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Abstract

In this paper, we study asset prices in a dynamic, general-equilibrium Lucas endowment economy
where agents have power utility and differ with respect to both beliefs and their preference param-
eters for time preference and risk aversion. Our main contribution is to solve in closed form for the
following quantities: optimal consumption and portfolio policies of individual agents; the riskless
interest rate and market price of risk; the stock price, equity risk premium, and volatility of stock
returns; and, the term structure of interest rates. Our solution allows us to identify the strengths
and limitations of the model with heterogeneity in both preferences and beliefs. We find that beliefs
about the growth rate of aggregate endowment that are pessimistic on average (across investors)
lead to a significant increase in the market price of risk; and, heterogeneity in risk aversion increases
stock-return volatility. Consequently, the equity risk premium, which is the product of the market
price of risk and stock return volatility, is considerably higher in the model where average beliefs
are pessimistic and risk aversions are heterogeneous, and this is accompanied neither by an increase
in the level nor the volatility of the short-term riskless rate. The main limitation of the model is
that it is stationary only for a restricted set of parameter values, and for these parameter values
one can obtain a high market price of risk and equity risk premium but not excess stock return
volatility.



1 Introduction and Motivation

Two key characteristics of economic agents are their beliefs and preferences. Our objective in this

paper is to study the effect of heterogeneity in both of these characteristics on the choices of indi-

vidual agents and the resulting asset prices. The main contribution of our work is to solve in closed

form for consumption policies, portfolio policies, and the stock and bond prices in a general equi-

librium stochastic dynamic exchange economy with heterogeneous agents who have power utility.1

This allows us to identify the strengths and limitations of the model with heterogeneity in both

preferences and beliefs. We find that, compared to the standard representative agent model, both

heterogeneous preferences and heterogeneous beliefs (that are pessimistic on average) play a signif-

icant role in improving the ability of the model to match properties of asset returns. In particular,

heterogeneity in risk aversion increases stock return volatility relative to the volatility of aggregate

dividends, but heterogeneity in beliefs has a negligible effect. Neither heterogeneity in risk aversion

nor heterogeneity in beliefs can generate a large enough market price of risk; to get close to the

empirically observed market price of risk, we need average beliefs to be pessimistic. Thus, het-

erogeneous risk aversion together with average beliefs that are pessimistic, generate a significantly

larger equity risk premium compared to the standard representative-agent model. Moreover, the

average risk aversion in the model is countercyclical, just like the Campbell and Cochrane (1999)

model, and so asset returns have the appropriate cyclical properties. The main limitation of the

model is that for parameter values for which the model is stationary, one can obtain a high market

price of risk and equity risk premium but not excess stock-return volatility.

The importance of studying models with heterogeneous agents rather than a representative

agent has been recognized recently by both policymakers and academics. For instance, the April 15,

2010 issue of the Economist describing the Soros-sponsored conference on “The Economic Crisis

and the Crisis in Economics” says that, “The conference rehearsed many familiar complaints, bash-

ing . . . the use of representative agents (a kind of economic Everyman, whose behavior mimics the

macroeconomy in microcosm).” Hansen (2010) in his talk at this conference lists one of the chal-

lenges for macroeconomic models to be “Building in explicit heterogeneity in beliefs, preferences

. . ..” Stiglitz (2010) in his presentation at the same conference also criticizes the representative

agent model and highlights the importance of heterogeneous agents as a key modeling challenge.

Sargent (2008), in his presidential address to the American Economic Association, discusses ex-

tensively the implications of the common beliefs assumption for policy, and Hansen (2007, p. 27)

in his Ely lecture says: “While introducing heterogeneity among investors will complicate model

solution, it has intriguing possibilities. . . . There is much more to be done.” Empirical work by

1In particular, we obtain the following quantities in closed form: the equilibrium consumption allocation across
agents and its dynamics over time; the optimal portfolios of individual investors; the state price density and its
dynamics, which are characterized in terms of the riskless interest rate and the market price of risk; the stock price,
the equity risk premium, and the volatility of stock returns; and, the term structure of interest rates and the term
premium.
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Beber, Buraschi, and Breedon (2009), Berrada and Hugonnier (2010), Buraschi and Jiltsov (2006),

Buraschi, Trojani, and Vedolin (2009, 2010), and Ziegler (2007) also suggests the importance of

allowing for heterogeneous beliefs and preferences in asset-pricing models.

A key contribution of our paper is to demonstrate how one can obtain a closed-form solution

to the consumption sharing rule for agents with heterogeneous beliefs and preferences without

restricting the risk aversion of the two agents to special values.2 In the case of two agents, the

consumption-sharing rule is a non-linear algebraic equation, which reduces to a polynomial of

degree η if the ratio of the risk aversion of one agent to that of the other is a natural number. If η

equals two, three or four, then this polynomial equation can of course be solved in closed-form. We

show how to construct a closed-form solution for all real values of η. Central to our approach is a

theorem due to Lagrange. Given the ubiquity of nonlinear sharing rules in solutions to problems

in economics and finance (see Peluso and Trannoy (2007) for examples of such problems), the

approach we develop can be applied also to other problems, which previously would have called for

numerical methods.

The paper that is closest to our work is Cvitanić, Jouini, Malamud, and Napp (2009), which

also studies asset prices in an economy where agents have expected utility and differ with respect

to both beliefs and their preference parameters. Their paper provides bounds on asset prices and

characterizes prices in the limit when only one agent survives. However, it does not provide closed-

form solutions for these quantities. In fact, Cvitanić and Malamud (2009b, p. 3) write that:

“when risk aversion is heterogeneous, SDF [stochastic discount factor] is the solution

to highly non-linear equation (1) [in their paper], and no explicit solution is possible,

except for some very special values of risk aversion; see, for example, Wang (1996).”

In contrast to Cvitanić, Jouini, Malamud, and Napp (2009), we provide a closed-form solution

for the stochastic discount factor without restricting the risk aversion of the two agents to special

values. In particular, we show how the stochastic discount factor can be expressed as a weighted

average of stochastic discount factors from a set of underlying single-agent economies, each with

a constant market price of risk and risk-free rate. We should point out that, in contrast to our

analysis that is for the case of two agents, the limit analysis of Cvitanić, Jouini, Malamud, and

Napp (2009) studies an economy with more than two agents.

Most of the other papers in the existing literature with heterogeneous agents allow for either

differences in beliefs or differences in preferences. We first discuss the literature that considers het-

erogeneity in beliefs and then the literature that considers differences in preferences. Essentially,

there are two ways to generate heterogeneity in beliefs. In the first approach, agents receive different

2Our work can be viewed as complementary to that of Calin, Chen, Cosimano, and Himonas (2005), who provide
an analytic representation (that is, a convergent power series) for the price-dividend function of one state variable in
an economy with a single representative agent whose utility function displays habit formation.
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information. This is the classical approach, adopted in the early noisy-rational-expectations litera-

ture (see, for instance, Grossman and Stiglitz (1980), Hellwig (1980), Wang (1993), and Shefrin and

Statman (1994)). In this class of models, one group of (informed) agents receives private signals

and then there is a second group of agents (noise-traders), which trades for exogenous reasons and

thereby prevents the price from fully revealing the private information of the informed agents. The

second approach for generating heterogeneity, which is the one we adopt, is to have agents who

“agree to disagree” about some aspect of the underlying economy, and in this class of models it

is assumed that agents do not learn from each other’s behavior. Morris (1995) provides a good

philosophical discussion of this modeling approach. Examples of papers using this approach include

Basak (2000), Beber, Buraschi, and Breedon (2009), Berrada (2006), Borovička (2009), Buraschi

and Jiltsov (2006), Buraschi, Trojani, and Vedolin (2009, 2010), Cecchetti, Lam, and Mark (2000),

David (2008), David and Veronesi (2002), Duffie, Garleânu, and Pedersen (2002) Dumas, Kurshev,

and Uppal (2009), Gallmeyer (2000), Gallmeyer and Hollifield (2008), Kogan, Ross, Wang, and

Westerfield (2006), Scheinkman and Xiong (2003), Veronesi (1999), Xiong and Yan (2009), Yan

(2008), and Zapatero (1998).3 Excellent reviews of this literature are provided in Basak (2005) and

Jouini and Napp (2007).

We now discuss the literature on the effect of heterogeneous preferences on asset prices. The

effect of different time-discount factors on efficient allocation of consumption is studied in Gollier

and Zeckhauser (2005). The effect of heterogeneity in risk aversion on asset prices is examined in

several papers, most of which assume that investors have expected utility. For example, Dumas

(1989) studies the riskfree rate and the risk premium in a production economy; Wang (1996) ex-

amines the term structure in an exchange economy; Basak and Cuoco (1998) and Kogan, Makarov,

and Uppal (2007) analyze the effect of constraints on borrowing and short-sales on the equity

risk premium in an exchange economy; Bhamra and Uppal (2009) and Tran (2009) examine the

volatility of stock market returns; Benninga and Mayshar (2000) and Weinbaum (2001) study op-

tion prices; Longstaff and Wang (2009) investigate the relation between open interest in the bond

market and stock market returns; Cvitanić and Malamud (2009a,b,c) consider equilibrium with

multiple heterogeneous traders who maximize utility of only terminal wealth; and, Garleânu and

Panageas (2008) study the effect of heterogeneous preferences in an overlapping-generations model

that leads to a stationary equilibrium. In contrast to these papers that assume investors have

expected utility, Chan and Kogan (2002) and Xiouros and Zapatero (2010) study asset prices in

an economy where agents have “catching-up-with-the-Joneses” preferences, where habit formation

ensures that the model is stationary. And, finally there are papers that work with Epstein and Zin

(1989) recursive preferences that allow for a distinction between risk aversion and the elasticity of

intertemporal substitution. For example, Guvenen (2005), studies asset pricing in a model with

3Yan (2008) also studies a model where agents have both heterogeneous beliefs and preferences, but he solves for
asset prices in terms of exogenous variables only for the case where both agents have the same risk aversion, which
is a natural number (see his Proposition 3).
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heterogeneity in elasticity of intertemporal substitution, Isaenko (2008) studies the term structure

in a model where agents differ in both their risk aversion and elasticity of intertemporal substitu-

tion, and Gomes and Michaelides (2008) study portfolio decisions of households and asset prices in

a model where agents are heterogeneous not just in terms of preferences but are also exposed to

uninsurable income shocks in the presence of borrowing constraints.

When there are multiple agents who differ in their risk aversion, there is no paper in the litera-

ture that provides a complete characterization of equilibrium that is exact and entirely analytical.

For example, for the case of expected utility, Wang (1996) provides closed form expressions for only

particular parameter values; Kogan and Uppal (2001) characterize the equilibrium in production

and exchange economies approximately using perturbation analysis in the neighborhood of log util-

ity; Bhamra and Uppal (2009) and Tran (2009) study stock-market-return volatility, but without

solving explicitly for volatility; Dumas (1989) solves numerically for the interest rate in a produc-

tion economy; for the case of “catching-up-with-the-Joneses” preferences, Chan and Kogan (2002)

rely on numerical solutions, and the working-paper version of Chan and Kogan (2002) provides ap-

proximate analytic results in the neighborhood of log utility using perturbation analysis. Xiouros

and Zapatero (2010) provide an expression for the value function of the central planner assuming

a Gamma distribution for the risk tolerances of the investors, but asset prices are obtained using

numerical methods. The models in Guvenen (2005), Isaenko (2008), and Gomes and Michaelides

(2008) are also solved using numerical methods.

To summarize, the main contribution of our paper is that, in contrast to the existing literature

on general equilibrium models of asset pricing that considers either heterogeneous preferences or

heterogeneous beliefs, we allow for heterogeneity in preferences and beliefs, we do not restrict the

preference parameters of the agents to particular values, and we solve in closed form not just for

the interest rate and market price of risk, but also for the stock price, equity premium, volatility

of stock market returns, and the term structure of interest rates. We show explicitly that our

results nest the results in the models that consider an exchange economy with agents who have

expected utility with different degrees of risk aversion, such as Wang (1996) and Bhamra and

Uppal (2009), and that they nest also the results in models where agents have expected utility

with heterogeneous beliefs, for instance, Basak (2005) and Yan (2008). A major advantage of our

characterization of equilibrium is that it allows us to identify which empirical features of asset

returns can be explained by heterogeneity in preferences and/or beliefs, as discussed in the opening

paragraph of the introduction.

The rest of the paper is arranged as follows. In Section 2, we describe our model of an ex-

change economy with heterogenous agents. The equilibrium consumption allocation, derived by

solving the problem of a “central planner”, is given in Section 3, which also includes a discussion

of survival of the agents and stationarity of the equilibrium. We derive the state price density

and its dynamics in Section 4. A full characterization of asset prices and the properties of asset
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returns is provided in Section 5. We conclude in Section 6. Our main results are highlighted in

propositions, results for special cases are given in corollaries,4 and detailed proofs for all the results

are provided in Appendix A, while Appendix B contains two lemmas that we use to derive these

results, Appendix C contains a statement of Lagrange’s Theorem, and Appendix D gives the wealth

of individual investors along with their optimal portfolios, which correspond to the solution of the

central planner’s problem.5

2 The model

In this section, we describe the features of the economy we are considering. Below, we explain

our assumptions about the information structure and the endowment process, the financial assets

in the economy, the beliefs and preferences of agents, the definition of equilibrium, and how this

equilibrium can be identified by solving the problem of a central planner, whose utility is a weighted

average of the utilities of the individual agents, where the weights are stochastic.

