an in�nite basket of growth

options. This extended model is used for generating the �simulated data.� I
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consider two real frictions: irreversibility and �xed costs of investment. �Fixed

costs of investment�refer to costs that are a function of the size of the existing

capital stock rather than the size of the new investment. For example, if a new

investment project disrupts current business operations, �xed costs are incurred.

The model with in�nite growth options is solved analytically for two particu-

lar cases: irreversibility only, and irreversibility with maximum �xed costs. The

solution for the zero �xed costs case closely follows analysis in Pindyck (1988),

modi�ed to accommodate debt �nancing and taxation. In this case, �rms invest

continuously along a boundary and have long periods of inactivity away from

the boundary. The empirical section shows that irreversibility alone (without

�xed costs) is su¢ cient to replicate most empirical results, except for lumpy ad-

justment. I also derive a solution for the model with �xed costs using a scaling

property.2 Investment in the presence of �xed costs is lumpy and infrequent.

This leads to lumpy adjustment in the �rm�s leverage ratio.

The calibrated model is used to generate arti�cial panels of data. Using

these panels, I perform standard cross-sectional tests regarding leverage ratios.

Each simulation results in an arti�cial panel of data for 1000 �rms over 300

quarters. The simulations are performed multiple times to achieve a high degree

of consistency. I calculate Fama-MacBeth t-statistics using the panel data and

average the results across simulations.

The model replicates qualitatively, and in some cases quantitatively, the

results of several regressions commonly found in the empirical capital structure

literature. In particular, the simulated �rms exhibit mean reversion in market

leverage ratios, a negative pro�tability-leverage relationship, and a sensitivity

of leverage to historic stock returns. Finally, I establish that the simulated �rms

rely upon debt to �ll their �nancing gaps.

The rest of this paper is organized as follows. Section 1 states the assump-

tions and works out a single option example. Extending the analysis to multiple

options, Sections 2 and 3 present the model with irreversible investment, without

and with �xed costs of investment. Section 4 describes the simulation proce-

dure and the empirical tests on the simulated data. The �nal section o¤ers

concluding remarks.

2Novy-Marx (2005) applies a scaling property to solve the equilibrium investment model
in competitive economy. Goldstein, Ju, and Leland (2001) use a scaling approach to describe
the capital structure adjustments while keeping investment �xed. Hennessy and Tserluke-
vich (2004) use scaling to solve a convertible/callable bond model allowing for upward and
downward debt adjustment.
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1 Single Growth Option Setting

In order to highlight the basic framework, I �rst consider a simple setting in

which the �rm holds a single growth option. As in the remainder of the paper,

I consider two real frictions: irreversibility, and �xed costs of investment. To

reiterate, �irreversibility�refers to the existence of a wedge between the price at

which capital can be purchased and the price at which capital can be sold. For

example, physical capital, once installed, may become �rm-speci�c and hence

has little or no resale value. �Fixed costs of investment�refer to costs that are a

function of the size of the existing capital stock rather than the size of the new

investment. For example, if a new investment project disrupts current business

operations, �xed costs are incurred.

Although the single growth option model is rather simple, it still generates

the main results that I derive below for the more general model with in�nite

growth options. In particular, in the simple model, the market leverage ratio is

declining in pro�tability and is mean reverting. Further, adjustments in capital

structure are lumpy whenever there are �xed costs of investment. Finally, in

both the simple and general models, debt constitutes the primary source of

external funds when the �rm exploits new growth options.

The assumptions used in the framework are highlighted below.

� TECHNOLOGY: Assets in place (K) costlessly produce one unit of
a nonstorable good at each instant. The price p of the output satis�es

an inverse demand function of constant elasticity form. Demand is D =

(p=Xt)
1=��1 with � 2 [0; 1). The �rm is a monopolist, implying p =

Xt �K��1.3 Revenue is equal to output price times output: p�K = Xt �K�.

The demand shock Xt follows a Geometric Brownian Motion (GBM):

@Xt
Xt

= �dt+ �i�mdMt + �idBt (1)

Here �mdMt is a common random component (market in�uence) and

�idBt is an idiosyncratic shock. The variables Mt and Bt denote un-

correlated Brownian motions. The total variance of the shock is �2 ��
�2i�

2
m + �

2
i

�
.

� REBALANCING: Firms can adjust leverage costlessly. There is no
3 It is possible to present the same argument with the �rm being a price taker and with

stochastic input costs.
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agency con�ict between debt and equity, and the �rm implements the

�rst-best capital structure.4 Costless debt adjustment is possible, for ex-

ample, when debt takes the form of private bank loans or is closely-held.

Under symmetric information, closely held debt allows for continuous rene-

gotiation of the terms of the loan and rules out hold-out problems or coor-

dination issues. As stated in the introduction, this assumption is adopted

for the sake of logical clarity and analytical tractability.

� TAXATION: I assume a simple tax structure that creates a tax ad-
vantage to debt as long as revenue is larger than interest payment. The

corporate tax rate �+c is levied on positive taxable income, while ��c is

levied on negative taxable income. I assume that ��c < �+c to approxi-

mate the e¤ect of loss limitations. Individuals pay tax on interest income

at the rate � i > ��c . This assumption ensures that there is a tax advan-

tage to debt if and only if corporate taxable income is positive. Dividend

and capital gains taxes are set to zero. This is done to exclude the �tax

wedge�e¤ect in Hennessy and Whited (2005a).

� INVESTMENT: The �rm has an option to increase its capital stock K

by paying �xed and/or proportional costs of investment.5 The investment

cost structure resembles that used by Abel and Eberly (1994). The cost

of changing the capital stock from K0 to K1 is:

COST (K1;K0) = P �max(K1�K0; 0)�P� �max(K0�K1; 0)+F �P �K0

(2)

The �rst term in this expression is the cost of buying the capital. The

second term represents the amount that can be recovered when assets are

sold. �Irreversibility�entails P� < P . For simplicity, I assume P� = 0,

meaning that investment is �perfectly irreversible.�Finally, the last term

is the ��xed cost� of investment, i.e., a cost that depends on the initial

capital stock, not on the size of the investment per se.

The following lemma highlights that, when �nancial rebalancing is costless,

the optimal �nancing policy entails setting the debt coupon equal to revenue

(X �K�), shielding all corporate income from taxation.6

4From a private perspective, not socially.
5 It is straightforward to extend this model to allow for convex costs instead of proportional.
6Brennan (1986) describes the debt policy in the case of free adjustment.
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Lemma 1 Under the optimal �nancing policy, instantaneous interest expense
is equal to Xt �K�:

Proof. Consider a �rm with revenue XK� that optimizes its debt service

strategy by choosing its interest payment i. If XK� > i, then the �ow of

tax savings is i(�+c � � i) > 0. If XK� < i, then the �ow of tax savings is

i(��c � � i) < 0.
It is worth noting that in the model there are no bankruptcy or agency costs

of debt. This includes asset substitution (Jensen and Meckling (1976)), free cash

�ow problems (Jensen (1986)), and underinvestment problems (Myers (1977)).

For example, Barclay, Morellec, and Smith (2004) present a capital structure

model with debt balancing under- and overinvestment problems. They �nd

that growth options have negative debt capacity; that is, �rms anticipating

investment decrease their book leverage. The causation in their model di¤ers

from that presented here in that the �rm in their model takes on less debt in

order to mitigate the underinvestment problem. Such e¤ects are necessarily

absent from my model since the �rm implements the �rst-best �nancing policy.

Note that in the setting considered, it is optimal to distribute all cash. To see

this, note that there is a tax disadvantage to corporate savings in this model. In

addition, since there are no �nancial frictions in my model, there are no precau-

tionary motives to o¤set this tax disadvantage. Auerbach (2001) demonstrates

the tax disadvantage to holding cash.7

As a �rst step, consider a �rm with capitalK0 that does not have any growth

options. De�ne V (X;K0) as the total (after-tax) value of the �rm. It is equal

to the present value of after-tax revenues (1� � i)XK�
0 that grow at the rate �

and are discounted at the tax adjusted risk free rate r(1� � i):

V (X;K0) =
XK�

0 (1� � i)
r(1� � i)� �

(3)

According to Lemma 1, the �rm optimally sets an instantaneous interest pay-

ment equal to revenue XK�
0 . The owner of each unit of debt is entitled by the

contract to receive a �xed debt coupon payment. But the �rm can adjust the

total interest payment in response to a change in revenue by issuing (or repur-

chasing) additional debt. The debtholders who purchase corporate debt when

the shock isX will be receiving a (�xed) after-tax interest payment (1�� i)XK�
0 .

7Additionally, Leland (1994) shows that accumulating cash is equivalent to reducing debt
for tax purposes. Mauer and Triantis (1994) argue that holding cash increases �nancial
�exibility when external �nancing is costly.
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The value of debt D is equal to the perpetuity of expected interest payments.

D(X;K0) =
(1� � i)XK�

0

(1� � i)r
=
XK�

0

r
(4)

The value of the residual equity claim is the di¤erence between the value of the

assets and the debt.

E(X;K0) = V (X;K0)�D(X;K0) =
�XK�

0

r[r(1� � i)� �]
(5)

When there is a positive demand shock, the �rm issues new debt and distributes

the proceeds to shareholders. Negative shocks lead to retirement of debt. I

assume that shareholders can �nance the retirement by selling more equity or

issuing rights. Note that if � = 0, debt value is equal to the value of assets in

place, and the equity value [5] is zero. This is intuitive because the expected

proceeds from selling new debt (if a shock is positive) are equal to the expected

costs of retiring debt (if a shock is negative).

The leverage ratio is equal to the debt [4] divided by the total value of the

assets [3]:

LR =
r(1� � i)� �
r(1� � i)

(6)

Evidently, the leverage ratio of the �rm without growth options is constant,

independent of the revenue. This is consistent, for example, with Strebulaev

(2005), who �nds that the leverage is the same at each re�nancing point.

Further, observe that the leverage ratio in [5] is below one if � > 0. This may

�rst seem surprising given that the �rm issues debt to shield all revenues from

tax. The reason is that the value of debt is proportional to the current revenues

from assets in place, while equity value incorporates expectations regarding

growth in revenues from assets in place. This e¤ect has already been noted by

Ross et al. (2002) and Berens and Cuny (1995). They show that the leverage

ratio falls below the 100% �gure predicted by Modigliani and Miller (1963).