We consider a continuous-time, pure-exchange economy with an infinite time horizon. There is

a single consumption good that serves as the numeraire. It is modeled as an exogenously specified

endowment process. There are two types of investors, k ∈ {1, 2}. We adopt the convention of

subscripting by k the quantities related to Agent k, where k ∈ {1, 2}. Each investor has constant

relative risk averse utility (CRRA). The two types of agents are allowed to differ in their rates of

time preference and relative risk aversions. Furthermore, the two types of agents have different

beliefs about the expected growth rate of the endowment, which they do not update.6 In summary,

our model differs from the standard Lucas (1978) model along two dimensions: one, preferences

are heterogeneous; two, agents may not have the correct beliefs, and the beliefs of one agent may

differ from those of the other.

2.1 The information structure and endowment process

The uncertainty in the economy is represented by a filtered probability space (Ω,F , {Ft},P) on

which is defined a one-dimensional Brownian motion Z. The economy is modeled as being endowed

with a single non-storable consumption good. The true evolution of the aggregate endowment, Y ,

which in our model is equivalent to both aggregate dividends and aggregate consumption, is:

dYt
Yt

= µY dt+ σY dZt, Y0 > 0,

4There are three special cases that we consider: one, where investors have identical beliefs but different preferences
(risk aversion and rate of time preference); two, where investors differ in beliefs but have identical risk aversion; and
three, where the investors differ in beliefs but have identical risk aversion, which is a natural number.

5We recognize that these appendices increase the length of the manuscript, but we have opted to provide details
of our derivations so that they can be verified with ease; at a later stage, one could shorten/remove the appendices.

6We model beliefs as in Basak (2005); see Section 2.1 and Remark 1 of his paper about the generality of this
specification and how it can be extended further.
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in which µY and σY are constants.

2.2 Financial assets

There are two financial assets in the economy: a risky asset (stock) with one share outstanding

and a locally riskfree bond in zero net supply. The stock is a claim on the aggregate endowment.

The price of the stock, which can be interpreted as the market portfolio, is denoted St, and its

cumulative return, Rt, which consists of capital gains plus dividends, is described by the process:

dSt + Ytdt

St
= dRt = µR,t dt+ σR,t dZt.

The price of the locally riskfree bond is Bt, and it’s riskfree return rt is described by the process

dBt
Bt

= rt dt.

The expected return on the stock, µR,t, the volatility of stock returns, σR,t, and the locally riskfree

rate, rt, will be determined endogenously in equilibrium.

2.3 Beliefs of the two agents

Agent k believes that the expected growth rate of the endowment process takes the constant value,

µY,k. Therefore, Agent k’s beliefs can be represented by an exponential martingale ξk,t, given by

ξk,t = e−
1
2
σ2
ξ,kt+σξ,kZt , where σξ,k ≡

µY,k−µY
σY

.7 Hence, by Girsanov’s Theorem, Agent k believes

that the process for aggregate endowments is

dYt
Yt

= µY,k dt+ σY dZk,t,

where Zk,t = Zt − σξ,kt is a standard Brownian motion under Pk. Hence, we see that under Pk,
which represents Agent k’s beliefs, the expected growth rate of aggregate endowment is µY,k.

8

We quantify the level of disagreement between the two agents via the process, ξt, where ξt ≡
ξ2,t
ξ1,t

= e−
1
2

(σ2
ξ,2−σ

2
ξ,1)t+(σξ,2−σξ,1)Zt , and its dynamics are

dξt
ξt

= µξdt+ σξdZt,

where

µξ ≡ −σξ,1(σξ,2 − σξ,1),

σξ ≡ (σξ,2 − σξ,1).

7The exponential martingale, ξk,t, defines the probability measure Pk on (Ω,F), via Pk(eT ) = Et[1eT ξk,T ], ∀t, T ∈
[0,∞), t ≤ T, where eT is an event which occurs at time T and Pk(eT ) is the probability of its occurrence based on
information known at time t.

8Note that the measures P1, P2 and P are all equivalent; that is, they agree on which events are impossible.
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2.4 Preferences of the two agents

The consumption of Agent k at instant u is denoted by Ck,u and the instantaneous utility from

consumption is assumed to be time additive and given by a power function:

Uk(Ck,u) ≡ e−βku
C1−γk
k,u

1− γk
,

where βk is the constant subjective discount rate (that is, the rate of time preference) and γk is the

degree of relative risk aversion. Without loss of generality, we assume that Agent 1’s relative risk

aversion is less than that of Agent 2: γ1 < γ2.

Given her beliefs, represented by the measure Pk, the expected lifetime utility of Agent k at

time t from consuming Ck,u is given by

Vk,t = Ekt

[∫ ∞
t

e−βk(u−t)C
1−γk
k,u

1− γk
du

]
, (1)

where Ekt denotes the time-t conditional expectation operator with respect to the measure Pk.
Existence of a solution requires that the integral in (1) is well defined, for which the condition is:

βk > (1− γk)µY −
1

2
γk(1− γk)σ2

Y .

2.5 The optimization problem of each agent

Each agent k is assumed to have an initial allocation of ak shares of the stock, with a1 + a2 = 1.

Thus, the initial wealth of agent k is akS0. The problem of agent k is to maximize lifetime utility,

given by Vk,0 in (1), subject to a static budget constraint, which restricts the present value of all

future consumption to be no more than the initial wealth of each agent:9

Ek0

[∫ ∞
0

πk,u
πk,0

Ck,udu

]
≤ akS0, (2)

in which πk,u is the marginal utility of investor k at date u:

πk,u ≡
∂U(Ck,u)

∂Ck,u
= e−βkuC−γkk,u . (3)

9The budget constraint for Agent k in (2) is written in terms of the state prices perceived by this agent; one could
write an equivalent expression in terms of the state prices (and expectation) of the central planner.
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2.6 The equilibrium

The notion of equilibrium that we use is an extension of the equilibrium in the single-agent model of

Lucas (1978). Both agents optimize their expected lifetime utility and all markets must clear. So,

in equilibrium, the two individuals consume all of the aggregate endowment, and in the financial

market the two investors together hold all the shares that are a claim on aggregate endowment,

while their aggregate holding of the zero-supply riskfree bond must net to zero.

2.7 The central planner

Given our assumption that investors can trade in a stock and a locally riskfree asset, financial

markets are dynamically complete relative to the filtrations of the two agents. When markets are

dynamically complete, one can solve for equilibrium consumption policies using a “central-planner,”

whose social welfare function is a weighted average of the value functions of individual agents, as

shown in Basak (2005). In contrast to the case of identical beliefs, if agents have heterogeneous

beliefs, Basak (2005) shows that the weights used to construct the central planner’s utility function

are stochastic. The central planner’s utility function is given by

sup
C1+C2≤Y

2∑
k=1

λk,t Uk(Ck,t), where λk,t = λk,0ξk,t. (4)

Note that even though the model described above does not have any exogenous source of

time variation, the equilibrium in this model will not be static; because the distribution of wealth

between the two agents is stochastic, there will be endogenously generated dynamics arising as a

consequence of the stochastic wealth distribution.

3 Equilibrium Consumption Allocations and Stationarity

In the first part of this section, we derive exact closed-form expressions for equilibrium consumption

allocations and also characterize the dynamics of the equilibrium consumption-sharing rule. In the

second part of this section, we identify the conditions under which the equilibrium is stationary,

that is, both agents survive in the long run.

3.1 The consumption-sharing rule and its dynamics

The first-order condition for optimal consumption, from the central planner’s problem in (4), gives

the consumption sharing rule, which shows how aggregate consumption is allocated between the
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two agents in equilibrium:

λ1,t e
−β1tC−γ1

1,t = λ2,t e
−β2tC−γ2

2,t , (5)

(λ1,0 ξ1,t) e
−β1tC−γ1

1,t = (λ2,0 ξ2,t) e
−β2tC−γ2

2,t .

In order to solve explicitly for the equilibrium allocations, we write Agent k’s consumption

share as νk,t =
Ck,t
Yt

, where 0 ≤ νk ≤ 1, and ν1 + ν2 = 1. Then the consumption sharing rule is

λ1,0ξ1,t e
−β1tν−γ1

1,t Y
−γ1
t = λ2,0ξ2,t e

−β2tν−γ2
2,t Y

−γ2
t , (6)

which can be rewritten as

π̂1,tν
−γ1
1,t = π̂2,tν

−γ2
2,t . (7)

where10

π̂k,t = λk,0ξk,t e
−βktY −γkt (8)

= λk,0e
−r̂kte−

1
2
θ̂2
kt−θ̂kZt . (9)

In the expression above, π̂k,t is the state-price density when Agent k is the sole agent in the economy,

and r̂k and θ̂k are the risk-free rate and market price of risk in this single-agent economy:

r̂k = βk + γkµY,k −
1

2
γk(1 + γk)σ

2
Y , (10)

θ̂k = γkσY +
µY − µY,k

σY
. (11)

Thus, the consumption sharing rule in (7) can be expressed as

νη2,tAt = ν1,t, (12)

where

η = γ2/γ1,

At =

(
π̂1,t

π̂2,t

) 1
γ1

, (13)

π̂1,t

π̂2,t
= e(β2−β1)t Y γ2−γ1

t

λ1,0

λ2,0
ξ−1
t . (14)

When η ∈ {1, 2, 3, 4}, the above equation can be written as a polynomial of degree 4 or less,

thus allowing us to solve for the equilibrium consumption allocation in closed-form in terms of

10Equations (9)–(11) are obtained by applying Ito’s Lemma to π̂k,t in (8) and using the standard asset-pricing

result (see, for instance, Duffie (2001)) that
dπ̂k,t
π̂k,t

= −r̂tdt− θ̂k,tdZk,t.
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radicals, using standard results from polynomial theory, as pointed out in Wang (1996). Because

polynomials of order 5 and above do not admit closed-form solutions in terms of radicals, it would

be appear that going beyond the results in Wang (1996) by solving for the consumption-sharing

rule in closed-form when η is a natural number greater than or equal to 5 is not possible. However,

when η is a natural number greater than or equal to 5, the consumption shares can be obtained

in closed-form by using hypergeometric functions. We go further still by showing that when η is

any real number, it is possible to derive closed-form, convergent, series solutions for the sharing

rule.11 The series solutions are derived using a theorem of Lagrange (see Appendix C), which to

the best of our knowledge has not been used before in finance or economics. However, Lagrange’s

Theorem does not provide the radius of convergence for the series, which is essential if we want to

use these series to study the long-run behavior of the consumption shares. We show, in the proof

of Proposition 1, how to identify the radius of convergence.

Proposition 1 Agent 2’s equilibrium share of the aggregate endowment, ν2,t =
C2,t

Yt
, is given by

ν2,t =


∑∞

n=1
(−)n+1

n

(
π̂2,t

π̂1,t

) n
γ2
(n γ1

γ2
n−1

)
,
π̂1,t

π̂2,t
> R,

1−
∑∞

n=1
(−)n+1

n

(
π̂1,t

π̂2,t

) n
γ1
(n γ2

γ1
n−1

)
,
π̂1,t

π̂2,t
< R,

(15)

where

R =
γγ2

1

γγ2
2

(
γ2

γ1
− 1

)γ2−γ1

=

(
(η − 1)η−1

ηη

)γ1

,

and, for z ∈ C and k ∈ N,
(
z
k

)
= Πk

j=1
z−k+j
j is the generalized binomial coefficient.

The proof of the proposition shows that, depending on whether
π̂1,t

π̂2,t
< R or

π̂1,t

π̂2,t
> R, we get

a different convergent series solution for the sharing rule; the solutions corresponding to these two

regions are given in (15).12 We also see from (15) that the consumption shares of the two agents will

depend on the ratio of the single-agent economy state-price densities,
π̂1,t

π̂2,t
, which from (13) depends

on the difference in the subjective discount rates, β1 and β2, the difference in risk aversions, γ1 and

γ2, and the difference in beliefs, ξ−1
t = ξ1,t/ξ2,t.

From (14), we also see that the ratio
π̂1,t

π̂2,t
will evolve over time, and that its evolution will have

a deterministic component and a stochastic component, where the stochastic component depends

on the stochastic behavior of aggregate endowment and the differences in beliefs. Below, we first

define aggregate risk aversion, and then describe the dynamics of the consumption-sharing rule.

11Because the derivation of the sharing rule for the general case where η is any real number is given in Appendix A,
the derivation showing how the sharing rule can be expressed in terms of hypergeometric functions when η is an
natural number greater than or equal to 5 is not included but is available upon request; see also Dumas, Kurshev,
and Uppal (2009) and Chabakauri (2010) and the papers cited therein.