Next, I allow for a single option to increase capital from K0 to K1 by paying

proportional and �xed costs P (K1�K0)+F � P �K0. In this example, I assume

that F = 1.8 The correct valuation of the option requires knowing the optimal

exercise strategy. Note that the problem is time independent. Therefore, in-

vestment is triggered when the demand shock reaches some critical value X�.
8My assumptions about �xed costs for this example are not important. I have already

placed a constraint on the investment policy, similar to the �xed costs, by assuming that �rm
can invest only once.
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The following proposition establishes the optimal investment threshold X� and

the value of the growth option GO(X;K0) using standard real option tools.9

Proposition 1 Denote

b(�; �; r) � �2�+ �2 +
p
�4 + 4�2 + 8r�2 � 4�2� (7)

The option is exercised at the �rst passage of the demand shock to the threshold

value X�

X� =
P (r(1� � i)� �)

(1� � i)�
K1��
0

�
1� �b

b� 1

���1
�

(8)

The value of this option is:

GO(X;K0) =
(1� � i)�K�

0

(r(1� � i)� �) ((b� 1)� �b)
X1�b
� Xb (9)

Proof.
Conjecture that the �rm invests at some shock X�, and calculate the optimal capital

K1(X�) that the �rm chooses to install. At the optimal K1(X�), the �rm maximizes
total �rm value less costs:

K1 (X�)=argmax
K1

�
(1� � i)X�K

�
1

r(1� � i)� �
�PK1

�
=

�
(1� � i)�X�

P (r(1� � i)� �)

� 1
1��

(10)

The value of the equity is given by the solution to the following di¤erential equation:10

1

2
�2X2S00 (X;K)+�XS0 (X;K)�r(1� � i)S (X;K)+

�XK�
0

r
= 0 (11)

The particular solution is (see Appendix A for more details):

S(X;K) = AXa+BXb+
�XK�

0

r(r(1� � i)� �)
(12)

where a < 0 and b > 1 solve the fundamental quadratic equation w.r.t. Y :

1

2
�2Y 2+

�
�� 1

2
�2
�
Y � r(1� � i) = 0: (13)

The constant A in the �rst term in [12] must be equal to zero because S(0) = 0. The
second term is a value of the investment option GO(X;K0) = BX

b. Constant B and
the threshold X� have to be determined by the boundary conditions. The �rst boundary
condition requires that the value equity be continuous at the exercise threshold (value

9This exercise policy is consistent with real option literature that predicts a speci�c linear
relationship between the bene�ts and costs of irreversible investment. It can be shown in our
case that Benefit = b

b�1Cost, where
b

b�1 > 1 (see Appendix for details).
10See Merton (1973) and Black and Scholes (1973) on the option pricing, and Leland (1994)

on valuing equity as a call option.
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matching condition):

S(X�;K0) = V (X�;K1)�
X�K

�
0

r
�PK1 (14)

The second boundary condition is that �rst derivatives of the equity value must be
the same before and after the exercise. This is commonly labeled the smooth pasting
condition11 . This condition ensures that the exercise threshold X� is indeed optimal:

@S(X;K0)

@X
jX�=

@

@X
jX�

�
V (X;K1)�

XK�
0

r
�PK1

�
(15)

Substituting equity [12] and capital [10] into the boundary conditions [14] and [15]
produces a system of linear equations for X� and B. Solving this system produces [8]
and [9].

The equity value in this case is equal to the equity value without options

[5] plus the value of the growth option. Using [9], write the value of equity for

X < X� as

S(X;K0) =
�XK�

0

r(r(1� � i)� �)
+

(1� � i)�K�
0X�

(r(1� � i)� �) ((b� 1)� �b)
�
�
X

X�

�b
(16)

The second term in [16] represents the value of the growth option. One can

immediately see that this value is positive and is homogeneous of degree b > 1

in X. That is, the growth option value grows faster than the value of assets

in place and debt. Since debt value increases more slowly than �rm value, the

leverage ratio declines with positive shocks until the growth option is exercised.

The example illustrates an important feature of my modeling framework.

Under the equilibrium investment strategy, total �rm value has the same degree

of homogeneity in shock X� at every �capital adjustment�point. To see this,

observe that revenue X�K�
1 , capital expenditure PK1 (from [10]) and the value

of future growth options BXb
� (from [8] and [16]) are homogeneous of the same

degree 1=(1 � �) in shock X�. This property will be later used in building the
model with multiple investment options.

Turning to Figure 1, I brie�y discuss the implication of the �nancing policy

for the �rm with an investment option. The �gure plots the graphs of equity,

leverage ratio, debt, and �rm value against the demand shock.12 The critical

value of the shock X� approximately corresponds to the middle of the horizontal

scale. The market leverage ratio (panel A of Figure 1) falls in pro�tability on

11For details, see Dumas (1991) and Dixit (1993).
12 In other words, this is what the observer would see if the demand grew predictably and

constantly with time.
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the left side of the graph, i.e., as long as the growth option is not exercised.

However, at X� the �rm exploits its growth option and issues debt. As a result

of this debt issuance, the leverage ratio spikes upwards.

Next, as Figure 1 C shows, the �rm issues debt at the investment to shield

the higher revenue from tax. In fact, the proceeds from selling this debt in this

example are su¢ cient to pay the investment cost. When debt covers the �nanc-

ing needs, the remaining amount is simply paid as dividend to the shareholders.

Figure 1 B shows that ex-dividend value of equity falls at X� by the amount

of the positive dividend paid to the shareholders. On the other hand, the total

�rm value (Figure 1 D) increases at X�. This is because the di¤erence between

the new debt issued and the dividend is positive.

Finally, notice that the corporate claim values have di¤erent dynamic prop-

erties for (X < X�) and (X > X�), that is, before and after the investment.

For example, debt tends to increase faster after investment because larger cap-

ital makes the revenues more sensitive to the demand shocks. The equity of

the �rm grows exponentially when the option is outstanding. Once the single

growth option is exploited, equity value for (X > X�) is linear in X, and the

leverage ratio is constant.

For the empiricist who investigates the data properties, the behavior of the

leverage ratio seems to be consistent with the presence of re�nancing costs. In

my model, the leverage ratio changes because of the change in the growth option

value. The jumps in the leverage ratio exhibited by my model are commonly

attributed to �xed �nancing costs. I explain it within the model by the �xed

costs of investment. That is, the explanation relies on real costs as opposed to

�nancial frictions.

Next, I proceed to develop a multiple investment model capable of generating

a uniform panel of data.

2 Irreversible Incremental Investment

I now extend the analysis to consider a �rm holding an in�nite basket of growth

options. In this section, I assume that there are no �xed costs of investment.

The section that follows considers the optimal investment and �nancing program

for a �rm facing irreversibility and �xed costs. The independent analyses are

interesting in that they illustrate the powerful e¤ect that alternative real costs

have on �nancial policies.
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The cost of capital accumulation is proportional to the change in capital

P�K. Pindyk (1988) and Dixit and Pindyk (1994) show that the solution in

this case is given by a �barrier policy.�The barrier x(K) is the critical value

of the shock that justi�es installation of an additional unit of the capital. The

region in (K;X) space where X < x(K) is termed an �inaction region� since

no new investment is made there. However, the �rm never crosses the barrier:

when X reaches x(K); new investment keeps the �rm from crossing it. The

Bellman equation for the total value of the �rm (debt plus equity) A(K;X) is:

A(K;X) = max
K0
[(1�� i)K�X+exp(�r(1�� i)dt)(A(K 0; X+dX)�P (K 0�K))]

(17)

Irreversibility places an additional constraint on the solution, i.e., K 0 > K. The
maximization is described by Kuhn-Tucker condition at the barrier when the

�rm invests:

AK(K;X) = P s:t: K 0 > K: (18)

Similar to the single option case, one can write the solution in the inaction

region as a sum of the value of assets in place and the option value to increase

capacity upon reaching the barrier:

A(K;X) =
(1� � i)K�X

r(1� � i)� �
+B(K)Xb (19)

Value matching and smooth pasting conditions13 simultaneously determine the

boundary and constant B(K):

AK(K;x(K)) = P (20)

AKX(K;x(K)) = 0

Therefore (see Appendix for details):

B0K(K) = �
�
b� 1
P

�b�1�
(1� � i)�K��1

b(r(1� � i)� �)

�b
(21)

And the �barrier�is given by:

x(K) =

�
b

b� 1

�
(r(1� � i)� �)P
(1� � i)�K��1 (22)

13See, Dumas (1991) and Dixit (1993), p.42, for a discussion of the Super Contact Condition
and barrier control policies.
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Value of the equity can be found by integrating [21], substituting the result into

the total �rm value [19] and subtracting the value of the debt:

S(K;X) =
�XK�

0

r(r(1� � i)� �)
+

�
b� 1
P

�b�1�
�(1� � i)

b(r(1� � i)� �)

�b
K(��1)b+1

(1� �)b� 1X
b

(23)

Investment is contingent on X and is done in a series of small steps. The option

value B(K)Xb is, naturally, positive, but its derivative B0K(K)X
b is negative,

indicating that the option becomes less valuable when the amount of capital is

increased.

Figure 2 provides an illustration for the investment policy under the zero

�xed costs case. All graphs are plotted against time; that is, they incorporate

the noise from random shocks. The graphs in Figure 2 are based on a single

simulation and one randomly selected �rm. For better illustration, I choose

to keep the full (without truncation) time series of the data observed over 400

quarters.

Exhibit A is a sample random path of Xt. For this particular path, I plot

the �desired�capital stock K�(Xt) (Exhibit B), which is an inverted function

[22]. It is desired in the sense that it features downward adjustments not feasible

under irreversibility. In particular, the �desired capital�is de�ned as the optimal

amount of irreversibly installed capital as justi�ed by the current value of Xt.

In contrast, Exhibit C shows that the �actual� amount of installed capital is

non-decreasing. The �rm increases its actual capital incrementally when shock

Xt reaches its new historical high. Mathematically, the relationship between

the desired and actual capital is given by:

Kt+1 = Kt +max(0;K
�(Xt)�Kt)

Exhibit D displays the market leverage ratio corresponding to the path Xt.

Interestingly, in this particular simulation, the path increments are, on aver-

age, positive in the beginning. Therefore, the leverage ratio is relatively low due

to the valuable growth options. In the second half, the shocks are, on average,

negative. Consequently, the leverage ratio sharply increases. As explained in

the introduction, the market leverage ratio is expected to depend on the path

of past stock returns. It is easy to see from the example that the �rm that

experiences a run-up in stock price followed by a decline has a high leverage ra-

tio. This is because the �rm operates with an excessive capacity that cannot be
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shed. Debt value is high because taxable revenues are high. At the same time,

the value of growth options is low since the �rm is far away from the investment

threshold. The result is that �rms in sectors where the state variable (demand)

has declined signi�cantly relative to historic highs are predicted to have high

leverage ratios.