12Observe that Equation (15) does not depend on the assumption that Y is a geometric Brownian motion, and
is valid for any stochastic process (including discontinuous processes) as along as the optimization problems of each
agent are well defined and financial markets are complete.
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Definition 1 The aggregate relative risk aversion, Rt, in the economy is defined as the consumption-

share weighted harmonic average of individual agents’ relative risk aversions:

Rt =

(
ν1,t

1

γ1
+ ν2,t

1

γ2

)−1

. (16)

Equivalently, the aggregate risk tolerance in the economy, 1/Rt, is the consumption-share weighted

average of individual agents’ risk tolerances, 1/γk.

Proposition 2 The true evolution of the sharing rule is given by:13

dν1,t

ν1,t
= µν1,tdt+ σν1,tdZt,

where

σν1,t = ν2,t
1

γ1

1

γ2
Rt

[
(γ2 − γ1)σY − σξ

]
, (17)

µν1,t = ν2,t
1

γ1

1

γ2
Rt

{
(β2 − β1) + (γ2 − γ1)µY (18)

+

[
µY − 1

2(µY,1 + µY,2)

σ2
Y

−

(
ν2

2,t

γ2
−
ν2

1,t

γ1

)
R2
t

(
1

γ1
− 1

γ2

)]
(µY,2 − µY,1) (19)

+
1

2
(γ2 − γ1)

(
R2
t

γ1γ2
− 2

)
σ2
Y +

1

2

(
ν2

2,t

γ2
−
ν2

1,t

γ1

)
R2
t

γ1γ2
σ2
ξ

}
. (20)

From (17), we see that the volatility of the sharing rule, σν1,t , is driven by differences in risk

aversion and differences in beliefs, but not differences in subjective discount rates, which have only

a deterministic effect and so appear only in the expression for µν1,t . The expression for σν1,t in

(17) shows that, if agents have identical beliefs (σξ = 0), then an increase in heterogeneity in risk

aversion leads to an increase in the volatility of the consumption share of Agent 1 because of an

increase in consumption risk sharing. Similarly, if agents have identical risk aversions (γ1 = γ2),

then an increase in heterogeneity in beliefs leads to an increase in the volatility of the consumption

share of Agent 1.

However, when both risk aversion and beliefs are heterogeneous, then the effect of an increase in

the heterogeneity in either one of these factors on the volatility of the consumption share depends

on whether it reinforces or counteracts the effect of the other factor. From (17) we observe that

σν1,t > 0 if and only if

γ2 − γ1 >
µY,2 − µY,1

σ2
Y

; (21)

13The expressions for what each agent believes to be the evolution of the sharing rule are given in the appendix;
see Equations (A14) and (A15).
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that is, if the more risk averse agent is not too optimistic relative to the less risk averse agent.14 If

this condition is satisfied, then we see from the definition of aggregate risk aversion in (16) that Rt

will be countercyclical, because when the aggregate endowment has a positive shock, the weight on

the risk aversion of Agent 1 increases, and so the aggregate risk aversion in the economy decreases.

Therefore, the heterogeneity in risk aversion and beliefs can generate countercyclical aggregate risk

aversion endogenously. Moreover, if Agent 2, who has the higher risk aversion, is also the more

pessimistic agent, then the heterogeneity in beliefs reinforces the effect arising from heterogeneity

in risk aversions. This countercyclical behavior of aggregate risk aversion has previously been

recognized in the multiagent models of Chan and Kogan (2002) and Xiouros and Zapatero (2010),

where agents have heterogeneous risk aversions but homogeneous beliefs, and this feature appears

in the single-agent model of Campbell and Cochrane (1999) as a consequence of the assumption of

habit-formation.

Equation (18) shows how µν1,t depends on differences in subjective discount rates and risk

aversions (or, more accurately, the inverse of the elasticities of intertemporal substitution). The

impact of differences in beliefs is given in (19), where we see that disagreement impacts the drift

of the sharing rule only if the equally weighted arithmetic average belief does not equal the true

growth rate, 1
2(µY,1 + µY,2) 6= µY , or there is heterogeneity in risk aversion, γ1 6= γ2. We also see

how µν1,t is affected by the volatility of aggregate endowment growth, σY , and the volatility of the

disagreement process, σξ, both of which appear in (20).

The discussion above illustrates the benefit of having the closed-form results in Propositions 1

and 2. Because we have explicit expressions for the sharing rule and its dynamics, we can understand

exactly how these are affected by the parameters for preferences, beliefs, and the endowment

process. In the absence of closed-form results, numerical analysis could be used to characterize the

sharing rule, but it would be difficult to understand precisely the relation between the different

forces driving the results.

3.2 Survival of agents and stationarity in the economy

In this section, we derive the conditions under which both agents survive in the long run. We

say that the economy is stationary if both agents survive. To formalize the concept of survival,

we introduce two complementary concepts of survival: almost-sure (a.s.) survival with respect to

a particular measure, and mean survival with respect to a particular measure. The definition of

almost-sure survival is the same as in Kogan, Ross, Wang, and Westerfield (2006). The concept of

mean survival is novel to this paper.

We define almost sure survival as follows.

14In the case where agents have different risk aversion but the same beliefs, σν1,t is always positive.
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Definition 2 Agent k survives P-a.s. if

lim
t→∞

νk,t > 0, P-a.s.

Similarly, Agent k survives Pj-a.s. if

lim
t→∞

νk,t > 0, Pj-a.s.

To understand the above concept of survival, note that if an agent’s consumption share is strictly

above zero with a probability of less than one, under P say, then she does not survive P–almost

surely. Furthermore, the probability measure is important, because an agent may believe she

survives almost surely (with respect to the measure representing her beliefs), when in fact, she

almost surely does not survive under the true measure P.

We define mean survival with respect to a particular measure as follows.

Definition 3 Agent k survives in the mean with respect to P if

lim
u→∞

Etνk,t+u > 0.

Similarly, Agent k survives in the mean with respect to Pj if

lim
u→∞

Ejt νk,t+u > 0.

The economy is stationary if both agents survive. Each concept of survival leads to a corre-

sponding concept of stationary: almost sure stationarity under a particular measure, and mean

stationarity under a particular measure. We now determine the conditions for these two concepts

of stationarity. Start by recalling the standard result that if a > 0, then limt→∞ e
at+bZt = ∞, P-

a.s., while if a < 0 then this limit is 0. Moreover, when a = 0, then lim supt→∞ e
bZt = ∞, while

lim inft→∞ e
bZt = 0. From the above results it follows that to ensure that limt→∞ e

at+bZt is strictly

between zero and infinity, we need to have both a and b equal to zero. Now, substituting for Yt

and ξt in (12), we get

νη2,t

(
Y

(γ2−γ1)
0

λ1,0

λ2,0
e(β2−β1)te

1
2

(σ2
ξ,2−σ

2
ξ,1)t+(σξ,1−σξ,2)Zte(γ2−γ1)[(µY − 1

2
σ2
Y )t+σY Zt]

)1/γ1

= ν1,t.

Thus, both agents survive almost surely under the true measure P, and the economy is almost surely

stationary under P, if the exponential decay rates of the deterministic and stochastic components in

the expression above equal zero. We can also show that these two conditions are not only sufficient,

but are also necessary. Formally, we have the following result.
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Proposition 3 The economy is almost surely stationary under P if and only if

µY,1 − γ1σ
2
Y = µY,2 − γ2σ

2
Y . (22)

and

β1 + γ1

(
µY −

1

2
σ2
Y

)
+

(
µY,1 − µY

σY

)2

= β2 + γ2

(
µY −

1

2
σ2
Y

)
+

(
µY,2 − µY

σY

)2

, (23)

Equation (22) can be interpreted as stating that the two agents have the same beliefs about the

risk-adjusted growth rate of the economy. Equation (23) equates the marginal utility of savings for

the two agents: βk is the subjective time preference for each agent, which determines the agent’s

patience; the second term, γk
(
µY − 1

2σ
2
Y

)
determines the response of an agent to growth in the

economy, with the growth rate of the economy being (µY − 1
2σ

2
Y ) and the γk being the inverse

of the elasticity of substitution parameter that drives savings; and, the final term determines the

magnitude of the error in an agent’s beliefs. Equation (23) is the same as the “survival index”

derived in Yan (2008) and also discussed in Cvitanić, Jouini, Malamud, and Napp (2009).

For mean stationarity we need to find the conditions under which limu→∞Etνk,t+u > 0 for both

agents. As we show in the proof of this proposition, the only condition required for this is that the

exponential decay rate of the deterministic component of (12) be equal to zero.

Proposition 4 The economy is mean stationary under P if and only if the condition in (23) is

satisfied.

The consumption sharing rule, ν1,t, is a constant in the P-a.s. stationary economy, and so risk

premia and return volatilities will be the same as in a homogeneous-agent economy. In contrast, in

the P-mean stationary economy, ν1,t, is a function purely of the Brownian motion, Zt. Consequently,

ν1,t is stochastic, and so risk premia and return volatilities will not be the same as in a homogeneous-

agent economy.

The following corollary shows that when preferences of the two agents are identical, but there

are differences in beliefs, the economy can still be mean stationary.

Corollary 1 Suppose agents have identical preferences, but different beliefs. Then the economy is

mean stationary under P if and only if

µY,1 + µY,2
2

= µY . (24)

The above corollary tells us that if agents have identical preferences but different beliefs, then

the economy is mean stationary if and only if the equally weighted arithmetic mean belief equals

14



the true expected growth rate of the economy. For example, if both agents have incorrect beliefs

about the expected growth rate of the economy, which are on average correct, then both agents will

survive in the mean. Equivalently, the disadvantage of having incorrect beliefs that are optimistic

about the growth rate of aggregate endowment relative to the true growth rate is the same as that

for beliefs that are pessimistic.

4 The Equilibrium State-Price Density

In this section, we first define the aggregate rate of time preference, the aggregate beliefs, and

the aggregate prudence in this economy, all of which will appear in the characterization of the

state-price density. Then, we determine the dynamics of the state-price density, and hence, the

equilibrium riskfree rate and market price of risk. Finally, we derive an expression for the level

of the state-price density, which is expressed as an average of state-price densities of single-agent

economies.

Definition 4 The aggregate rate of time preference in the economy, βt, is given by the weighted

arithmetic mean of individual agents’ rates of time preference, where the weights are the consumption-

share weighted relative risk tolerances of the two investors:

βt = w1,t β1 + w2,t β2,

wk =

1
γk
νk,t

1
γ1
ν1,t + 1

γ2
ν2,t

, and w1 + w2 = 1. (25)

Definition 5 The aggregate belief, µY,t, is given by the weighted arithmetic mean of the beliefs of

individual agents, where the weights are the consumption-share weighted relative risk tolerances of

the two investors as defined in (25):

µY,t = w1,t µY,1 + w2,t µY,2.

The prudence of an individual investor who has power utility is given by (1 + γk). Below, we

define aggregate prudence.

Definition 6 The quantity Pt is the aggregate prudence in the economy:15

Pt = (1 + γ1)

(
Rt

γ1

)2

ν1,t + (1 + γ2)

(
Rt

γ2

)2

ν2,t.

15Note that aggregate prudence may be larger than the prudence of either agent; that is, aggregate prudence is not
necessarily bounded between the prudence of the individual agents. Consequently, the interest rate in the two-agent
economy, which depends on aggregate prudence as shown in Equation (29), may not be bounded between the interest
rates in the economies with only one of the two agents, as observed in Wang (1996). For a further discussion of this
result, see Tran (2009, Proposition 2).
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4.1 The riskless interest rate and its volatility

The central planner’s state-price density, πt, is given by16

πt = λk,te
−βktν−γkk,t Y

−γk
t . (26)

From standard results in asset pricing (see Duffie (2001, Section 6.D, p. 106)), the evolution of the

central planner’s state-price density, πt, is:

dπt
πt

= −rtdt− θtdZt, (27)

and the evolution of Agent k’s state-price density, πk,t, is:

dπk,t
πk,t

= −rtdt− θk,tdZk,t. (28)

Note that each agent has her own market price of risk; however, because the instantaneously riskfree

bond is a traded security, the two agents must agree on its price, and hence, on the interest rate.

The following proposition gives the closed-form expression for the riskfree rate.

Proposition 5 The locally riskfree rate is given by:

rt = βt + RtµY,t −
1

2
RtPtσ

2
Y

+
1

2
w1,tw2,tR

2
t

(
1− Rt

γ1γ2

)
σ2
ξ − w1,tw2,tR

3
t

(
1

γ1
− 1

γ2

)
(µY,1 − µY,2), (29)

where the weights wk are defined in (25).

The corollary below gives the riskfree rate for the special cases where agents differ only with

respect to their risk aversions or their beliefs.

Corollary 2 If agents have identical and correct beliefs, then the locally riskfree rate is given by

rt = βt + RtµY −
1

2
RtPtσ

2
Y . (30)

On the other hand, if agents have identical relative risk aversion, γ1 = γ2 = γ, but different beliefs

and rates of time preference, then the locally riskfree rate is given by

rt =
2∑

k=1

νk,tβk + γ
2∑

k=1

νk,tµY,k −
1

2
γ (1 + γ)σ2

Y +
1

2
ν1,tν2,t

(
1− 1

γ

)
σ2
ξ . (31)

16Because financial markets are effectively complete, marginal utilities of consumption are equal across agents for
each state, and therefore the first order condition for consumption in (5) ensures that the expression in (26) is the
same for k ∈ {1, 2}.
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To interpret the expression for the interest rate, recall that in an economy where all agents have

correct and identical beliefs, and identical preferences, the expression for the interest rate is

r = β + γµY −
1

2
γ(1 + γ)σ2

Y .

From the expression above, we see that the interest is positively related to the rate of impatience,

β; positively related to the growth rate of aggregate endowment, µY , scaled by risk aversion γ (that

is, the inverse of the elasticity of intertemporal substitution); and the third term arises because of

precautionary savings in the face of aggregate endowment risk, which leads to a drop in the interest

rate, where the magnitude of the drop depends on (1 + γ), the prudence of agents.

Equation (30) of the corollary shows that if only risk aversions are heterogeneous but beliefs are

homogeneous and correct, then the riskfree rate has the same form as that for a single-agent econ-

omy, but with aggregate quantities βt, Rt, and aggregate prudence, Pt, replacing their single-agent

counterparts. On the other hand, if only beliefs are heterogeneous but preferences are homoge-

neous, then we see from the last term in (31) that if γ < 1 the differences in beliefs will decrease

the interest rate, or equivalently, increase the price of the instantaneously riskless bond. This effect

is similar to the premium (“bubble”) in asset prices that has been studied in Harrison and Kreps

(1978) and Scheinkman and Xiong (2003) for the case of risk neutrality (γ = 0) in the presence

of shortsale constraints; over here, we get a similar effect for agents who are risk averse without

needing to constrain shortsales. However, if γ > 1 then the price of the bond decreases with

heterogeneity in beliefs, an observation made also in Dumas, Kurshev, and Uppal (2009).

When agents have both heterogeneous beliefs and preferences, the risk-free rate in given by

(29). The terms in the first line of (29) correspond to the three terms in (30); note, however,

that because the weights used to construct these aggregate measures vary over time, the aggregate

measures will be time-varying rather than constant. The first term in the second line of (29) arises

because of volatility of the differences in beliefs, σξ, and corresponds to the last term in (31). This

term increases the risk-free rate when the aggregate risk aversion is less than the square of the

geometric mean of risk aversion; that is, Rt < γ1γ2, which is true if and only if γ1 > 1.17 It follows

that if γ1 > 1 (γ1 < 1), then heterogeneity in beliefs increases (decreases) the risk-free rate. The

second term in the second line of (29) arises because of differences in both risk aversion and in

beliefs; that is,
(

1
γ1
− 1

γ2

)
(µY,1− µY,2). When the less risk averse agent is also the more optimistic

agent, that is, µY,1 > µY,2, this term decreases the risk-free rate.

One of the limitations of the representative-agent general-equilibrium model of asset pricing is

that, when risk aversion is increased in order to improve the match of the equity risk premium in

the model to that in the data, the riskfree interest rate in the model becomes too high relative to

the data; this is the “riskfree rate puzzle” identified in Weil (1989). From the discussion above,

17Note that since Rt ≤ γ2, Rt < γ1γ2 if and only if γ1 > 1.
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we see that both heterogeneity in beliefs and preferences have the potential to reduce the interest

rate relative to a homogeneous agent economy. Using the parameter values listed in Table 1, the

riskfree interest rate is plotted as a function of the consumption share of Agent 1 in Figure 1.

From this figure, we see that the riskfree rate in the homogeneous agent economy is more than

6% p.a. However, in the data it is about 1% p.a. (see Campbell (2003)). The figure shows that

heterogeneity in both risk aversion and in beliefs reduce the interest rate, and when both sources

of heterogeneity are present, the interest rate is about 2% p.a. For the case where the parameters

are restricted so that the model is stationary, the level of the interest rate is about 3%.

We can also derive an explicit expression for the volatility of the instantaneously riskless interest

rate. This is an important quantity because often models that can generate a sufficiently high equity

risk premium run into the problem of having a volatility for the real riskfree rate that is too high

relative to its empirical value of about 1.7% p.a. The gap between the low volatility of the real

interest rate and the relatively higher volatility of real stock returns (about 16% p.a. in the data)

is called the “equity volatility puzzle” in Campbell (2003).

Proposition 6 The volatility of the instantaneously riskless interest rate is:

σr,t =

{
(γ2 − γ1)(β2 − β1) + (γ2 − γ1)(1 + γ1)(1 + γ2)

(
µY,1

1 + γ1
−

µY,2
1 + γ2

)
(32)

+

(
3R2

t

2γ1γ2
−Rt

(
1

γ1
+

1

γ2
+ 1

))[
2(γ2 − γ1)(µY,1 − µY,2) + (γ2 − γ1)2σY + σ2

ξ

]

+
1

2
(1 + γ1 + γ2)σ2

ξ

}
Rt(Rt − γ1)(Rt − γ2)

γ1γ2(γ2 − γ1)3
[(γ2 − γ1)σY − σξ].

For the special cases where either risk aversions are the same, or beliefs are the same and are

also correct, the expression for the volatility of the riskless interest rate simplifies to the following.

Corollary 3 If the two agents have identical risk aversion, γ1 = γ2 = γ, then the volatility of the

interest rate in (32) reduces to

σr,t =
ν1,tν2,t

γ

µY,1 − µY,2
σY

[
(β1 − β2) + γ(µY,1 − µY,2)− (ν1,t − ν2,t)

(
1− 1

γ

)
1

2

(
µY,1 − µY,2

σY

)2
]
.

(33)

On the other hand, if the two agents have identical beliefs, µY,1 = µY,2 = µY , then the volatility

of the interest rate in (32) reduces to

σr,t =

(
β2 − β1

γ2 − γ1
+ µY + Rt

[
3Rt

2γ1γ2
−
(

1

γ1
+

1

γ2
+ 1

)]
σ2
Y

)
Rt (Rt − γ1) (Rt − γ2)

γ1γ2
σY . (34)
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From the expressions for the volatility of the riskfree interest rate for the two special cases in

(33) and (34), or the general case in (32), we see that heterogeneity in beliefs and heterogeneity

in preferences (both rates of time preference and risk aversions) contribute to the volatility of the

riskfree rate. The low volatility of the real riskfree rate in the data, about 1.7% p.a., imposes

discipline on our model, by limiting the differences across agents in our choice of the parameters

for preferences and beliefs. In Figure 2, we show the volatility of the riskfree rate of interest as a

function of the consumption share of Agent 1 (using the same parameter values listed in Table 1).

We see from the figure that heterogeneity in beliefs has only a small effect on the volatility of

the riskfree rate, but heterogeneity in risk aversions increases the interest rate. However, for the

parameter values we consider, the maximum volatility of the riskfree rate is less than 0.4% p.a. For

the case where the parameters are restricted so that the model is stationary, the volatility of the

interest rate is even lower.

4.2 The market price of risk

From (27), we see that the volatility of the central planner’s state price density (also know as the

stochastic discount factor) is given by the market price of risk, θt, while from (28) we see that the

volatility of the state price density for each individual agent is given by the perceived market price

of risk, θk,t. The following proposition gives the closed-form expressions for these market prices of

risk.

Proposition 7 The market price of risk of the central planner, θt, is:

θt = Rt σY +

[
µY − µY,t

σY

]
, (35)

and the market prices of risk perceived by the two agents are:

θ1,t = Rt

(
σY +

ν2,t

γ2

[
µY,1 − µY,2

σY

])
, (36)

θ2,t = Rt

(
σY +

ν1,t

γ1

[
µY,2 − µY,1

σY

])
. (37)

The corollary below gives the market prices of risk for the central planner and the two agents

for the special cases where agents have identical preferences or identical beliefs.

Corollary 4 If agents have identical and correct beliefs, then the central planner’s market price of

risk, θt, and the market price of risk perceived by the two agents, θk,t are given by:

θt = θk,t = RtσY . (38)
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On the other hand, if agents have identical relative risk aversion, γ1 = γ2 = γ, but different

beliefs and rates of time preference, then the central planner’s equilibrium market price of risk is

θt = γ σY +

[
µY − µY,t

σY

]
,

and the market prices of risk perceived by Agents 1 and 2 are given by

θ1,t = γσY + ν2,t

[
µY,1 − µY,2

σY

]
, (39)

θ2,t = γσY + ν1,t

[
µY,2 − µY,1

σY

]
. (40)

To understand the expressions for the market price of risk in the above corollary and proposition,

note that in an economy where all agents have correct and identical beliefs, and identical risk

aversion, γ1 = γ2 = γ, the market price of risk is θ = γ σY . When only preferences are different

across agents, then γ is replaced by the average risk aversion in the economy, Rt, and the market

price of risk is given by (38), with both agents agreeing with this market price of risk. On the other

hand, if preferences are identical but beliefs are heterogeneous, then we see from (39) and (40) that

agents do not agree on the market price of risk. From (39) we see that if Agent 2 is pessimistic

relative to Agent 1, µY,1 > µY,2, then the market price of risk perceived by Agent 1 will be increased.

The magnitude of this increase depends on the consumption-share of Agent 2, ν2,t, because this

determines Agent 2’s influence on equilibrium stock market returns. For the general case in (36)

where both beliefs and risk aversions are different, we see that the increase in the market price of

risk perceived by Agent 1 will depend on the consumption share of Agent 2, ν2,t, and the agent’s

risk tolerance, 1/γ2, relative to aggregate risk tolerance in the economy, 1/Rt, because these are

the two factors that determine the size of the position Agent 2 takes in the stock market. Finally,

from the expression in (35) for the general case where there is heterogeneity in both preferences

and beliefs, we see that the market price of risk for the central planner will increase if average

beliefs are pessimistic; that is, µY > µY,t. The intuition for this is that, if agents are pessimistic

on average, then the compensation for bearing risk must be relatively higher than what it needs to

be in an economy where agents have the correct average beliefs.

We now discuss the implications of heterogeneity in preferences and beliefs for the market price

of risk in the data. From Corollary 4, we see that in a model without heterogeneity of beliefs, the

market price of risk is given by Rt σY , the product of aggregate risk aversion and the volatility of

aggregate endowment. But, in the data the volatility of aggregate endowment is about 3% p.a.,

which means that to obtain the empirically observed market price of risk of about 30%–50%, we

need aggregate risk aversion to be about 10–17, which is much higher than what many people

view as reasonable. More importantly, increasing risk aversion leads to a riskfree rate that is high

(because investors wish to borrow in order to consume today rather than in the future), but in the
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data the riskfree rate is only about 1% p.a., and thus choosing a high value for relative risk aversion

would lead to the “riskfree rate puzzle” of Weil (1989).

On the other hand, in a model in which average beliefs do not coincide with the true beliefs, the

expression for the market price of risk in (35) has a second term, (µY −µY,t)/σY , which contributes

to the magnitude of the market price of risk. In the second term, the volatility of aggregate

endowment divides the difference between the true growth rate of aggregate endowment and the

average belief about this in the economy. Thus, if investors are pessimistic on average, µY > µY,t,

even small differences between the true expected growth rate and the aggregate belief about the

expected growth rate will have a large impact on the magnitude of the market price of risk implied

by the model.18 Figure 3 plots the market price of risk against the consumption share of Agent 1.

The figure shows that while heterogeneity in risk aversion (or beliefs) does not increase the market

price of risk relative to the homogeneous-agent benchmark, beliefs that are pessimistic on average

lead to a significant increase in the market price of risk. This is true even for the the case where

the parameters are restricted so that the model is stationary.

Note also that the market price of risk is countercyclical in the data and in the model of

Campbell and Cochrane (1999). This will be true also in our model if Rt is countercyclical, which

requires that the more risk averse agent not be too optimistic relative to the less risk averse agent—

the exact condition is given in Equation (21). Therefore, to obtain a market price of risk which is

close to the data in both its level and cyclical behavior, we need both heterogeneity in risk aversion

and average beliefs that are pessimistic. Ziegler (2007) also finds that one needs beliefs that are

pessimistic on average if one wishes to obtain the “smile” that is observed in prices of options.

4.3 The state price density

In the section above, we have characterized the dynamics of the state price density for the central

planner and also for each individual agent. We now give the level of the equilibrium state-price

density using convergent series, where the individual terms depend solely on exogenous variables and

are written in terms of the state-price densities of single-agent economies, that is, π̂k,t, k ∈ {1, 2},
defined in (9).