3 Irreversible Investment with Fixed Costs

In this section, I assume that the �rm faces two �real frictions�: irreversibil-

ity, and �xed costs of investment. In the presence of �xed costs, continuous

investment is in�nitely expensive. Consequently, the �rm invests in lumps, with

bursts of investment spaced in time. Solving the dynamic model with multiple

growth options is complicated. However, the analysis in this section is greatly

simpli�ed by the use of a scaling property to describe the optimal investment

strategy. In the model, all claims at the time of investment retain the same

degree of homogeneity in the underlying demand process X. Consequently, at

the time of each investment, the �rm is simply an appropriately scaled replica of

itself. The �nancing and investment rules of the �rm in each round are identical

in form. Indeed, this scaling feature allows me to obtain closed-form solutions.14

Proposition 2 Let K0(X) denote the initial choice of capital. Then the optimal

investment strategy entails increasing capital to Kn = 
n

1��Kn�1 upon �rst

passage of the Xt to Xn = nX0; n = 1:::1. The scaling parameter  > 1 is
determined by the equity maximization problem.

Proof: (see Appendix B)

The signi�cance of Proposition 2 is that it reduces the optimization problem

to essentially a static optimization. This is because the �rm simply optimizes

over a single parameter  that fully characterizes the optimal investment thresh-

olds. This may be contrasted with a non-homogeneous setting in which the �rm

must optimize over an in�nite sequence ftgt�1:
Much intuition for the proof of Proposition 2 can be gained by considering

the following argument. Starting at X0, assume that the optimal capital stock

is K0, and the optimal threshold for next investment is X1. De�ne the scaling

14Frictions such as �xed costs are not the only way to generate investment lumpiness. For
example, Guo, Miao and Morellec (2002) show that if underlying processes exogenously shift
between di¤erent states, investment is intermittent but may exhibit the spurts of growth.
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factor 1 = X1=X0. That is, 1 is a factor by which one has to multiply the

initial value of the shock to obtain the �rst investment threshold. For example,

if 1 = 2, the �rm invests as the shock value doubles.

With this de�nition in mind, I show that at X1 the optimal capital, cost of

investment and revenue are all scalar multiples of the original capital, cost, and

revenue at X0. To see this, observe that optimal capital is a scalar multiple of

X to power 1
1�� .

K0 =

�
(1� � i)X0�

P (r(1� � i)� �)
(1� 1�b1 )

� 1
1��

(24)

It is similar to the single option case [10], except for the term (1 � 1�b1 ) that

accounts for possible future increase in the current capital stock. Therefore,

optimal capital increases between X0 and X1 as:

K1 = 
1

1�� �K0

Next, observe that the revenue Xt �K� also increases by factor 1 � �
1�� = 

1
1�� .

The same applies to the cost of investment, which is proportional to new capital

stock. Therefore the maximization problem for new threshold X2 is just a scalar

multiple of original problem. The next round of investment will occur when Xt
increases once more by the factor , that is, X2 = X1, and so on.

The next step is to determine the optimal scaling factor . According to

Proposition 2, the value of  that maximizes the initial equity value is �regret

free�, meaning that the �rm will �nd the same  optimal in each round. There-

fore  can be found by maximizing equity at X0 under assumption that  will

not change. Proposition 3 de�nes optimal  as a solution to single-argument

non-linear maximization problem:

Proposition 3 The optimal parameter  that determines the timing and scale
of capital adjustment is given by the solution to the following maximization

problem:

max

[
(1� 1�b) �

1��

1�  1
1���b

(�� 1�br(1� � i) + (25)

(r(1� � i)� �)
1

1���b � �r
1
(1� � i)(1� 1�b)

1
1���b)]
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Proof. See the Appendix.

Once  is known, the optimal investment times are de�ned contingent on the

value of the shock X. In particular TN = min(t;Xt � NX0), for N = 1; 2::: It

follows from the Proposition 3 that  is independent of the cost P . Intuitively,

the proportional cost P decreases the initial investment and all subsequent in-

vestments, but it does not change the ratio between them.

The following corollary gives the value of Equity and Debt at each point of

time. I use the number of completed investments N as a space variable because

it de�nes the capital K = K0
N .

Corollary 1 The initial value of the equity S(X0) is given by:

S(X0) =

X0K
�
0

(r(1�� i)��)
�
�
r � 

1�b(1� � i)
�
+ 

1
1���b X0K

�
0

r �  1
1���bPK0

1�  1
1���b

(26)

The value of equity for the �rm that has completed N investments S(X;N) is

given by:

S(X;N) =
�X(K0

N
1�� )�

r(r(1� � i)� �)
+

�
N+1X0
X

��b
� (27)"


N+1
1��

�
S(X0) +

X0K
�
0

r
� PK0

�
�
�
N+1X0

�
(K0

N
1�� )�(1� � i)

(r(1� � i)� �)

#

The value of debt for the �rm that has completed N investments D(X;N) is

given by:

D(X;N) =
X(K0

N
1�� )�

r
(28)

Parameters are chosen such that the equity value is bounded above.15 Figure 3

illustrates the case of irreversible investment with �xed costs. The graphs for

Figure 3 are plotted against time, using a single realization of the stochastic

demand shock (Exhibit A). Exhibit B shows the amount of the capital stock

corresponding to this path. The investment is triggered when demand shock

15For the solution to converge, it must be that:�
1� 

1
1���b

�
> 0 ) b >

1

1� �

Here b(r; �; �2) is increasing in r and decreasing in � and �2. The condition above ensures
that the value of the future growth options is �nite. The direct analogy is a Gordon�s growth
formula V = X

r�� that requires � < r to be correctly interpreted.

18



reaches the set of critical levels de�ned by Proposition 2. For this particular

example, the investment is completed in quarters 91, 110, 113; and 137. It is

visible on the graph as a series of nondi¤erentiable jumps in capital stock value.

Exhibit C shows the plot of the debt value corresponding to the path realiza-

tion. Debt continuously increases in revenue. However, debt increases in lumps

when new debt issued at the time of investment. Finally, the market leverage

ratio that corresponds to this path is plotted on Exhibit D. The market lever-

age ratio increases (decreases) with decreasing (increasing) pro�tability, and the

relationship reverses at the exercise. The leverage ratio is signi�cantly higher in

the second half; the intuition is the same as provided for the case without �xed

costs.

The general observation is that the investment patterns, investment amount,

and behavior of the leverage ratios are similar for two cases.16 Intuitively,

irreversibility is in a sense similar to �xed costs in my framework since they both

present a constraint to the investment. Including �xed costs in the model simply

exacerbates the investment delays. However, the model without �xed costs

cannot generate the lumps in leverage adjustment, contradicting the empirically

observed stylized facts.

Next, I use the model to generate the data and perform the empirical tests.

4 Data and Empirical Results

The non-linear nature of the equations in the model prevents me from making

a direct estimation. Therefore, I take a simulation approach used in previous

studies. For example, Hennessy and Whited (2005a), Strebulaev (2005), and

Leary and Roberts (2005) use simulations to study capital structure. Berk,

Naik, and Green (1999) employ this method to explain cross-sectional returns.

Shürho¤ (2004) uses simulations to highlight the e¤ect of capital gains tax

policy.17 Although I borrow some elements from all of these studies, I most

closely follow Strebulaev (2005) in the simulation and estimation method.

First, I calibrate the technology parameters and simulate random price

16The quantitative comparison for two models is provided when I examine the generated
samples in the empirical section.
17For example, Hennessy and Whited use the solution to their model to generate the sim-

ulated panel of the �rms and minimize the distance between interesting moments from the
actual data and the corresponding moments from the simulated data. Leary and Roberts use
the reduced-form model for equity returns to generate the leverage path between exogenously
speci�ed upper and lower bounds. Strebulaev (2003) studies how the cross-sectional properties
of the data generated by the �rms is a¤ected by adjustment costs.
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paths. Then, I use them to create arti�cial panels of equity, debt, and lever-

age for the economy of �rms. Next, I perform a number of tests commonly

employed in the empirical literature. The focus of the tests is on commonly

discussed properties of the leverage ratio, such as the correlation between lever-

age and pro�tability, the mean-reversion and the dependence of leverage on past

stock returns. I document that my model produces results that are qualitatively,

and in most cases quantitatively, consistent with existing empirical �ndings.

4.1 Simulation Procedure

This section brie�y explains the data generating process and outlines the main

assumptions and de�nitions. Further details on the simulation procedure can

be found in the Appendix.

The �rms within the economy are a¤ected by common market conditions,

but there is no competition, and the �rms do not interact with each other

through the equilibrium price. Given that the scope of my paper is on capital

structure, I assume that the �rms produce highly specialized products, and an

increase in one �rm�s output has no in�uence on the price that another �rm

receives.18

I assume that the total demand shock consists of two parts: the idiosyncratic

part and the economy-wide shock that leads to a correlation between cash �ows

of di¤erent �rms. The economy-wide (systematic) shocks have no pricing im-

plications under a risk-adjusted measure. But the common component is a

source of cross-sectional correlation in residuals. As Fama and French (2002)

explain, the cross-sectional correlation is important to correctly understand the

tests used. Ito�s Lemma applied to the logarithm of Brownian Motion produces

discrete-time representation of the shock dynamics de�ned by Equation [1]:

Xt+dt = Xt exp(
�
�� �2=2

�
dt+ �idW (t) + �i�mdM(t)) (29)

Here W (t) and M(t) are uncorrelated BM processes; � =
q
�2i�

2
m + �

2
i is com-

bined volatility; and market �beta� �i is a measure of systematic risk of the

�rm.

I use the following guidelines when making assumptions about technology

and economy parameters. Some parameters, as I explain below, have a triv-

ial e¤ect on the statistics of interest and are simply normalized. The second

18Kogan (2001) and Novy-Marx (2004) build the equilibrium asset pricing models with
investment.
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group of parameters (for example, volatility) is calibrated outside of the model

with empirical data.19 The remaining parameters are adopted from the studies

as explained below. As a caveat, I acknowledge that some of the parameters

are selected ad hoc. However, as a simple robustness check, I vary each of the

parameters within a reasonable range. This ensures that the results remain

signi�cant as long as real options constitute a nontrivial part of the �rm value.

Simulation parameters are summarized in the table below.

Parameter Notation Determination Value

Drift of the demand shock � adopted 1%

Initial value of the shock X0 normalized 10

Proportional cost of investment P adopted U [10; 100]

Demand elasticity � adopted U [:1; :2]

Risk-free rate r empirical 5%

Individual tax rate � i adopted 1%

Corporate tax rate � c normalized 35%

Volatility (idiosyncratic) �i empirical empirical

Volatility (market) �i�m empirical empirical

Fixed Costs of Investment F min. or max. f0; 1g
Time horizon, in quarters T normalized 300

I use empirical data from COMPUSTAT and CRSP to calibrate the volatil-

ity parameters. To be included in a sample, the �rm must have Assets (item

6), Tangible Assets (8), Long Term Debt (9), Interest Expense (15), Income

(18), Share Price (24), Number of Shares (25), Adjustment Factor (27), Current

Liabilities (34), Retained Earnings (36), Invested Capital (37), Extraordinary

Items (48), Capital Expenditures (128), Total Liabilities (181), Fiscal Year Clos-

ing Price (199), and SIC code (324). I exclude utilities (SIC: 4900-4949) and

�nancial institutions (6000-6999). Year-end market value is computed as the

price per share times the number of shares; the book value of debt is computed

as Long term debt plus Current Liabilities.

The resulting sample consists of 18; 7501 observations for 20; 975 �rms. The

typical �rm in this sample has a market leverage ratio with mean 0:292, mini-

mum 0 and maximum :999. Annual time series standard deviations vary greatly

across �rms, averaging 0:133. Matching the large size of this sample in the

19 I do not use, of course, the calibrated parameters, such as the volatility of cash �ows, to
gauge how well the calibrated model links with empirical data.

21



simulations is problematic because of limited computing power. Therefore, I

simulate the smaller economies of 1000 �rms that have the attributes of the em-

pirical sample. To ensure that this sample is representative, I randomly pick the

volatilities for the simulations from the larger pool of the empirically observed

volatilities.

The distribution of the �rms�systematic risk (represented by �) is obtained

by running OLS one factor regression for all �rms in the empirical sample on

the value weighted index as a proxy for market. Distribution of the cash �ow

volatilities is constructed using standard deviations of the equity returns. I

adopt the assumption that the volatility of the debt returns is negligible com-

pared to the volatility of the equity returns, and that the correlation between

the two is close to zero20 . The standard deviation of the cash �ows (as opposed

to equity) is estimated as � = (1� L)�equity, where L is a mean leverage ratio
(over all quarters and all �rms) from the COMPUSTAT sample. Finally, the

idiosyncratic volatility is calculated by subtracting the market component from

the total volatility:

�i =

q
�2 � �2m�2m (30)

As a robustness check, I verify that the results are independent ( at least qual-

itatively) of particular method of selecting the heterogeneous parameters. For

example, I obtain similar results by using normally distributed total volatilities.

The initial shock value X0 that has a trivial proportional e¤ect on the val-

uation is normalized to 10 for all �rms. This translates into the initial value of

assets V0 = X0

r�� = 250. Following Hennessy and Tserlukevich (2005), I assume

that cash �ows grow at the rate (net of depreciation) � = 1% and the risk-free

rate is equal to r = 5%. I require the tax rate on the individual interest income

to be positive (as explained in the assumptions in Section 1). However, I select

a very small value � i = 1% for the simulations and check that the results are

robust to the higher rate. This is done for two reasons. First, I follow many

studies that use a very small or zero rate. Second, by using small individual

income tax rate I prove that the tax assumptions play no other role in the model

than to create a bene�t to debt. I assume that the proportional investment cost

and the elasticity of demand are drawn from the uniform distributions on the

domains [10; 100] and [:1; :2], respectively.21

For the benchmark model, I simulate 400 quarters of data for �rms, remov-

20This is consistent with the model assumption that debt is riskless.
21 In this, I loosely follow the heterogeneity assumptions used in Strebulaev (2005).
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ing the �rst 100 quarters to minimize the impact of the initial conditions on

the results. During each simulation, I run the set of cross-sectional tests on

the resulting panel and save the coe¢ cients and Fama-MacBeth T-statistics.

Simulations are repeated 1000 times, producing a sampling distribution for the

statistics of interest. Following Berk, Naik, and Green (1999) and Strebulaev

(2005), I average the resulting statistics over the simulations (population mean),

and examine the distribution of the coe¢ cients across simulated economies. By

observing this distribution, one can gauge whether a model with real frictions

can give rise to the coe¢ cients commonly found in empirical work.

In regressions I follow the literature and use the market (as opposed to

book) leverage ratios. The book value of equity is a poor re�ection of the �rm�s

pro�ts and asset value. Welch (2004) emphasizes that book equity value has

little meaning, calling it a plug number used to balance the right- and lefthand

sides of the balance sheet. Myers (1977) considers market leverage ratios �more

pertinent�.22 .

De�nition 1 The Market Leverage Ratio is de�ned as a ratio of the book value
of debt to the sum of book value of debt and the market value of equity:

LRt =
Dt

Dt + St
(31)

Descriptive statistics for the leverage ratios in simulated economies are sum-

marized in the Table 2. The leverage ratio is 45% in the case without �xed

costs and 73% in the case with �xed costs. This result is higher than the typ-

ical average US leverage ratio of about 30%.23 This is not a surprising result

because my assumptions rule out distress costs. As an example, imagine that

�rms (e.g., due to possibility of bankruptcy) adopt the strategy of keeping the

interest payments capped at half of the revenues. In this case, the model will

produce leverage ratios that are about twice as small. Also, observe that the

average leverage ratio is larger in the case with �xed costs. This is also expected

because the growth options are, on average, less valuable when the real frictions

are larger.

In addition to the leverage ratio properties, Table 2 also provides statistics

22Myers (1977) says: �Anyone familiar with modern �nance theory considers ratios based on
market values much more pertinent. Yet there is an element of sense in (using book leverage).
It is not that the book values are more accurate than stock market values, but simply that
they refer to assets already in place.�
23The leverage ratios reported by di¤erent studies vary due to the di¤erence in de�nitions

and the sample selection. Most common estimates lie between 2:9 and 3:5.
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on the average investment. For each �rm, the average investment is calculated

as the total investment divided by the number of quarters with non-zero invest-

ment. The average investment �gures for zero and non-zero �xed costs cases

are 0:703 and 0:454, respectively. While in the former case, �rms invests in

small increments, the average aggregate amount invested per quarter exceeds

the aggregate investment in the latter case. This is because aggregate invest-

ment is larger in the �rm with more valuable growth options. The �xed costs

are creating infrequent bursts of investment while reducing the total amount

invested in each period.

4.2 Cross-Sectional Regressions

In this section, I investigate the cross-sectional properties of the model. That

is, I use the model to generate an arti�cial panel of �rms. I then compare

the model-generated moments and regression coe¢ cients with those observed in

real-world data.

In all of the regressions, I employ the Fama-MacBeth (1973) method to cal-

culate the robust standard errors. Fama and French (2002) highlight a serious

problem in the traditional empirical leverage literature: understated standard

errors that may cloud statistical inference. The problem arises due to correla-

tions in residuals across �rms and across years. Following their method, I use

the average slopes from year-by year cross-sectional regressions and use the time

series of the standard errors to draw inferences. Average slopes obtained by this

method are identical to the slopes from a single panel regression commonly used

in the literature. The t-statistics are average slopes divided by the standard er-

ror, de�ned as the time series standard deviation divided by the square root of

the number of observations. To account for the autocorrelation in residuals, an

additional problem noted by Fama and French (2002), I use the higher cut-o¤ to

gauge the statistical signi�cance of t-statistics. I average the slope coe¢ cients

and t-statistics obtained by this method over 1000 simulations and provide the

distribution statistics of this sample.

The simple theory of capital structure predicts a positive relationship be-

tween earnings and leverage, contradictory to the empirical evidence. Strebu-

laev (2005) and Leary and Roberts (2005) �nd that this negative relationship

can result from infrequent leverage adjustment in the presence of �nancial trans-

actions costs. I run the same regression for the model where transaction costs

are explicitly set to zero. Below is a de�nition of the pro�tability of the �rm
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used in the cross-sectional tests:24

De�nition 2 Pro�tability �t is de�ned as a sum of earnings and an increase

in book value of assets divided by the book value of assets:

�t =
earningst + dBt

Bt�1
(32)

I run the following cross-sectional regression of market leverage on pro�tabil-

ity and control variables.

LR = �0 + �1� + �2� + �3�+ " (33)

Results are summarized in Table 3. The �rst column gives the coe¢ cients and

t-statistics calculated with the Fama-MacBeth method and averaged using 1000

simulations. The columns 2 through 5 describe the distribution of these statistics

across the simulations, including the standard deviation and percentiles. The

coe¢ cients on the pro�tability are negative and signi�cant for two cases of the

model even after Fama-French adjustment for autocorrelation. Of particular

interest is the fact that the average estimated coe¢ cient on the pro�tability

variable is �0:6, with the average t-statistic of �8:7 for the base case with
no �xed costs. Similarly, I document the average coe¢ cient of �0:13 and the
average t-statistic of �13:3 in the case with �xed costs. Intuitively, the leverage-
pro�tability correlation is larger for the case without �xed costs since investment

options are more valuable and leverage �uctuations are more signi�cant in the

�inaction�region.

These results are broadly consistent with existing empirical evidence. For

example, Fama and French (2002) and Baker and Wurgler (2002) report coe¢ -

cients around �0:6. Figure 4A displays the histogram with the distribution of

coe¢ cients in the simulation sample. It is easy to see from the histogram that

the empirical coe¢ cient of �0:6 can be generated by the model with irreversible
investment. It is less likely, however, that a coe¢ cient of this size can be gen-

erated by the model with �xed costs. For example, as Table 3 shows, less than

1% percent of simulations produce coe¢ cients below �0:2.
It is easy to see the source of the negative correlation in my model. Observe

that the �rm value is a sum of assets in place V and the value of growth options

24This de�nition is used, for example, by Strebulaev (2005). The term dBt in the numerator
is suppose to account for the di¤erence between earnings and free cash �ows. I have also
checked my results using cash �ows adjusted by assets.
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GO. The leverage ratio is a ratio of debt to the total value of assets:

LRt =
Dt

Vt +GOt
(34)

Let us see how the leverage ratio is a¤ected by positive pro�tability shock X !
�X; � > 1: The shock will have a proportional e¤ect on the revenues from

the assets in place and on the debt value that depends on revenues. However,

the value of the option is more sensitive to the shock and will grow at a faster

(exponential) rate, as was demonstrated in Section 1. In particular, it follows

from equations [3] and [16] that:

Installed Capital Value Vt(�X) = �Vt(X) (35)

Debt Value Dt(�X) = �Dt(X)

Growth Options Value GOt(�X) � (�X)b = �bXb

Consequently, the leverage ratio declines with positive shock to the pro�tability

as long as the option is not exercised:

LRt(�X) =
�Dt

�Vt + �
bGOt

< LRt(X) (36)

When the �rm invests (exercising the option), it issues new debt, and the rela-

tionship between pro�tability and leverage reverses. However, since most �rms

do not invest at the same time, the �rst e¤ect dominates in the cross section. It

is important to stress that the amount of debt in my model is instantaneously

adjusted and is always optimal. In this sense, my explanation for cross-sectional

e¤ects is di¤erent from the one o¤ered by the transaction cost models. There,

debt adjustment is constrained while the �rm value is allowed to change with

pro�tability.