Proposition 8 The equilibrium state-price density is given by

πt =


∑∞

n=0 a
π
n,1π̂

1− n
γ2

1,t π̂
n
γ2
2,t ,

π̂1,t

π̂2,t
> R,∑∞

n=0 a
π
n,2π̂

n
γ1
1,t π̂

1− n
γ1

2,t ,
π̂1,t

π̂2,t
< R,

(41)

18For example, if the difference between the true growth rate of aggregate endowment and the average belief about
this in the economy is 1%, then dividing this by the volatility of the growth rate of endowment of 3% will contribute
an additional 33% to the market price of risk. So, for instance, if the average risk aversion in the economy is 3, then
the first term in (35) is 9%, and the second term is 33%, for a total market price of risk that is 42% p.a.
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where aπn,1 = aπn,2 = 1 for n = 0, and

aπn,1 = γ1
(−1)n+1

n

(
nγ1

γ2
− γ1 − 1

n− 1

)
, n ∈ N, (42)

aπn,2 = γ2
(−1)n+1

n

(
nγ2

γ1
− γ2 − 1

n− 1

)
, n ∈ N. (43)

To interpret the expression for the state price density, observe that in (41) the term on the first

line can be written as19

π̂
1− n

γ2
1,t π̂

n
γ2
2,t = λ

1− n
γ2

1,0 λ
n
γ2
2,0e
−rn,1te−

1
2(θn,1)

2
t−θn,1Zt ,

where

θn,1 =

(
1− n

γ2

)
θ̂1 +

n

γ2
θ̂2, (44)

rn,1 =

(
1− n

γ2

)
r̂1 +

n

γ2
r̂2 +

1

2

(
1− n

γ2

)
n

γ2
(θ̂1 − θ̂2)2. (45)

Thus, the above proposition shows that the equilibrium state-density in (41) can be expressed as

a linear combination of state-price densities from a set of underlying economies with a constant

market price of risk and risk-free rate. Note that the market price of risk, θn,1, is itself a weighted

arithmetic mean of the market prices of risk in the economies where Agents 1 and 2, respectively,

are the sole agents, and the risk-free rate, rn,1, is the weighted arithmetic mean of the individual

agent economy risk-free rates but with an additional term, (θ̂1 − θ̂2)2. This term appears because

both heterogeneity in beliefs and risk aversion give risk to an additional demand for precautionary

savings. When n < γ2, the additional term is positive, leading to a premium (“bubble”) in asset

prices relative to the representative-agent setting, and negative when n > γ2, implying a discount

in asset prices.

The expression for the equilibrium state-density in (41) can be simplified if agents have the

same risk aversion, γ1 = γ2 = γ, and a further simplification is possible if γ is a natural number.

These simpler expressions are given in the corollary below.

Corollary 5 Suppose agents have identical risk aversion, that is, γ1 = γ2 = γ, but different beliefs.

Then the equilibrium state-price density is given by

πt =


∑∞

n=0 a
π
nπ̂

n
γ

2,tπ̂
1−n

γ

1,t , π̂2,t < π̂1,t,∑∞
n=0 a

π
nπ̂

n
γ

1,tπ̂
1−n

γ

2,t , π̂2,t > π̂1,t,

(46)

19The interpretation for the second line of (41) is analogous, and the expressions corresponding to (44) and (45)
are given in equations (A23) and (A24) of the appendix.
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where, denoting by N0 the set of natural numbers that includes 0,

aπn =

(
γ

n

)
, n ∈ N0. (47)

If relative risk aversion, γ, is a natural number, then the equilibrium state-price density can be

further simplified to a finite sum:

πt =

γ∑
n=0

aπnπ̂
1−n

γ

1,t π̂
n
γ

2,t. (48)

Observe that using Newton’s Binomial Theorem (for non-integral powers), we can rewrite the

series expansion in (46) as20

πt =

(
π̂

1
γ

1,t + π̂
1
γ

2,t

)γ
. (49)

The expression for the equilibrium state-price density in (49) is a power mean (with exponent 1
γ )

of the individual agent state-price densities.21

The special case considered in Corollary 5 where γ1 = γ2 = γ, with γ being a natural number,

is similar to the model studied in Dumas, Kurshev, and Uppal (2009, Equation (35)), where they

obtain a similar expression for the state price density. Because γ needs to be a natural number,

this special case does not allow one to study the case of risk aversion smaller than one. Our

Proposition 8, in contrast, allows for different risk aversion parameters for the two agents and does

not restrict their values to be natural numbers.

5 Prices and Risk Premia of Stocks and Bonds

In this section, we derive the stock price, the equity risk premium, the volatility of stock market

returns, and the term structure of interest rates. We then use these results to analyze how hetero-

geneity in beliefs, rates of time preference, and risk aversion impact the equity risk premium, the

volatility of stock market returns, the price-dividend ratio, and the term premium.

5.1 The equity risk premium and volatility of stock market returns

The price of the stock, which pays out the cash flow Yt in perpetuity, is given by

P Yt = Ytp
Y
t ,

20When γ is a natural number, the expression in (49) also follows from (48) by using the Binomial Theorem for
integral powers, and one could also obtain (49) directly from the first-order condition for consumption in (7).

21It follows from well known properties of the power mean, that the state-price density in Equation (49) is increasing
in relative risk aversion, γ. The intuition for this is that more risk averse agents will be more willing to pay for a
unit of consumption in a given state. If γ = 1, the power mean reduces to the arithmetic mean; if γ →∞ it reduces
to the geometric mean; and, if γ → 0, it reduces to the maximum of the individual-agent state-price densities.
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where the price-dividend ratio pYt is:

pYt = Et

∫ ∞
t

πu
πt

Yu
Yt
du. (50)

The risk premium on equity, which pays Yt in perpetuity, is given by the standard asset pricing

equation:

Et

[
dP Yt + Ytdt

P Yt
− rtdt

]
= −Et

[
dπt
πt

dP Yt
P Yt

]
. (51)

Applying Ito’s Lemma to P Yt = Ytp
Y
t and using Equation (51) leads to the following proposition.

Proposition 9 The volatility of stock market returns, σYR,t, is

σYR,t = σY + σν1,t
ν1,t

pYt

∂pYt
∂ν1,t

, (52)

and the risk premium on equity is

µYR,t − rt = θt σ
Y
R,t =

(
Rt σY +

[
µY − µY,t

σY

])
σYR,t; (53)

Agent 1’s perception of the risk premium is given by

µYR,1,t − rt = Rt

(
σY +

ν2,t

γ2

[
µY,1 − µY,2

σY

])
σYR,t;

and, Agent 2’s perception of the risk premium is given by

µYR,2,t − rt = Rt

(
σY +

ν1,t

γ1

[
µY,2 − µY,1

σY

])
σYR,t.

In a model with a single representative investor, stock return volatility, σR,t is equal to funda-

mental volatility, σY . From (52) we see that in a model with heterogeneous investors, stock market

return volatility is the sum of fundamental volatility, σY , and excess volatility, σν1,t
ν1,t

pYt

∂pYν1,t
∂ν1,t

, which

depends on fluctuations in the price-dividend ratio. When demand for precautionary savings is not

too large, the price-dividend ratio is monotonic and countercyclical, and so excess volatility is pos-

itive, as in the data. Figure 4 shows the stock market return volatility σR as a function of the

consumption share of Agent 1. We see from this figure that the excess volatility generated by

heterogeneity in beliefs is not significant,22 but the excess volatility arising from heterogeneous risk

aversions is substantial. Overall, in the model with heterogeneous investors, stock return volatility

is 2–4 times higher than volatility in a model with identical investors. However, for the case where

22This is partly because the value of risk aversions for the two agents in the base case is specified to be 3; if risk
aversion was less than 1, belief heterogeneity would have a larger effect on stock market return volatility.
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the parameters are restricted so that the model is stationary, the model does not generate excess

volatility.

We now discuss the equity risk premium. From Proposition 9, we see that while agents agree

on conditional stock return volatility, they may disagree on the conditional risk premium. The

central planner’s view of the conditional risk premium is given in (53), which is the product of the

market price of risk, θt, and the volatility of stock market returns, σYR,t. The risk premium will be

high when: (i) in aggregate, agents are pessimistic, µY,t < µY ; (ii) the aggregate risk aversion in

the economy, Rt, is high; and (iii) stock return volatility, σYR,t, is high. Quantitatively, the first and

third channels are the most important for generating a risk premium that is high relative to the

risk premium in an economy where agents are homogeneous.23 This can be seen in Figure 5, where

the equity risk premium is substantially higher than what it would be in a homogeneous-agent

economy.24 Even for the case where the parameters are restricted so that the model is stationary,

the equity risk premium is substantially higher than one would get in a representative-agent model,

though it is less than what is observed empirically.

5.2 Price-dividend ratio for equity

We derive an exact closed-form solution for the price-dividend ratio, pYt , by using the series expres-

sion for the state-price density in Proposition 8 to directly evaluate the expectation of the integral

in the right-hand side of (50). Because the state-price density is one of two linear combinations of

state-price densities from a set of underlying economies with constant risk-free rates and market

prices of risk, depending on whether
π̂1,t

π̂2,t
≷ R, the price-dividend ratio pYt in (56) is a sum of two

weighted averages. The first is a weighted average of price-dividend ratios from a set of underlying

economies with constant risk-free rates and market prices of risk conditional on
π̂1,t

π̂2,t
> R, and the

second is a weighted average of price-dividend ratios from a set of underlying economies conditional

on
π̂1,t

π̂2,t
< R.

To identify the price-dividend ratio for equity, we first identify the price-dividend ratio ζYn,1,t

(ζYn,2,t) for a claim that pays Yt in perpetuity if
π̂1,t

π̂2,t
> R

(
π̂1,t

π̂2,t
< R

)
; that is,

ζYn,1,t = Et

∫ ∞
t

π̂
1− n

γ2
1,u π̂

n
γ2
2,u

π̂
1− n

γ2
1,t π̂

n
γ2
2,t

Yu
Yt

1{ π̂1,u
π̂2,u

>R

}du
 , n ∈ N0, (54)

23Note that if stock return volatility, σYR,t, is higher than fundamental volatility, σY , the risk premium can be
higher than in either of the two homogeneous agent economies.

24Above, we have seen that the market price of risk is about 40% p.a., while stock market return volatility is 2–4
times fundamental volatility, so 6%–12% p.a., and therefore, the product of these gives an equity risk premium that is
as much as 2.4% to 4.8% p.a. In contrast, in the homogeneous agent economy the equity risk premium would be the
product of fundamental volatility, 3% p.a., stock market return volatility which in the homogeneous agent economy
is also 3% p.a., and average risk aversion, which we have assumed to be 3, for an equity risk premium that is only
0.27% p.a.
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ζYn,2,t = Et

∫ ∞
t

π̂
n
γ1
1,uπ̂

1− n
γ1

2,u

π̂
n
γ1
1,t π̂

1− n
γ1

2,t

Yu
Yt

1{ π̂1,u
π̂2,u

<R

}du
 , n ∈ N0. (55)

Closed-form expressions for ζYn,1,t and ζYn,2,t are given in (A35) and (A36) in the appendix.25 We

now express the price of equity in terms of the prices of the two claims described above.26

Proposition 10 The time-t price of equity, which pays the cash flow stream, Yt in perpetuity, is

given by P Yt = pYt Yt, where

pYt =
∞∑
n=0

ωn,1,tζ
Y
n,1,t +

∞∑
n=0

ωn,2,tζ
Y
n,2,t,

where the weights ωn,1,t, n ∈ N0, and ωn,2,t, n ∈ N0, are given by

ωn,1,t = aπn,1(νγ1
1,t)

1− n
γ2 (νγ2

2,t)
n
γ2 , n ∈ N0 (56)

ωn,2,t = aπn,2(νγ1
1,t)

n
γ1 (νγ2

2,t)
1− n

γ1 , n ∈ N0, (57)

and each set of weights sums to one:

∞∑
n=0

ωn,1,t =
∞∑
n=0

ωn,2,t = 1.

Note that the price-dividend ratio can be non-monotonic. This is possible, because the expres-

sions for the risk-free rates in the underlying economies, given in (45) and (A24), are weighted

arithmetic means of the individual agent economy risk-free rates plus an additional term, arising

from demand for precautionary savings. When demand for precautionary savings is high, the price-

dividend ratio will be non-monotonic. From (45) and (A24), we can see this will occur when the

individual-agent economy market prices of risk, given in (11), are more heterogeneous. We can see

from (11) that heterogeneity in the market prices of risk will be higher when the more risk averse

agent, Agent 2, is also more pessimistic relative to Agent 1.

Finally, we consider two special cases: the first where the two agents have the same risk aversion,

γ1 = γ2 = γ, and the second, where the two agents have the same risk aversion and γ is a natural

25Recall that in each of the n economies above, the riskfree rate is given by rn,1 or rn,2, and the market price of
risk is given by θn,1 or θn,2, which are defined in Equations (44), (45), (A23) and (A24).