Next, I follow Fama and French (2002) and Shyam-Sunder and Myers (1999)

and investigate whether leverage is mean reverting in the simulated panel of

�rms. This empirical regularity is often seen as evidence that management

sporadically attempts to move the leverage ratio back to some �target� once

the bene�t exceeds the �nancing costs. However, there are no �nancial frictions

in my model since I allow for instantaneous and free leverage adjustment. I

run a cross-sectional regression similar to one used by Fama and French (2002),
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using average leverage ratio as a proxy for the �target.�

LRt+k � LRt = �0 + �1LRt + �2LR+ �3� + �4�+ " (37)

Here LRi is a time series mean of the leverage, and LR
t+k
i �LRti is a change in

leverage from period t to period t+ k. The negative coe¢ cient �1 and positive

coe¢ cient �2 indicate a mean reversion. Table 4 summarizes the �ndings: the

�rst column is for k = 10 (two and a half years), and the last two columns are

for k = 5 and k = 20. The regression coe¢ cients consistently show the evidence

of mean reversion. I �nd that the mean coe¢ cient on the lagged leverage is

�0:18 and �0:16 for the model without and with �xed costs. respectively. The
coe¢ cient on LRi for all cases and horizons is similar in magnitude and opposite

in sign. I con�rm that the simpli�ed regression on the di¤erence LRt � LR
produces a very close estimate of the coe¢ cient. This means that the di¤erence

between the past leverage and its �target�has the most explanatory power for

the change in leverage. Next, I investigate the mean reversion of the leverage at

di¤erent horizons. The absolute value of the coe¢ cient decreases with horizon.

For example, I document coe¢ cients �0:09 (no �xed costs) and �0:07 (�xed
costs) for k = 10.

The magnitude of the mean reversion coe¢ cient falls within the bounds doc-

umented in empirical studies. Fama and French (2002) �nd that the coe¢ cients

range from �0:07 to �0:18 for di¤erent samples. Panel B of Figure 4 provides
the distribution of the coe¢ cients in simulated economies. I �nd that both vari-

ations of my model can provide the estimates that are reasonably close to the

empirical values.

The mean reversion arises naturally because of the �uctuations in the value

of the growth options. For example, low leverage is an indicator of the high ratio

of the growth options to the assets in place. Therefore, I argue that the leverage

ratio is more likely to increase than decrease, regardless of whether subsequent

demand shocks are positive or negative. This is because the positive shocks lead

to the exercise of the growth options and to additional debt issuance, while the

negative shocks make the growth options less valuable and the leverage ratio

larger.

Finally, I document that in the simulated panel of �rms the leverage depends

on the history of �rm�s pro�tability. To investigate the relationship between

leverage and past stock returns, I run a test similar to the one described in
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Welch (2004). The independent variables are Implied Debt Ratio (or IDR),

one quarter lagged leverage ratio as well as two control variables: cash �ows

volatility (�) and elasticity of demand (�):

LRt+li = �0 + �
l
1(IDR

l) + �2LR
t+l�1 + �3� + �4�+ " (38)

Implied Debt Ratio IDRt;t+l is de�ned similar to Welch (2004) as a market

leverage of the �rm that makes no attempts to adjust in response to equity

shocks over l periods:

IDRt;t+l =
Dt

Dt + St(1 + rt;t+l)
(39)

Here, rt;t+l is equity return for the period (t; t + l). In the cross-sectional re-

gression that controls for the last quarter leverage, the IDRt;t+l variable should

not have any impact on the �rm�s present leverage ratio provided that the �rm

adjusts often. However, I �nd that the coe¢ cient on the implied debt ratio

is statistically signi�cant in the regressions even if the last quarter leverage is

included to pick up the leverage persistence. The (untabulated) results are very

similar for the investments model with and without �xed costs. Using the data

from the model without �xed costs, I document the IDR coe¢ cient of 7% for a

4 quarter horizon (1 year), and about 5% for 10 quarters. Welch (2004) reports

a coe¢ cient in the order of 1:0 for a one year horizon.

Intuitively, the lagged pro�tability a¤ects the number of growth options

that are exercised and, therefore, determines current production capacity. For

example, a formerly pro�table, large �rm experiencing a negative shock will have

a high leverage ratio since it operates with excessive capacities and the growth

options are nearly worthless. It is not surprising that the size of coe¢ cients is

di¤erent in magnitude. Firms in my model do adjust their leverage in response

to the changes in equity value. But the di¤erence is that the optimal debt

increases (decreases) to match the increasing (decreasing) revenues from assets

in place, ignoring the growth options. Therefore, the IDR variable can explain

some of the variation in current leverage, but cannot explain it all.

4.3 Sources of External Financing

When �rms go external for funds, debt tends to be the primary source. Leary

and Roberts (2004) document that 22:5% of �rms in his sample relied on debt,
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compared to 9:7% and 5:5% that relied on equity or dual issues, respectively.

Shyam-Sunder and Myers (1999) show that �nancing gap is matched almost

dollar-for-dollar by new debt in their sample of large �rms during the 1970s and

1980s. Chen and Zhao (2005) investigate the active issuance decisions and �nd

that �rms primarily issue debt.

This is not to say that corporate borrowing is equal to capital expenditures.

In recent data, capital expenditures far exceed borrowing. In 2004, for example,

U.S. non-farm, non-�nancial corporations had $900 billion in capital expendi-

tures and obtained $231 billion through credit markets (Board of Governors

2005, Table F.102). Net equity issues are negative for the same year at �$157
billion25 . This implies that the largest source of �nancing investment in U.S.

data is retained earnings.

These stylized facts are often attributed to informational asymmetries, as

in Myers and Majluf (1984) and Myers (1984). However, I hypothesize that

real frictions can explain the �rms� reliance on debt as their primary source

of external funds. Intuitively, expanding �rms issue more debt to shield the

increasing cash �ows, and use the proceeds to �nance expansion. In fact, the

debt �otations often exceed the �nancial gap.

Just as in pecking order literature, when investment exceeds internal re-

sources, �rms turn to external �nancing; and when investment exceeds the

proceeds from selling new debt, �rms turn to equity (assuming it is cheap).

Therefore, my model implies that �rms may issue equity in the absence of debt

capacity constraints or need for �nancial slack.26 Fama and French (2005) and

Leary and Roberts (2004) document that year-by-year equity decisions of more

than half of their samples violate the pecking order.

However I �nd that in the model, under the selected parameters, the proceeds

from issuing new debt at investment are always su¢ cient to cover the cost of

investment. This is partially because the model does not allow for the �time to

build.�Since the capital is installed instantaneously and immediately produces

cash �ows, the �rm sells signi�cant quantity of debt instantaneously. Modeling

the extension that allows for the delay between investment and increase in cash

�ows would result in the investment �nanced, in the model, with both debt and

equity.

25Fama and French (2005) point out that �rms often issue equity through channels that
do not a¤ect the cash �ow statements (e.g., employee option grants) and, as such, may be
excluded from the net issues measure.
26See Lemmon and Zender (2002) and Leary and Roberts (2004) for a discussion of the

�nancial slack and its role in the optimal capital structure.
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My results allow me to speculate on the reason why debt is used more then

equity; however, the model is ill-suited to make a clear prediction for the choice

between internal and external �nancing. In my model, where savings can be

viewed as a �negative debt�, it would be suboptimal to accumulate cash. Pre-

cautionary savings have no value since debt �nancing is cheaply available and, as

Auerbach (2001) demonstrates, cash reserves are tax disadvantageous. There-

fore, the extent of my claim based on the above considerations is that the �rms

have a preference for debt when turning to external sources to �nance the in-

vestment.

5 Conclusion

This paper developed a dynamic model of optimal �nancial structure in the

presence of real frictions: �xed costs and irreversibility of capital investment.

In order to abstract from existing theories resting upon transactions costs, the

model explicitly assumes free instantaneous capital structure rebalancing. The

only MM assumption violated in the model is the existence of a tax bene�t

to debt. Despite its parsimony, the model generates predictions consistent with

empirical facts. In the simulated economy, leverage is mean reverting, with grad-

ual and lumpy adjustments. Pro�tability is negatively correlated with leverage,

and leverage depends on the path of past stock returns.

I con�rm this by running a number of capital structure tests using model-

generated data. I �nd that estimated coe¢ cients are similar to results docu-

mented in the literature. It appears that the model without �xed costs of invest-

ment (as opposed to the model with �xed costs) does a better job of explaining

the empirical data since the size of the coe¢ cients is closer to the empirical

estimates. Additionally, I �nd that the model is broadly consistent with both

the timing and mix of external securities issued by �rms. In particular, when

�rms go external for funds, debt tends to be the primary source.

The framework can be naturally extended in a number of ways. Most im-

portantly, the model can be extended to incorporate transactions costs, which

are surely features of the real-world environment facing �rms. The results in my

paper, taken in conjunction with models emphasizing transactions costs, suggest

that structural models of �nancing decisions can indeed have signi�cant predic-

tive power. By ignoring real frictions, the literature has perhaps understated

the power of structural models to resolve the �capital structure puzzle.�
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Appendix A: Valuation of Claims

A contingent claim generating an instantaneous linear �dividend� equal to mX + k,
whereX follows Geometric Brownian Motion,m and k constants, satis�es the following
ODE.

1

2
�2X2V 00 (X) + �XV 0 (X)� r(1� � i)V (X) +mX + k = 0: (40)

The particular solution is:

V (X) = AXa +BXb +
mX

r(1� � i)� �
+

k

r(1� � i)
; (41)

where a < 0 and b > 1 solve the quadratic equation:

1

2
�2Y 2 +

�
�� 1

2
�2
�
Y � r(1� � i) = 0: (42)

Unknown constants (A;B) are determined by appropriate boundary conditions. For
all contingent claims that are considered in this paper A = 0 because a < 0 and the
value of the claims is required to be �nite at X = 0. For example, equity S(X) is a
claim on instantaneous dividend:

E(
K�dX

r
) =

�K�X

r

Therefore:

S(X) = BXb +
�XK�

r (r(1� � i)� �)
(43)

Similarly, for the Debt claim that pays constant coupon C:

S(X) =
C

r
(44)

The upward hitting claim Gu(X) (state price) that pays nothing continuously pays
$1 upon Xt �rst passage to X1 > X0 is subject to the following condition Gu(X1) =
BXb

1 = 1. Therefore:

Gu(X) =

�
X1

X

��b
Gu(X) takes a particular simple form when X� = X0:

Gu(X0j X� = X0) = 
�b

Using this result, I can write the value to equity dividend received until X reaches a
particular threshold. For example, the value of dividends accumulated in X < X1 can
be found as a di¤erence between the value of perpetual dividend at X0 and the value
of perpetual dividend at X1 times the state price:

S(X0j X0 < X1) =
�X0K

�

r (r(1� � i)� �)
�Gu(X0jX1)

�X1K
�

r (r(1� � i)� �)
(45)

In particular, when X1 = X0 this is simply:

S(X0j X1 = X0) =
�XK�

r (r(1� � i)� �)
(1� 1�b) (46)
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These results are used throughout the paper and in the proof of Proposition 1.

Appendix B: Calculations for single option case:.

First, rewrite the equity value at the investment threshold as (value to shareholders
from assets in place)+(value of the additional capital installed at X�)-(cost of installing
this capital):

S(X�:K) =
�X�K

�

r(r(1� � i)� �)
+
X�(K

�
� �K�)(1� � i)

(r(1� � i)� �)
�K�P (47)

Substitute into value matching [14] and smooth pasting [15] conditions. Then, simplify:

BXb
� =

X�(1� � i)
(r(1� � i)� �)

�
(1� � i)�X�

P (r(1� � i)� �)

� �
1��

(48)

� X�K
�(1� � i)

(r(1� � i)� �)
� P

�
(1� � i)�X�

P (r(1� � i)� �)

� 1
1��

BbXb
� =

X�(1� � i)
r(1� � i)� �

�
1

1� �

��
(1� � i)�X�

P (r(1� � i)� �)

� �
1��

� X�K
�(1� � i)

(r(1� � i)� �)
�
�

P

1� �

��
(1� � i)�X�

P (r(1� � i)� �)

� 1
1��

System [48] can be solved for two unknowns: X� and B. The critical shock value X�
is found by multiplying the �rst equation times b and subtracting the second equation.

X� =
P (r(1� � i)� �)

(1� � i)�
K1��

�
1� b

b� 1
�

1

���1
�

(49)

Next, multiply the �rst equation times 1
1�� and subtract the second equation, this

gives expression for constant B:

B =
(1� � i)�K�

(r(1� � i)� �) ((b� 1)� �b)
� (50)"

P (r(1� � i)� �)K1��

(1� � i)�

�
1� �b

(b� 1)

���1
�

#1�b

Then growth option value (see Appendix A) is equal to GO(X;K) = BXb; substituting
here constant B from above produces value of the option in [9].

The last step is to show that the exercise policy is consistent with real option
literature that predicts a speci�c linear relationship between the bene�ts and costs of
irreversible investment. In the above case, the bene�ts from exercise are derived from
an increase in capital from K to K�:

V alue =
X(K�

� �K�)(1� � i)
r(1� � i)� �

=
(1� � i)X
r(1� � i)� �

 �
(1� � i)�X�

P (r(1� � i)� �)

� �
1��

�K�

!
(51)
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While the cost of purchasing new capital is:

Cost =

�
(1� � i)�X�

P (r(1� � i)� �)

� 1
1��

P (52)

Given optimal threshold value X� found above, this implies that:

V alue =

�
b

b� 1

�
Cost where

�
b

b� 1

�
> 1 (53)

Appendix C: Incremental investment case.

Substitute the value of the �rm [19] into the system [20]:

�(1� � i)K��1x

r(1� � i)� �
+B0(K)xb = P (54)

�(1� � i)K��1

r(1� � i)� �
+ bB0(K)xb�1 = 0

Solve this system for x(K) and B0(K). This is done, for example, by multiplying the
second equation times x and subtracting the �rst equation:

B0
K(K) = �

�
b� 1
P

�b�1�
(1� � i)�K��1

b(r(1� � i)� �)

�b
(55)

x(K) =

�
b

b� 1

�
(r(1� � i)� �)P
(1� � i)�K��1 (56)

B(K) found by integration on [�1;K] or, equivalently, by integration on [K;1] with
a negative sign:

B(K) = �
Z 1

K

B0
K(K)dK =

�
�(1� � i)

b(r(1� � i)� �)

�b
K(��1)b+1

(1� �)b� 1

�
b� 1
P

�b�1
In the integral, (1� �)b� 1 > 0 is required for convergence. Substituting B(K) back
into [19] gives:

A(K;X) =
(1� � i)K�X

r(1� � i)� �
+

�
b� 1
P

�b�1�
�(1� � i)

b(r(1� � i)� �)

�b
K(��1)b+1

(1� �)b� 1X
b (57)

Finally, I write equity and debt claim values separately. Value of the debt is the same
as in the single option case. The value of equity is found as a di¤erence between the
total �rm value and the debt value:

D(K;X) =
K�X

r
(58)

E(K;X) =
�XK�

r(r(1� � i)� �)
+

�
b� 1
P

�b�1�
�(1� � i)

b(r(1� � i)� �)

�b
K(��1)b+1

(1� �)b� 1X
b

When X reaches the barrier x(K), the new (larger) capital is installed. It is also
referred to in the text as a "desired" capital because this is the optimal amount of
the irreversible investment that the �rm would like to make conditional on current
value of X. The optimal amount of the capital at the barrier is found by inverting the
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expression for barrier x(K):

K�(x) =

�
x
(b� 1)�(1� � i)
b(r(1� � i)� �)P

� 1
1��

(59)

For the simulations, I �rst compute the capital [59] and then �nd the actual amount
of the capital by requiring the adjustments in the capital to be positive:

Kt+1 = Kt +max(0;K
�(Xt)�Kt) (60)

K(X) is not, in general, di¤erentiable function.

Appendix D: Case with Fixed Costs

Proof. Proposition 2:
The proof builds on the induction argument. Assume �rst that the strategy is followed
from period N , that is Kn+1 = �Kn and Xn+1 = Xn for 8 n � N , and  and � are
solutions to equity maximization problem. The assumption that parameters  and �
remain the same from TN+1 makes no di¤erence if N is large enough, N � 1. At date
TN , the �rm chooses optimal capital by maximizing the value of issued claims minus
the investment costs:

KN = argmax

�
S(XN ;KN ) +

XNK
�
N

r
� PKN

�
(61)

= argmax

0BB@
XNK

�
N (1��i)

r(1��i)��
� PKN+

�b
�
XN+1K

�
N+1(1��i)

r(1��i)��
� XN+1K

�
N (1��i)

r(1��i)��
� PKN+1

�
+�2b

�
XN+2K

�
N+2(1��i)

r(1��i)��
� XN+2K

�
N+1(1��i)

r(1��i)��
� PKN+2

�
+ :::

1CCA =

= argmax

0BB@
XNK

�
N (1��i)

r(1��i)��
� PKN+

�b
�
��

XNK
�
N (1��i)

r(1��i)��
� XNK

�
N (1��i)

r(1��i)��
� �PKN

�
+�2b

�
2�2�

XNK
�
N (1��i)

r(1��i)��
� 2�� XNK

�
N (1��i)

r(1��i)��
� �2PKN

�
+ :::

1CCA =

= argmax

�
XNK

�
N (1� � i)

r(1� � i)� �
R(; �)� PKNC(; �)

�
Here I used conjectures about the continuation strategy at n > N . R(XN ; ; �) and
C(XN ; ; �) are Revenue and Cost constants independent of KN , in particular:

R(; �) = 1 + 1�b (�� � 1) + 2�2b�� (�� � 1) + ::: = 1 + (�� � 1)1�b
1� 1�b�� (62)

C(; �) = 1 + �b�2 + �2b�4 + ::: =
1

1� �b�

Via FOC, optimal capital solves:

KN =

�
XNR(; �)�(1� � i)

(r(1� � i)� �)PC(; �)

� 1
1��

(63)
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Similarly, the optimal amount of capital installed in the next period is:

KN+1 =

�
XN+1R(; �)�(1� � i)
(r(1� � i)� �)�PC(; �)

� 1
1��

(64)

It immediately follows that � = 
1

1�� since XN+1 = XN by assumption. What is
left to show is that XN = XN�1 for 8 n < N . Recall that stochastic stopping time
XN maximizes equity claim value at TN�1(after debt has been sold already). De�ne
� through XN � �XN�1, and write the maximized expression as:

S(XN ;KN ; �) =
�XNK

�
N (1� � i)

r(r(1� � i)� �)
+ (65)

�b�

�


1
1��
�

XNK
�
N (1� � i)

r(1� � i)� �
� �

XNK
�
N (1� � i)

r(1� � i)� �
� 

1
1��
� PKN

�
+

�b� �b
1

1��
�

�


1
1��

XNK
�
N (1� � i)

r(1� � i)� �
� XNK

�
N (1� � i)

r(1� � i)� �
� 

1
1��PK1

N

�
+ :::

=
XNK

�
N (1� � i)

(r(1� � i)� �)
R�(; �)� PK1

NC
�(; �)

with notation:

R�(; �) =
�

r
+ �b�

�


1
1��
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�
+ (�)

�b
1

1��
�

�


1
1�� � 

�
+ ::: (66)

and

C�(; �) = �b�

�


1
1��
�

�
+ (�)

�b
1

1��
�

�


1
1��

�
+ ::: (67)

Similarly, for the next period:

S(XN ;KN ; �) =
XN+1K

�
N+1(1� � i)

(r(1� � i)� �)
R�(; �)� PKN+1C

�(; �) = (68)

= 
1

1��
��

�
XNK

�
N (1� � i)

(r(1� � i)� �)
R�(; �)� PKNC

�(; �)

�
Where �� is a result of maximization from the previous round and is treated as

�xed. The last expression produces identical maximization problem, which is what we
wanted to show. I conclude that � =  for all periods before N , that is, Xn+1 = Xn

for 8 n 2 f1; 2; :::1g.

Proof. Proposition 3.

The optimal capital K0 is found by maximizing the initial value of the �rm (equity
plus debt) minus costs of installing the capital. It is easy to see that this is equivalent
to maximizing the value of assets in place net of the investment costs, ignoring the
future growth options value

K0 = argmax
K0

�
S(X0) +

X0K
�
0

r
� PK0

�
= argmax (V (X0)� PK0) (69)
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The present value of the payout is given by (see Appendix A):

V (X0) =
X0K

�
0 (1� � i)

(r(1� � i)� �)

�
1� 1�b

�
(70)

Applying the F.O.C. to the expression above, the optimal capital that is installed at
data zero is:

K0 =

�
(1� � i)X0�

P (r(1� � i)� �)
(1� 1�b)

� 1
1��

(71)

The initial investment in the perpetual investment case is smaller by the factor (1 �
1�b) < 1 than the initial investment in the single option case. Intuitively, the �rm
now has an opportunity to increase the capital in the future as needed.