26Observe that this result is valid when Y is any stochastic process, such that the optimization problems of individual
agents are well defined and markets are complete. When Y is Markovian, we can derive a differential equation that
the price of the claim must satisfy. The price-dividend ratio, pYt , depends on the distribution of consumption across
the two agents in the economy, and hence, is a function of the consumption share, that is, pYt = pY (ν1,t). The
differential equation has natural boundary conditions: pY (0) = 1

r̂2+γ2σ
2
Y

−µY,2
and pY (1) = 1

r̂1+γ1σ
2
Y

−µY,1
, which are

a consequence of the equation’s limiting behavior at νk,t = 0, k ∈ {1, 2}. Using the further assumption that Y is a
geometric Brownian motion, this differential equation can be transformed into an inhomogeneous second order linear
differential equation with constant coefficients, which can be solved exactly in closed-form in terms of the Gaussian
hypergeometric function. The latter function can be defined as an infinite series, so we can verify that this result is
a special case of (56), together with (54) and (55).
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number. For these two special cases, the price-dividend ratio for equity is expressed in terms of

ζYn,1,t (ζYn,2,t), which is the price-dividend ratio of the claim which pays the cashflow stream, Yt, in

perpetuity, provided
π̂1,t

π̂2,t
> 1

(
π̂1,t

π̂2,t
< 1
)

:

ζYn,1,t = Et

∫ ∞
t

π̂
1−n

γ

1,u π̂
n
γ

2,u

π̂
1−n

γ

1,t π̂
n
γ

2,t

Yu
Yt

1{ π̂1,u
π̂2,u

>1

}du
 , n ∈ N0, (58)

ζYn,2,t = Et

∫ ∞
t

π̂
n
γ

1,uπ̂
1−n

γ

2,u

π̂
n
γ

1,tπ̂
1−n

γ

2,t

Yu
Yt

1{ π̂1,u
π̂2,u

<1

}du
 , n ∈ N0. (59)

Closed-form expressions for ζYn,1,t and ζYn,2,t are given by (A37) and (A38) in the appendix. We now

give the price-dividend ratio for equity.

Corollary 6 When risk aversions are identical, γ1 = γ2 = γ, then

pYt =
∞∑
n=0

ωn,1,tζ
Y
n,1,t +

∞∑
n=0

ωn,2,tζ
Y
n,2,t,

where

ωn,1,t =

(
γ

n

)
(νγ1,t)

1−n
γ (νγ2,t)

n
γ , n ∈ N0 (60)

ωn,2,t =

(
γ

n

)
(νγ1,t)

n
γ (νγ2,t)

1−n
γ , n ∈ N0. (61)

If in addition to risk aversions being identical, γ1 = γ2 = γ, we also have that γ ∈ N, then the

above expressions simplify further to:

pYt =

γ∑
n=0

ωn,t p
Y
n , (62)

where

pYn = (rn + γσsysY σY − µnY )−1,

rn = βn + γµnY −
1

2
γ(1 + γ)σ2

Y +
1

2

(
n

γ

)(
1− n

γ

)
σ2
ξ ,

βn =

(
1− n

γ

)
β1 +

(
n

γ

)
β2,

µnY =

(
1− n

γ

)
µY,1 +

(
n

γ

)
µY,2,

ωn,t =

(
γ
n

)(
ν

1−n
γ

1,t ν
n
γ

2,t

)γ
.
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From (62), we see that the price-dividend ratio in the economy with heterogenous beliefs is

a weighted sum of the price-dividend ratios in 1 + γ homogeneous agent economies, where in the

n’th such economy, the agent has a rate of time preference given by βn, and her beliefs about the

expected growth rate of the endowment are a weighted average of the beliefs in the heterogenous

agent economy, where the weights are 1 − n
γ and n

γ , respectively.27 The special case considered

in Corollary 6 is similar to the model studied by Yan (2008, Proposition 3), where he obtains

closed-form results for only the case in which the risk aversion parameter γ is identical across agent

and γ is a natural number, which then excludes the case of risk aversion smaller than one. Our

Proposition 10, in contrast, allows for different risk aversion parameters for the two agents and

does not restrict their values to be natural numbers.

5.3 Valuation of risky and riskless zero-coupon claims

In the previous section, we studied the price of equity, which is an asset that pays a stream of

cashflows in perpetuity. We now explore the term structure of zero-coupon risky and riskfree

claims in the presence of heterogeneity in beliefs and preferences. We start by defining the yield on

a risky zero-coupon claim, yYT−t:

yYT−t = − 1

T − t
ln
V Y
T−t
Yt

.

The following proposition describes this yield when the maturity of the claim is infinite, that is,

the “long-term” yield.

Proposition 11 The long-term yield on the risky zero-coupon claim, yYT−t, which pays the cash

flow YT at time T is given by

lim
T→∞

yYT−t = min
(
r̂1 + γ1 σ

2
Y − µY,1, r̂2 + γ2 σ

2
Y − µY,2

)
.

The long-term yield on the riskfree zero-coupon discount bond, y1
T−t, as T →∞ is

lim
T→∞

y1
T−t = min

(
r̂1, r̂2

)
,

and the limit of the term premium, the difference between y1
T−t and the short rate, rt, is:

lim
T→∞

y1
T−t − rt = min

(
r̂1, r̂2

)
− rt.

27The n’th weight in the sum is given by the expression in (63); observe that the weights sum to one, because

γ∑
n=0

(
γ
n

)(
ν

1−n
γ

1,t ν
n
γ

2,t

)γ
= (ν1,t + ν2,t)

γ = 1.
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Observe that each term inside the min operator in (63) has the following interpretation: r̂k is

the riskless interest rate in a homogeneous-agent economy where the agent is of type k; the term

γk σ
2
Y is the adjustment to the riskless return for bearing risk in this economy, so the sum of the

first two terms gives the expected return adjusted for risk; and, the last term is the growth rate

expected by Agent k. Together, the three terms give the “discount rate” used by Agent k for

valuing risky cashflows.

Proposition 11 implies that the long-term yield will be set by whichever agent has the lower

discount rate, and not necessarily the agent who survives P-almost surely in the long run. The

intuition is that even though an agent may not survive in the long-run in the almost-surely sense,

she may still be the dominant agent in rare states of the world, which are also high marginal utility

states for this investor, and thus important for asset prices, as explained in Kogan, Ross, Wang,

and Westerfield (2006).

Corollary 7 Suppose agents have identical preferences, and Agent 1 has correct beliefs, whereas

Agent 2 has incorrect beliefs about the expected growth rate of the economy. Then the economy is

P-a.s. non-stationary, since Agent 2 (with incorrect beliefs) does not survive P-a.s. The long-term

yield, yYT−t, is set by Agent 2 if and only if (i) µY,2 < µY and γ > 1, or (ii) µY,2 > µY and γ < 1.

Empirically, the nominal term premium (for riskless bonds) is smaller than the equity risk

premium (see Campbell (2003)), while there is little empirical evidence on the magnitude of the

real term premium. In our model, we also find that the term premium is smaller than the equity

risk premium, though the difference is not as substantial as in the data. From Figure 6, we see

that the term premium is around 1.5% in magnitude over most of the state space, even when we

restrict the parameters so that the model is stationary. The figure also shows that heterogeneity

in risk aversion alone would generate a very large term premium, but heterogeneity in beliefs plays

an important role in reducing the magnitude of the term premium.

6 Conclusion

In this paper, we study an endowment economy where there are two types of agents, each with

expected (power) utility. The two agents are heterogeneous with respect to their preference param-

eters for the subjective rate of time preference and relative risk aversion, and also with respect to

their beliefs. The two agents can invest in a stock, which is a claim on endowment, and a instanta-

neously risk free asset, which is in zero net supply. Our main contribution is to solve in closed form

for the equilibrium in this economy and to identify the optimal consumption-sharing rule, without

restricting the risk aversions of the two agents to particular values. We use this closed-form solution

to identify the market price of risk, the locally risk free interest rate and its volatility, the stock
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price, the equity market risk premium, the volatility of stock returns , and the term structure of

interest rates. We then analyze how heterogeneity in preferences and beliefs affects the properties

of asset returns.

We find that beliefs about the growth rate of aggregate endowment that are pessimistic on

average lead to a significant increase in the market price of risk. Moreover, heterogeneity in prefer-

ences and beliefs increase stock-return volatility by as much as two to three times the fundamental

volatility of aggregate endowment. Consequently, the equity risk premium, which is the product of

the market price of risk and stock return volatility, is considerably higher in a model where both

beliefs and preferences are heterogeneous, and this is accompanied neither by an increase in the

level of the short-term riskless rate, nor an increase in its volatility. When the parameters values

are restricted so that the model is stationary, one can still obtain a high market price of risk and

equity risk premium, but not stock return volatility that is in excess of fundamental volatility.
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A Appendix: Proofs for Propositions and Corollaries

Proof of Proposition 1: Consumption-sharing rule

Equation (12) is equivalent to

At(1− ν1,t)
η = ν1,t,

which implicitly defines ν1,t in terms of At. To solve explicitly for ν1,t, we apply Theorem C2,

expanding around the point ν1,t = 0, with

f(z) = z(1− z)−η, (A1)

ϕ(z) = (1− z)η, (A2)

g(z) = z,

after showing that f is complex analytic in some neighborhood of 0. We know from the binomial

series expansion that for z ∈ C, such that |z| < 1,

(1− z)−η =

∞∑
n=0

(
−η
k

)
(−)nzn,

where
(−η
k

)
= Πk

j=1
−η−k+j

j is the generalized binomial coefficient. Therefore, (1− z)−η is complex

analytic in the open ball {z ∈ C : |z| < 1}. Since z is complex analytic for all z ∈ C, it follows that

f as defined in (A1) is complex analytic in the open ball {z ∈ C : |z| < 1}. It therefore follows

from Theorem C2 that

ν1,t =
∞∑
n=1

Ant
n!

dn−1

dxn−1
[(1− x)ηn]x=0 .

Since

dn−1

dxn−1
[(1− x)nη] = (−)n−1ηn(ηn− 1)(ηn− 2) . . . (ηn− (n− 2))(1− x)ηn−(n−1),

it follows that

ν1,t = −
∞∑
n=1

(−At)n

n

(
ηn

n− 1

)
, (A3)

ν2,t = 1 +

∞∑
n=1

(−At)n

n

(
ηn

n− 1

)
. (A4)

We shall now determine the radius of convergence of the above series. From d’Alembert’s ratio

test, it follows that the above series converge absolutely for all A ∈ C s.t. |A| < R, where

R = lim
n→∞

n+ 1

n

∣∣∣∣∣
(
ηn
n−1

)(
η(n+1)
n

)∣∣∣∣∣ .
We wish to evaluate the above limit for all η ∈ R such that η > 1. Hence,

(
ηn
n−1

)
and

(
η(n+1)
n

)
are

positive and real, and so

R = lim
n→∞

n+ 1

n

(
ηn
n−1

)(
η(n+1)
n

) .
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We note that the generalized binomial coefficient,
(
z
k

)
= Πk

j=1
z−k+j
j , can be written as(

z

k

)
=

Γ(z + 1)

Γ(z − k + 1)Γ(k + 1)
, (A5)

where Γ(z) is the Gamma function, which for <(z) > 0 (where <(z) denotes the real part of z),

has the integral representation,

Γ(z) =

∫ ∞
0

tz−1e−tdt.

The Euler Beta function, B(x, y), defined by

B(x, y) =

∫ 1

0
tx−1(1− t)y−1dt,

can be written in terms of the Gamma function as follows,

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
. (A6)

Together with (A5), the above expression implies that the generalized binomial coefficient is given

by (
z

k

)
=

1

(z + 1)B(z − k + 1, k + 1)
. (A7)

Hence,

R = lim
n→∞

n+ 1

n

η(n+ 1) + 1

ηn+ 1

B((η − 1)(n+ 1), n+ 1)

B((η − 1)n, n)
.

To evaluate the above limit, we start by recalling Stirling’s series for the Gamma function

Γ(z) =
√

2πe−zzz−
1
2

(
1 +O

(
1

z

))
, (A8)

which together with (A6) implies that

R = lim
n→∞

n+ 1

n

η(n+ 1) + 1

ηn+ 1

((η−1)(n+1))(η−1)(n+1)− 1
2 (n+1)(n+1)− 1

2

((η−1)(n+1)+(n+1))((η−1)(n+1)+(n+1))− 1
2

((η−1)n)((η−1)n)− 1
2 nn−

1
2

(((η−1)n)+n)(((η−1)n)+n)− 1
2

.

Simplifying the above expression gives

R = lim
n→∞

n+ 1

n

η(n+ 1) + 1

ηn+ 1

(η−1)(η−1)(n+1)−1/2(n+1)η(n+1)−1

[η(n+1)]η(n+1)−1/2

(η−1)(η−1)n−1/2nηn−1

(ηn)ηn−1/2

=
(η − 1)η−1

ηη
. (A9)

Since At is a geometric Brownian motion, it is positive and real. Hence, the right-hand side of (A4)

is absolutely convergent for At <
(η−1)η−1

ηη .
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We now derive a series expansion for ν2,t in terms of At, which is absolutely convergent for

At >
(η−1)η−1

ηη . We start by rearranging (12) to obtain

ν2,t = A
−1/η
t (1− ν2,t)

1/η.

To find ν2,t, we apply Theorem C2, expanding around the point ν2,t = 0, with f , ϕ and g, defined

as below

f(z) = z(1− z)−1/η (A10)

ϕ(z) = (1− z)1/η (A11)

g(z) = z.

We can show that our newly defined f is complex analytic in the open ball, {z ∈ C : |z| < 1}, in

the same way as for (A1). Hence, Theorem C2 implies that

ν2,t =

∞∑
n=1

(A
−1/η
t )n

n!

dn−1

dxn−1

[
(1− x)n/η

]
x=0

.

Because

dn−1

dxn−1

[
(1− x)n/η

]
= (−)n−1n

η

(
n

η
− 1

)(
n

η
− 2

)
. . .

(
n

η
− (n− 2)

)
(1− x)

n
η
−(n−1)

,

it follows that

ν2,t = −
∞∑
n=1

(−A
− 1
η

t )n

n

( n
η

n− 1

)
=
∞∑
n=1

(−)n−1(A
− 1
η

t )n

n

( n
η

n− 1

)
. (A12)

By comparing the above expression with (A3), we can see that (A12) is absolutely convergent if

A
−1/η
t <

( 1
η
−1)

1
η−1

1
η

1
η

, that is, if At >
(η−1)η−1

ηη . To summarize, we have

ν2,t =

 −∑∞n=1

(
−A

− 1
η

t

)n
n

( n
η

n−1

)
, At > R,

1 +
∑∞

n=1
(−At)n

n

(
nη
n−1

)
, At < R,

where R is given in (A9). Using (13) we can write the expressions for the sharing rule as (15).

Proof of Proposition 2: Dynamics of the consumption-sharing rule

We first derive a stochastic differential equation satisfied by ν1,t by treating ν1,t as a function of t,

Y and ξ. Differentiating (6) implicitly with respect to t gives

β1 + γ1
1

ν1,t

∂ν1,t

∂t
= β2 − γ2

1

ν2,t

∂ν1,t

∂t
.

Solving for ∂ν1,t/∂t, we obtain

∂ν1,t

∂t
=

1

γ1

1

γ2
ν1,tν2,t (β2 − β1) Rt,
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where Rt is the average relative risk aversion in the economy, defined in (16). Differentiating (6)

implicitly with respect Yt and solving for ∂ν1,t/∂Yt gives

Yt
∂ν1,t

∂Yt
=

(
1

γ1
− 1

γ2

)
ν1,tν2,tRt. (A13)

Partial differentiation of each side of (A13) with respect to Yt and solving for ∂2ν1,t/∂Y
2
t gives

Y 2
t

∂2ν1,t

∂Y 2
t

=

(
1

γ1
− 1

γ2

)
ν1,tν2,tRt

(
R2
t

γ1γ2
− 2

)
.

Differentiating (6) implicitly with respect to ξ gives

a1e
−β1tY −γ1

t ν−γ1
1,t

(
− γ1

ν1,t

∂ν1,t

∂ξt

)
= a2e

−β2tY −γ2
t ν−γ2

2,t ξt
1

ξt
+ a2e

−β2tY −γ1
t ν−γ2

2,t ξt

(
− γ2

ν2,t

∂ν2,t

∂ξt

)
∂ν1,t

∂ξt
= −ξ

−1
t ν1,tν2,t

γ1γ2
Rt.

Therefore,

∂2ν1,t

∂2ξt
= − 1

γ1γ2

∂

∂ξt

[
ξ−1
t ν1,tν2,tRt

]
= − 1

γ1γ2

[
−ξ−2

t ν1,tν2,tRt + ξ−1
t

∂(ν1,tν2,tRt)

∂ξt

]
.

Now note that

∂(ν1,tν2,tRt)

∂ξt
= ν1,tν2,t

∂Rt

∂ξt
+ Rt

(
ν1,t

∂ν2,t

∂ξt
+ ν2,t

∂ν1,t

∂ξt

)
= ν1,tν2,t

∂Rt

∂ξt
+ Rt

∂ν1,t

∂ξt
(ν2,t − ν1,t) .

We now compute ∂Rt
∂ξt

:

∂Rt

∂ξt
= −R2

t

(
1

γ1

∂ν1,t

∂ξt
+

1

γ2

∂ν2,t

∂ξt

)
= −R2

t

(
1

γ1
− 1

γ2

)
∂ν1,t

∂ξt
.

Therefore,

∂(ν1,tν2,tRt)

∂ξt
= −ν1,tν2,tR

2
t

(
1

γ1
− 1

γ2

)
∂ν1,t

∂ξt
+ Rt

∂ν1,t

∂ξt
(ν2,t − ν1,t)

= −ξ−1
t ν1,tν2,t

R2
t

γ1γ2

(
−ν1,tν2,tRt

(
1

γ1
− 1

γ2

)
+ ν2,t − ν1,t

)
.

Hence,

∂2ν1,t

∂ξ2
t

= − 1

γ1γ2

[
−ξ−2

t ν1,tν2,tRt − ξ−2
t ν1,tν2,t

R2
t

γ1γ2

(
−ν1,tν2,tRt

(
1

γ1
− 1

γ2

)
+ ν2,t − ν1,t

)]
=

1

γ1γ2
ξ−2
t ν1,tν2,tRt

[
1 +

Rt

γ1γ2

(
−ν1,tν2,tRt

(
1

γ1
− 1

γ2

)
+ ν2,t − ν1,t

)]
.

The mixed partial derivative,
∂2ν1,t

∂Y ∂ξt
, is given by

∂2ν1,t

∂Y ∂ξt
= − 1

γ1γ2

∂

∂Yt

[
ξ−1
t ν1,tν2,tRt

]
= − 1

γ1γ2
ξ−1
t

{
Rt

∂

∂Yt
[ν1,tν2,t] + ν1,tν2,t

∂Rt

∂Yt

}
.
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Hence, we compute

∂

∂Yt
[ν1,tν2,t] =

∂ν1,t

∂Yt
ν2,t +

∂ν2,t

∂Yt
ν1,t =

∂ν1,t

∂Yt
ν2,t −

∂ν1,t

∂Yt
ν1,t =

∂ν1,t

∂Yt
(ν2,t − ν1,t),

and

∂Rt

∂Yt
= −R2

t

(
1

γ1

∂ν1,t

∂Yt
+

1

γ2

∂ν2,t

∂Yt

)
= −R2

t

(
1

γ1
− 1

γ2

)
∂ν1,t

∂Yt
.

Thus, we obtain

∂2ν1,t

∂Y ∂ξt
= − 1

γ1γ2
ξ−1
t

{
Rt

∂

∂Yt
[ν1,tν2,t] + ν1,tν2,t

∂Rt

∂Yt

}
=

−1

γ1γ2
Y −1
t ξ−1

t

(
1

γ1
− 1

γ2

)
ν1,tν2,tR

2
t

{
(ν2,t − ν1,t)− ν1,tν2,tRt

(
1

γ1
− 1

γ2

)}
.

From Ito’s Lemma

dν1,t =

(
∂ν1,t

∂t
+ Yt

∂ν1,t

∂Yt
µY + ξt

∂ν1,t

∂ξt
µξ +

1

2
Y 2
t

∂2ν1,t

∂Y 2
t

σ2
Y +

1

2
ξ2
t

∂2ν1,t

∂ξ2
t

σ2
ξ + ξtYt

∂ν2
1,t

∂ξt∂Yt
σY σξ

)
dt

+

(
Yt
∂ν1,t

∂Yt
σY + ξt

∂ν1,t

∂ξt
σξ

)
dZt,

which under measure P1 becomes

dν1,t =

(
∂ν1,t

∂t
+ Yt

∂ν1,t

∂Yt
µY,1 +

1

2
Y 2
t

∂2ν1,t

∂Y 2
t

σ2
Y +

1

2
ξ2
t

∂2ν1,t

∂ξ2
t

σ2
ξ + ξtYt

∂ν2
1,t

∂ξt∂Yt
σY σξ

)
dt

+

(
Yt
∂ν1,t

∂Yt
σY + ξt

∂ν1,t

∂ξt
σξ

)
dZ1,t,

and under measure P2 is

dν1,t =

(
∂ν1,t

∂t
+ Yt

∂ν1,t

∂Yt
µY,2 + ξt

∂ν1,t

∂ξt
σ2
ξ +

1

2
Y 2
t

∂2ν1,t

∂Y 2
t

σ2
Y +

1

2
ξ2
t

∂2ν1,t

∂ξ2
t

σ2
ξ + ξtYt

∂ν2
1,t

∂ξt∂Yt
σY σξ

)
dt

+

(
Yt
∂ν1,t

∂Yt
σY + ξt

∂ν1,t

∂ξt
σξ

)
dZ2,t.

Substituting the partial derivatives into these equations, followed by some straightforward algebra,

leads to the results stated in the proposition.

Similarly, one can show that Agent k believes the evolution of the sharing rule is given by

dν1,t

ν1,t
= µP

k

ν1,t
dt+ σν1,tdZk,t,

where

µP
1

ν1,t
= µν1,t + σξ,1σν1,t

= ν2,t
Rt

γ1γ2

{
(β2 − β1) + (γ2 − γ1)µY,1 −

(
ν2

2,t

γ2
−
ν2

1,t

γ1

)
R2
t

(
1

γ1
− 1

γ2

)
(µY,2 − µY,1)

+
1

2
(γ2 − γ1)

(
R2
t

γ1γ2
− 2

)
σ2
Y +

1

2
σ2
ξ

((
ν2

2,t

γ2
−
ν2

1,t

γ1

)
R2
t

γ1γ2
+ 1

)}
, (A14)
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and

µP
2

ν1,t
= µν1,t + σξ,2σν1,t

= ν2,t
Rt

γ1γ2

{
(β2 − β1) + (γ2 − γ1)µY,2 −

(
ν2

2,t

γ2
−
ν2

1,t

γ1

)
R2
t

(
1

γ1
− 1

γ2

)
(µY,2 − µY,1)

+
1

2
(γ2 − γ1)

(
R2
t

γ1γ2
− 2

)
σ2
Y +

1

2
σ2
ξ

((
ν2

2,t

γ2
−
ν2

1,t

γ1

)
R2
t

γ1γ2
− 1

)}
.

Proof of Proposition 3: Almost-sure survival

Equation (12) can be rewritten as

νγ2
2,t = Y

−(γ2−γ1)
0

λ2,0

λ1,0
e−(β2−β1)te−

1
2

(σ2
ξ,2−σ

2
ξ,2)t+(σξ,2−σξ,1)Zte−(γ2−γ1)[(µY − 1

2
σ2
Y )t+σY Zt]νγ1

1,t.

Thus,

νη2,t =

(
Y
−(γ2−γ1)

0

λ2,0

λ1,0
e−(β2−β1)te−

1
2

(σ2
ξ,2−σ

2
ξ,1)t+(σξ,2−σξ,1)Zte−(γ2−γ1)[(µY − 1

2
σ2
Y )t+σY Zt]

)1/γ1

ν1,t,

which implies that

νη2,t

Y (γ2−γ1)
0

λ1,0

λ2,0
e

[
β2−β1−

(µY,2−µY,1)(µY − 1
2 (µY,1+µY,2))

σ2
Y

+(γ2−γ1)(µY − 1
2
σ2
Y )

]
t

e

[
µY,1−µY,2

σY
+(γ2−γ1)σY

]
Zt

 = ν1,t.

(A15)

Now, recall the standard results that

lim
t→∞

eat+bZt =

{
∞, P− a.s., a > 0,
0, P− a.s., a < 0,

and

lim sup
t→∞

ebZt = ∞,

lim inf
t→∞

ebZt = 0.

From the above results it follows that to ensure that limt→∞ e
at+bZt is strictly between zero and

infinity, we need to have both a and b equal to zero. It then follows from the expression in (A15)

that both agents will survive P-a.s., that is, the economy will be stationary almost surely under P,

if and only if (22) and (23) hold.

Under P1, (A15) becomes

νη2,t

(
Y

(γ2−γ1)
0

λ1

λ2
e(β2−β1)te

1
2
σ2
ξ t+(σξ,1−σξ,2)Zte(γ2−γ1)[(µY,1− 1

2
σ2
Y )t+σY Z1,t]

)1/γ1

= ν1,t.
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It follows that Agent 1 believes the economy is almost surely stationary if and only if (22) and

(A16) hold:

(β2 − β1) +
1

2
σ2
ξ + (γ2 − γ1)(µY,1 −

1

2
σ2
Y ) = 0. (A16)

Under P2, (A15) becomes

νη2,t

(
Y

(γ2−γ1)
0

λ1,0

λ2,0
e(β2−β1)te−

1
2
σ2
ξ t+(σξ,1−σξ,2)Zte(γ2−γ1)[(µY,2− 1

2
σ2
Y )t+σY Z2,t]

)1/γ1

= ν1,t.

So, Agent 2 believes the economy is almost surely stationary if and only if (22) and (A17) hold:

(β2 − β1)− 1

2
σ2
ξ + (γ2 − γ1)(µY,2 −

1

2
σ2
Y ) = 0. (A17)

Proof of Proposition 4: Survival in the mean

First we compute Etν2,t+u, E1
t ν2,t+u, and E2

t ν2,t+u. Then we take limits as u→∞. Thus,

Et[ν2,t+u] = Et

[ ∞∑
n=1

(−)n+1

n

(
π̂2,t+u

π̂1,t+u

) n
γ2

(
nγ1

γ2

n− 1

)
1{ π̂1,t+u

π̂2,t+u
>R

}
]

+Et

[
1−

∞∑
n=1

(−)n+1

n

(
π̂1,t+u

π̂2,t+u

) n
γ1

(
nγ2

γ1

n− 1

)
1{ π̂1,t+u

π̂2,t+u
<R

}
]
.