It follows from the proof of Scaling theorem that equity value in the next round
is related to the corresponding value in the previous round as: S(X1) = 

1
1�� S(X0).

This gives a value of initial equity as a solution to the recursive equation; however, the
same solution is obtained by direct method, such as evaluation of the in�nite series
used in proof of Prop: 1. Equity S(X0) is a value of all dividends to shareholders
on before X reaches X1 plus discounted new equity and special dividend (the latter
is positive if the proceeds from debt sale exceed the investment needs, and negative
otherwise) :

S(X0) = (dividend stream before X1)+Gu(X)(
1

1�� S(X0)+ special dividend) (72)

Denoted Gu(X) is the value of the claim at X that pays $1 when the shock reaches
the new level X� = X0. I have shown in Appendix A that Gu(X0) = 

�b. Then the
present value of dividends received before process Xt hits X1 is :

(dividends before X1) =
�X0K

�
0

r(r(1� � i)� �)

�
1� 1�b

�
(73)

The �special dividend� is paid when the proceeds from new debt issued at expansion
exceeds the cost:

special dividend=(
1

1�� � )X0K
�
0

r
� PK0 (74)

When put together, this produces the recursive equation for S(X0):

S(X0) =

�
�X0K

�
0

r(r(1� � i)� �)
�Gu(X0)

X0K
�
0 (1� � i)

(r(1� � i)� �)

�
+ (75)

Gu(X0)

�


1
1�� S(X0) + (

1
1�� � )X0K

�
0

r
� PK0

�
and solving yields:

S(X0) =

�X0K
�
0

r(r(1��i)��)
+ �b

h


1
1�� X0K

�
0

r
�  X0K

�
0

(r(1��i)��)
(1� � i)� 

1
1��PK0

i
1� 

1
1���b

(76)

The scaling parameter  is determined by maximizing the equity claim once the debt
is already in place. The usual method of �nding  involves writing the value match-
ing and smooth pasting conditions at the optimal stopping time. However, the direct
maximization is equivalent in this case because the �rm is engaged in �rst-best maxi-
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mization. Rewrite S(X0; ):

S(X0) = X0K
�
0

0@ �
r(r(1��i)��)

+ 
1

1���b

r
�

1�b

(r(1��i)��)
(1� � i)� 

1
1���b PK

1��
0
X0

1A�1�  1
1���b

��1
(77)

Substitute the optimal capital expression:

K0 =

�
(1� � i)X0�

P (r(1� � i)� �)
(1� 1�b)

� 1
1��

(78)

then:

 = argmax

�
�+ 

1
1���b(r(1� � i)� �)� 1�b(1� � i)r � 

1
1���b (1��i)�r

1
(1� 1�b)

�
�
1� 

1
1���b

�
(1� 1�b)�

�
1��

(79)

Proof. Corollary 1.
The initial value of the equity S(X0) is derived as a part of the proof for the previous
proposition. Generalized expression for the equity value at any point X after N
increases in capital can be found from the following observations. After N adjustments,

the amount of capital is K0
N
1�� . The capital will be increased next time the �rm

invests at N+1X0 to new level of K0
N+1
1�� . Values of equity and debt at this point

can be written as
�


1
1��

�N+1
multiples of the initial claim value.

S(X;N) =

"
�X(K0

N
1�� )�

r(r(1� � i)� �)
�
�
N+1X0

X

��b �
N+1X0

�
(K0

N
1�� )�(1� � i)

(r(1� � i)� �)

#
+(80)"�


1

1��
�N+1�N+1X0

X

��b�
S(X0) +

X0K
�
0

r
� PK0

�#
=

[assets in place] + [value of unexercised options]

That is, simpli�ed:

S(X;N) =
�X(K0

N
1�� )�

r(r(1� � i)� �)
+ (81)�

N+1X0

X

��b "

N+1
1��

�
S(X0) +

X0K
�
0

r
� PK0

�
�
�
N+1X0

�
(K0

N
1�� )�(1� � i)

(r(1� � i)� �)

#
=

Value of debt after N expansions is:

D(X;N) =
X(K0

N
1�� )�

r
(82)

The expressions above for debt and equity value are used in the simulations (case with
�xed costs only)

37



References

[1] Auerbach, A., 2001. Taxation and Corporate Financial Policy, Working

Paper, NBER.

[2] Abel, A.B., Eberly, J.C. 1994. A Uni�ed Model of the Investment Under

Uncertainty. American Economic Review (84), 1368-1384.

[3] Baker, P.M., Wurgler, J., 2002. Market Timing and Capital Structure. The

Journal of Finance 57(1), 1-32.

[4] Barclay, M.J. Morellec, E., Smith, W. 2004. On the Capacity of the Growth

Options. Journal of Business, Forthcoming.

[5] Berens, J.L. and C.L. Cuny, 1995. In�ation, Growth and Capital Structure.

Review of Financial Studies (8), 1185-1208.

[6] Berk, J.B., 1999. A Simple Approach for Deciding When to Invest. The

American Economic Review 89(5), 1319-1326.

[7] Berk, J.B., Naik, V., Green, R.C., 1999. Optimal Investment, Growth Op-

tions and Security Returns. The Journal of Finance 54(5), 1553-1607.

[8] Black, F., Scholes, M., 1973. The Pricing of Options and Corporate Liabil-

ities. Journal of Political Economy 81, 637-659.

[9] Board of Governors of the Federal Reserve System, 2005, Flow States:

Flows and Outstandings, First Quarter 2005, June 9.

[10] Brennan, M.J., 1986. Costless Financing Policies under Asymmetric Infor-

mation. University of British Columbia Working Paper.

[11] Brennan, M.J., Schwartz, E.S., 1984. Optimal Financial Policy and Firm

Valuation. Journal of Finance 39(3), 593-607.

[12] Chen, L., Zhao, X., 2005. On the Relation between the Market-to-Book

Ratio, Growth Opportunity, and Leverage Ratio. Michigan State University

working paper.

[13] Cooper, R.W., Haltiwanger, J.C., 2005. On the Nature of Capital Adjust-

ment Costs. Working Paper, University of Texas at Austin.

[14] Dixit, A., 1993. The Art of Smooth Pasting. Harwood Academic Publishers

GmbH.

38



[15] Dixit, A.K., Pindyk, R.S., 1994. Investment Under Uncertainty. Princeton

University.

[16] Dumas, B., 1991. Super Contact and Related Optimality Conditions. Jour-

nal of Economic Dynamics and Control 15, 675-685.

[17] Fama, E.F., French, K.R., 2002. Testing Trade-O¤ and Pecking Order Pre-

dictions about Dividends and Debt. Review of Financial Studies 15(1),

1-33.

[18] Fama, E.F., French, K.R., 2005. Financing Decisions: Who Issues Stock?

Journal of Financial Economics 76, 549-582.

[19] Fama, E.F., McBeth, J.D., 1973. Risk, Return and Equilibrium: Empirical

Tests. Journal of Political Economy 81, 607-636.

[20] Fischer, E.O., Heinkel, R., Zechner, J., 1989. Dynamic Capital Structure

Choice: Theory and Tests. Journal of Finance 44(1), 19-39.

[21] Goldstein, R., Ju, N., Leland, H., 2001. An EBIT-Based Model of Dynamic

Capital Structure. Journal of Business 74(4), 483-511.

[22] Graham, J.R., 2000. How Big Are the Tax Bene�ts of Debt? Journal of

Finance. 55(5), 1901�1940.

[23] Guo, X., Miao, J., Morellec, E., 2002. Irreversible Investment with Regime

Shifts. University of Rochester Working Paper.

[24] Hayashi, F., 1982. Tobin�s Marginal and Average q: A Neoclassical Inter-

pretation. Econometrica 50 (1), 213-224.

[25] Hennessy, C. Tserlukevich, Y., 2004. Analyzing Callable and Convertible

Bonds when M-M Assumptions Are Violated. Working Paper, UC Berkeley.

[26] Hennessy, C., Whited, T., 2005a. Debt Dynamics. Journal of Finance 60(3),

1129-1165.

[27] Hennessy, C., Whited, T., 2005b. Beyond Investment-Cash Flow Sensitivi-

ties: Using Indirect Inference to Estimate Costs of External Funds, Working

Paper, UC Berkeley.

[28] Jensen, M.C., 1986. The Agency Costs of Free Cash Flow: Corporate Fi-

nance and Takeovers. American Economic Review 76(2), 323-329.

39



[29] Jensen, M.C., Meckling, W.H., 1976. Theory of the Firm: Managerial Be-

havior, Agency Costs and Ownership Structure. Journal of Financial Eco-

nomics 3(4), 305-360.

[30] Kane, A., Marcus, A.J., McDonald, R.L., 1984. How Big is the Tax Ad-

vantage to Debt? Journal of Finance 39(3), 841-853.

[31] Kogan, L., 2001. An Equilibrium Model of Irreversible Investment. Journal

of Financial Economics 62. 201-245.

[32] Leary, M. and Roberts, M., 2004. Financial Slack and the Tests of the Peck-

ing Order�s Financial Hierarchy. Working Paper, Fiqua School of Business,

Duke University.

[33] Leary, M., Roberts, M., 2005. Do Firms Rebalance Their Capital Structure?

Journal of Finance, forthcoming.

[34] Leland, H.E., 1994. Corporate Debt Value, Bond Covenants and Optimal

Capital Structure. Journal of Finance 49(4), 987-1019.

[35] Mauer, D.C., Triantis, A.J., 1994. Interaction of Corporate Financing and

Investment Decisions: a Dynamic Framework. Journal of Finance (49),

1253-1277.

[36] McDonald, R., Siegel, D., 1986. The Value of Waiting to Invest. Quarterly

Journal of Economics 101(4), 707-728.

[37] Merton, R.C., 1973. Theory of Rational Option Pricing. Bell Journal of

Economics and Management Science 4(1), 141-183.

[38] Modigliani, F., Miller, M., 1958. The Cost of Capital, Corporation Finance

and the Theory of Investment. American Economic Review 48, 267-297.

[39] Modigliani, F., Miller, M., 1963. Corporate Income Taxes and the Cost of

-Capital: A Correction. American Economic Review , 261-297.

[40] Myers, S., 1977. Determinants of Corporate Borrowing. Journal of Financial

Economics 5, 147-175.

[41] Myers, S., 1984. The Capital Structure Puzzle. Journal of Finance 39, 575-

592.

40



[42] Myers, S., Majluf, N., 1984. Corporate Financing and Investment Deci-

sions when Firms Have Information that Investors Do Not Have. Journal

of Financial Economics 13, 187-221.

[43] Novy-Marx, R., 2005. An Equilibrium Model of Investment Under Uncer-

tainty. University of Chicago Working Paper.

[44] Pindyck, R. S., 1988. Irreversible Investment, Capacity Choice and the

Value of the Firm. American Economic Review 78, 969-985.

[45] Ross, S., R.W. Wester�eld and J. Ja¤e, 2002. Corporate Finance. Sixth

Edition. McGraw-Hill Irwin.

[46] Rajan, R.G., Zingales, L., 1995. What Do We Know about Capital Struc-

ture? Some Evidence from International Data. Journal of Finance (50),

1421-1460.

[47] Schürho¤, N., 2004. Capital Gains Taxes, Irreversible Investment and Cap-

ital Structure. Carnegie Mellon University Working Paper.

[48] Shyam-Sunder, Myers, S., 1999. Testing Static Trade-o¤ against Pecking

Order Models of Capital Structure. Journal of Financial Economics 51(2),

219-244.

[49] Strebulaev, I.A., 2005. Do Tests of Capital Structure Theory Mean What

They Say? Working Paper, Stanford University.

[50] Titman, S., Tsyplakov, S., 2004. A Dynamic Model of Optimal Capital

Structure. Working paper.

[51] Titman, S., Wessels, R., 1988. The Determinants of Capital Structure

Choice. The Journal of Finance 43(1), 1-19.

[52] Tobin, J., 1969. A General Equilibrium Approach to Monetary Theory.

Journal of Money, Credit, and Banking, 1(February), 15-29.

[53] Welch, I., 2004. Capital Structure and Stock Returns. Journal of Political

Economy 112(1), 106-131.

41



Notational Key
X = product demand shock

K= installed capital

� = elasticity of demand

� = drift of the demand shock

�m = market volatility

�i = demand shock idiosyncratic volatility

� = demand shock total volatility

� = market sensitivity �beta�

� c = corporate tax rate

� i = tax rate on interest at individual level

r = pre-tax rate of return on risk free asset

� = �otation cost as percentage of bond value

P = proportional investment cost

F = �xed cost parameter

I = interest payment

V (X) = value of assets in place

D(X) = value of debt

S(X) = value of equity

A(X) = total value of the �rm

GO(X) = value of the growth options

A(X) = total value of assets

x(K) = investment barrier

b = constant, solution to quadratic equation

B = valuation constant determined by the boundary conditions

 = scaling constant

� = pro�tability
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Table 2: Descriptive Statistics for the Generated Samples. The sta-
tistics are calculated from 1000 independent simulations. For each simulation, the

values are computed in cross section and averaged over time. The leverage ratio data

includes mean, standard deviation, and 1%, 25%, 50%, 75%, 99% percentiles for the

average mean and maximum leverage ratios in the cross section. Investment statistics

include the number of quarters with investment (Quarters) and average investment

(Investment), calculated as the total investment over lifetime divided by the number

of quarters where investment took place. For the zero cost model all quarters with

non-zero intermittent investment are included. Panel A gives results for the case with-

out �xed costs, and Panel B o¤ers corresponding results for the case with �xed cost.

percentiles

Mean 1% 25% 50% 75% 99%

Panel A - Zero Fixed Costs Model

Average Leverage Ratio 0.453 0.242 0.382 0.451 0.524 0.676

Minimum Leverage Ratio 0.002 0 0.001 0.001 0.003 0.017

Maximum Leverage Ratio 0.775 0.728 0.767 0.778 0.786 0.796

Investment / Quarter 0.703 0 0.054 0.144 0.421 9.435

Quarters w. Investment 24.28 0 6 19.5 39 81.5

Panel B - Fixed Costs Model

Average Leverage Ratio 0.730 0.673 0.716 0.734 0.748 0.754

Minimum Leverage Ratio 0.032 0.003 0.012 0.027 0.046 0.113

Maximum Leverage Ratio 0.777 0.776 0.777 0.777 0.777 0.777

Investment / Quarter 0.584 0 0.091 0.258 0.606 4.927

Quarters w. Investment 0.58 0 1 2 7 12
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Table 3: Leverage Cross-Sectional Regression. LR is a leverage of the �rm

de�ned as as a ratio of the book value of debt to the sum of book value of debt and

market value of equity. Pro�tability �t is de�ned as the increase in assets adjusted by

the book value of assets in place. Independent variables are pro�tability (�), volatility

of cash �ows (�), and demand elasticity (�). T-statistics for each simulations are

calculated using the Fama-MacBeth method as a mean (across years) of regression

intercepts and slopes adjusted by the standard error (time series standard deviation of

the regression coe¢ cient divided by
p
T ). Coe¢ cients and t-statistics are means over

1000 independent simulations. Other columns display standard deviations for these

values as well as 1%, 50% and 99% percentiles.

summary percentiles

mean coe¤ std dev 1% 50% 99%

Panel A - Zero Fixed Costs Model

Constant
0.691

(140)

0.166

(66:7)

0.317

(49:2)

0.696

(123)

1.02

(358)

Pro�tability �
-0.591

(�8:70)
0.256

(2:79)

-1.417

(�16:2)
-0.550

(�8:4)
-0.199

(�3:80)

Volatility �
0.601

(48:9)

0.324

(27:9)

-0.242

(�33:0)
0.659

(52:0)

1.100

(95:8)

Elasticity �
-2.342

(�228)
0.277

(107)

-2.90

(�511)
-2.36

(�213)
-1.55

(�51:4)

Panel B - Fixed Costs Model

Constant
0.977

(357)

0.023

(72:1)

0.925

(249:3)

0.976

(343)

1.03

(584)

Pro�tability �
-0.127

(�13:3)
0.033

(3:0)

-0.215

(�20:0)
-0.125

(�13:3)
-0.063

(�7:1)

Volatility �
-0.565

(�59:3)
0.060

(11:0)

-0.709

(�95:4)
-0.566

(�57:0)
-0.435

(�40:2)

Elasticity �
-0.747

(�99:0)
0.146

(48:1)

-1.11

(�264)
-0.732

(�84:2)
-0.443

(�41:8)
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Table 4: Mean Reversion Tests. Leverage change is de�ned as a di¤erence
between leverage ratios at time t + k and t, LRt+k � LRt. Independent variables
are: past leverage ratio (LRt), mean leverage ratio (LR), volatility of the cash �ows

(�), and elasticity of demand (�). The base case is for k = 10 (two and a half years);

the last two columns display the results for alternatives: k = 5 and k = 20. The t-

statistics for simulations are calculated using the Fama-MacBeth method. Coe¢ cients

and t-statistics are means over 1000 independent simulations.

summary k = 10 alternative horizons

mean coe¤ std dev k = 5 k = 20

Panel A - Zero Fixed Costs Model

Constant
-0.005

(�3:31)
0.004

(2:41)

-0.003

(�2:39)
-0.012

(�5:69)

Past Leverage Ratio LRt
-0.181

(�22:8)
0.010

(2:14)

-0.090

(20:7)

-0.343

(�22:9)

Target Leverage Ratio LR
0.188

(22:0)

0.010

(2:49)

0.094

(2:05)

0.350

(22:9)

Volatility �
0.005

(1:97)

0.007

(2:38)

0.003

(1:76)

0.016

(4:33)

Elasticity �
0.028

(8:04)

0.007

(2:62)

0.013

(4:61)

0.070

(16:4)

Panel B - Fixed Costs Model

Constant
-0.006

(�4:54)
0.002

(1:98)

0.0001

(0:346)

-0.013

(�8:08)

Past Leverage Ratio LRt
-0.160

(�30:8)
0.013

(3:73)

-0.070

(�24:2)
-0.290

(�27:8)

Target Leverage Ratio LR
0.163

(28:1)

0.015

(3:88)

0.068

(21:2)

0.300

(26:1)

Volatility �
0.012

(12:8)

0.002

(3:52)

0.004

(12:1)

0.020

(16:8)

Elasticity �
0.009

(4:80)

0.004

(2:21)

0.005

(5:75)

0.007

(3:34)
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(A) Market Leverage Ratio as a
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(B) Ex-Dividend Equity Value as

a Function of Demand Shock
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(C) Debt Value as a Function of

Demand Shock
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(D) Firm Value as a Function of

Demand Shock

Figure 1: Firm with Single Irreversible Investment Option. All graphs
are plotted against the value of demand shock. The critical value of the shock X� that

triggers investment corresponds, approximately, to the middle of the horizontal scale.

The example assumes �xed investment costs ( F = 1 ) and also adopts a requirement

that a �rm has a single option. Parameters used in this example: � = :2, I = 10,

� = 0:2, K = 1. Each of the exhibits plots the value of one of the contingent claims:

(A) Market Leverage Ratio, (B) Ex-dividend value of Equity, (C) Debt Value, and (D)

Total Firm Value (Debt plus Equity).
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(C) Actual Amount of Capital

Stock
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(D) Market Leverage Ratio

Figure 2: Incremental Investment Without Fixed Costs. All graphs are
plotted against time and based on one randomly selected economy simulation for a

randomly selected �rm. This case is for zero �xed costs (F = 0 ). Figures generated

for a sample path of the demand shock are shown in Exhibit A. �Desired Capital Stock�

on Exhibit B is found as the optimal amount of irreversible investment corresponding

to the current value of the shock. Exhibit C shows the actual amount of capital stock

after irreversibility constraint has been applied. (See [60]). Exhibit D is the market

leverage ratio corresponding to this path.
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(A) Random Demand Shock Path
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Figure 3: Irreversible Investment With Fixed Costs. All graphs are plot-
ted against time and based on one randomly selected economy simulation for a ran-

domly selected �rm. The simulation assumes maximium �xed costs (F = 1). Figures

are generated for a sample path of the demand shock that is shown on Exhibit A. The

capital stock dynamics corresponding to this sample path is depicted on Exhibit B.

Firm invests (in this particular simulation) at quarters 91, 110, 113 and 137, visible as

jumps in the amount of capital. Exhibit C is the market value of Debt corresponding

to this path. Exhibit D is the Market Leverage Ratio corresponding to this path..
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(A) Investment with Zero Fixed Costs (B) Investment with Fixed costs
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Figure 4: Frequency Distribution of the Coe¢ cients for Pro�tability
and Mean-Reversion Regressions. The coe¢ cients are obtained from 1000 in-

dependent observations by running cross-sectional regressions and averaging the result

over time. Panel A (left side of the exhibit) is for zero �xed costs case (F = 0); Panel

B (right side) is for the �xed costs case (F = 1). The upper graphs give the distri-

bution of the pro�tability coe¢ cient �1 over simulations. The lower graphs give the

distribution of the mean reversion coe¢ cients.

50