The infinite series in the expressions above are complex analytic functions of
(
π̂2
π̂1

) 1
γ2 for

{
π̂1
π̂2
∈ C : | π̂1

π̂2
| > R

}
,

and
(
π̂1
π̂2

) 1
γ1 for

{
π̂1
π̂2
∈ C : | π̂1

π̂2
| < R

}
, respectively. Therefore, term-by-term integration is valid, and

Et[ν2,t+u] =
∞∑
n=1

(−)n+1

n

(
nγ1

γ2

n− 1

)
Et

[(
π̂2,t+u

π̂1,t+u

) n
γ2

1{ π̂1,t+u
π̂2,t+u

>R

}
]

+Et

[
1{ π̂1,t+u

π̂2,t+u
<R

}
]
−
∞∑
n=1

(−)n+1

n

(
nγ2

γ1

n− 1

)
Et

[(
π̂1,t+u

π̂2,t+u

) n
γ1

1{ π̂1,t+u
π̂2,t+u

<R

}
]
.

From Lemma B2 in Appendix B it follows that

Et
[
Ant+u1{At+u<R}

]
= Ant e

n(µA,1− 1
2
σ2
A)uen

2σ2
AuΦ

 ln
(
R
At

)
−
(
µA − 1

2σ
2
A

)
u

σ
√
u

− nσA
√
u

 ,

and

Et

[
A
−n
η

t+u1{At+u>R}

]
= A

−n
η

t e
−n
η (µA− 1

2
σ2
A)ue

(
n
η

)2
σ2
AuΦ

− ln
(
R
At

)
+
(
µA − 1

2σ
2
A

)
u

σ
√
u

− n

η
σA
√
u

 ,
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where A is given in (13), µA and σA are the drift (under P) and diffusion coefficients, respectively

of dA
A , i.e.

µA =
β2 − β1

γ1
+ (η − 1)

(
µY −

1

2
σ2
Y

)
− 1

2γ1
σ2
ξ +

1

2
σ2
A,

σA = (η − 1)σY −
1

γ1
σξ.

Since A is given by (13), we can rewrite (A18) and (A18) in the following more symmetric form:

Et

[(
π̂1,t+u

π̂2,t+u

) n
γ1

1{ π̂1,t+u
π̂2,t+u

<R

}
]

=

(
π̂1,t

π̂2,t

) n
γ1

e
n
γ1
µ∆ue

(
n
γ1

)2
σ2

∆uΦ


ln

(
R
π̂1,t
π̂2,t

)
− µ∆u

σ∆
√
u

− n

γ1
σ∆

√
u

 ,

and

Et

[(
π̂2,t+u

π̂1,t+u

) n
γ2

1{ π̂1,t+u
π̂2,t+u

>R

}
]

=

(
π̂2,t

π̂1,t

) n
γ2

e
− n
γ2
µ∆ue

(
n
γ2

)2
σ2

∆uΦ


− ln

(
R
π̂1,t
π̂2,t

)
+ µ∆u

σ∆
√
u

− n

γ2
σ∆

√
u

 ,

where µ∆ and σ∆ are the drift (under P) and diffusion components, respectively, of ln
π1,t

π2,t
, and are:

µ∆ = β2 − β1 + (γ2 − γ1)

(
µY −

1

2
σ2
Y

)
− 1

2
σ2
ξ , (A18)

σ∆ = (γ2 − γ1)σY − σξ. (A19)

Therefore,

Etν2,t+u = Φ


ln

(
R
π̂1,t
π̂2,t

)
− µ∆u

σ∆
√
u



+

∞∑
n=1

(−)
−n

n

(
nγ2

γ1

n− 1

)(
π̂1,t

π̂2,t

) n
γ1

e
n
γ1
µ∆ue

(
n
γ1

)2
σ2

∆uΦ


ln

(
R
π̂1,t
π̂2,t

)
− µ∆u

σ∆
√
u

− n

γ1
σ∆

√
u



−
∞∑
n=1

(−)
−n

n

(
nγ1

γ2

n− 1

)(
π̂2,t

π̂1,t

) n
γ2

e−
n
γ2
µ∆ue

(
n
γ2

)2
σ2

∆uΦ


− ln

(
R
π̂1,t
π̂2,t

)
+ µ∆u

σ∆
√
u

− n

γ2
σ∆

√
u

 .
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We can show that limu→∞ and
∑∞

n=1 can be interchanged (details are available upon request),

which implies that

lim
u→∞

Et [ν2,t+u] = lim
u→∞

Φ


ln

(
R
π̂1,t
π̂2,t

)
− µ∆u

σ∆
√
u

 =


0 , µ∆ > 0,

1
2 , µ∆ = 0,

1 , µ∆ < 0.

Therefore, the economy is mean stationary under P if and only if µ∆ = 0; that is,

β1 − β2 − (γ2 − γ1)

(
µY −

1

2
σ2
Y

)
− 1

2
(σ2
ξ,2 − σ2

ξ,1) = 0.

Similarly, we can evaluate E1
t ν2,t and E2

t ν2,t, and obtain necessary and sufficient conditions for

mean stationarity under P1 and P2, given in (A16) and (A17), respectively.

Proof of Corollary 1: Mean stationary under identical preferences

Suppose β1 = β2 = β, γ1 = γ2 = γ, and µY,1 6= µY,2. Then (23) reduces to (24).

Proof of Proposition 5: Riskfree rate

Agent 1’s state price density, π1,t, is given in (3). Since C1,t = ν1,tYt, it follows from Ito’s Lemma

that

dπ1,t

π1,t
= −

[
β1 + γ1

(
µY,1 + µP

1

ν1,t + σY σν1,t

)
− 1

2
γ1 (1 + γ1) (σY + σν1,t)

2

]
dt

− γ1 (σY + σν1,t) dZ1,t.

Hence, from (28), we have

rt = β1 + γ1

(
µY,1 + µP

1

ν1,t + σY σν1,t

)
− 1

2
γ1 (1 + γ1) (σY + σν1,t)

2 .

Substituting the expressions for µP
1

ν1,t and σν1,t from (A14) and (17), respectively, into (A20) and

simplifying gives (29).

Proof of Corollary 2: Riskfree rate with correct beliefs or with identical risk
aversions

Equation (30) follows from (29) after setting µY,1 = µY,2 = µY , and simplifying.

Proof of Proposition 6: Volatility of the risk-free rate

Applying Ito’s Lemma to rt, we obtain

drt = µr,tdt+ σr,tdZt,
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where

µr,t = ν1,t
∂rt
∂ν1,t

µν1,t +
1

2
ν2

1,t

∂2rt
∂ν2

1,t

σ2
ν1,t

σr,t = ν1,t
∂rt
∂ν1,t

σν1,t.

Substituting (29) and (17) into the above expression and simplifying gives (32).

Proof of Corollary 3: Volatility of the risk-free rate if risk aversions or beliefs
are identical

If the two agents have identical risk aversion, γ1 = γ2 = γ, then the volatility of the interest rate in

(32) reduces to the expression in (33). On the other hand, if the two agents have identical beliefs,

µY,1 = µY,2 = µY , then the volatility of the interest rate in (32) reduces to (34).

Proof of Proposition 7: Market price of risk

Equation (A20) gives the dynamics for Agent 1’s state price density, π1,t. Hence, from (28), we

have

θ1,t = γ1

(
σY + σνγ1 ,t

)
, (A20)

Substituting the expression for σν1,t from (17) into (A20) and simplifying gives (36).

Proof of Corollary 4: Market price of risk with correct beliefs or with identical
risk aversions

Equation (38) follows from (36) after setting µY,1 = µY,2 = µY , and simplifying. Equations (39)

and (40) follow from (36) after setting γ1 = γ2 = γ, and simplifying.

Proof of Proposition 8: State-price density

The equilibrium state price density is given by (26). To find a closed-form expression for the

equilibrium state-price density, we find series expansions for ν−γkk,t , k ∈ {1, 2}. To find a series

expansion for ν−γ2
2,t , note that

ν−γ2
2,t = (1− ν1,t)

−γ2 ,

and use Theorem C2 to expand around the point ν1,t = 0. To do this we define

g(z) = (1− z)−γ2 ,
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which is complex analytic in the open ball {z ∈ C : |z| < 1}. Hence, with f and ϕ defined as in

(A1) and (A2), respectively, Theorem C2 implies that

g(ν1,t) = (1− ν1,t)
−γ2

= g(0) +
∞∑
n=1

Ant
n!

dn−1

dxn−1

[
g′(x)ϕ(x)n

]
x=0

= 1 +

∞∑
n=1

Ant
n!

dn−1

dxn−1

[
γ2(1− x)nη−γ2−1

]
x=0

.

Since,

dn−1

dxn−1
γ2(1− x)nη−γ2−1

= γ2(−)n−1 (nη − γ2 − 1) (nη − γ2 − 2) . . . (nη − γ2 − (n− 1)) (1− x)nη−γ2−(n−1),

it follows that

ν−γ2
2,t = 1− γ2

∞∑
n=1

(−At)n

n

(
nη − γ2 − 1

n− 1

)
.

D’Alembert’s ratio test implies that the above series converges absolutely for all A ∈ C such that

|A| < R, where

R = lim
n→∞

n+ 1

n

(
ηn−γ2−1
n−1

)(
η(n+1)−γ2−1

n

) .
Using (A7), we rewrite the above expression as

R = lim
n→∞

n+ 1

n

η(n+ 1)− γ2

ηn− γ2

B((η − 1)(n+ 1)− γ2 − 1, n+ 1)

B((η − 1)n− γ2 − 1, n)
.

Hence, using (A6) and (A8), we obtain

R = lim
n→∞

n+ 1

n

η(n+ 1)− γ2

ηn− γ2

[(η−1)(n+1)−(1+γ2)](η−1)(n+1)−(1+γ2)−1/2(n+1)n+1−1/2

[η(n+1)−(1+γ2)]η(n+1)−(1+γ2)−1/2

[(η−1)n−(1+γ2)](η−1)n−(1+γ2)−1/2nn−1/2

[ηn−(1+γ2)]ηn−(1+γ2)−1/2

.

We now simplify the expression

[(η−1)(n+1)−(1+γ2)](η−1)(n+1)−(1+γ2)−1/2(n+1)n+1−1/2

[η(n+1)−(1+γ2)]η(n+1)−(1+γ2)−1/2

[(η−1)n−(1+γ2)](η−1)n−(1+γ2)−1/2nn−1/2

[ηn−(1+γ2)]ηn−(1+γ2)−1/2

. (A21)

Simplifying the numerator of the above expression gives

[(η − 1)(n+ 1)− (1 + γ2)](η−1)(n+1)−(1+γ2)− 1
2 (n+ 1)n+1−1/2

[η(n+ 1)− (1 + γ2)]η(n+1)−(1+γ2)− 1
2

=

(η − 1)(η−1)(n+1)−(γ2+1)− 1
2

([
1− γ2+1

(η−1)(n+1)

](n+1)
)(η−1) [

1− γ2+1
(η−1)(n+1)

]−(1+γ2+ 1
2

)

√
n+ 1 ηη(n+1)−(γ2+1)− 1

2

([
1− γ2+1

η(n+1)

](n+1)
)η [

1− γ2+1
η(n+1)

]−(1+γ2+ 1
2

)
.
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Similarly for the denominator of (A21)

[(η − 1)n− (1 + γ2)](η−1)n−(1+γ2)−1/2nn−1/2

[ηn− (1 + γ2)]ηn−(1+γ2)−1/2

=
(η − 1)(η−1)n−(γ2+1)− 1

2

([
1− γ2+1

(η−1)n

]n)(η−1) [
1− γ2+1

(η−1)n

]−(1+γ2+ 1
2

)

√
n ηηn−(γ2+1)− 1

2

([
1− γ2+1

ηn

]n)η [
1− γ2+1

ηn

]−(1+γ2+ 1
2

)
.

Therefore,

R = lim
n→∞

n+ 1

n

η(n+ 1)− γ2

ηn− γ2

(η−1)(η−1)(n+1)−(γ2+1)− 1
2

([
1− γ2+1

(η−1)(n+1)

](n+1)
)(η−1)[

1− γ2+1
(η−1)(n+1)

]−(1+γ2+ 1
2 )

√
n+1 ηη(n+1)−(γ2+1)− 1

2

([
1− γ2+1

η(n+1)

](n+1)
)η[

1− γ2+1
η(n+1)

]−(1+γ2+ 1
2 )

(η−1)(η−1)n−(γ2+1)− 1
2

([
1− γ2+1

(η−1)n

]n)(η−1)[
1− γ2+1

(η−1)n

]−(1+γ2+ 1
2 )

√
n ηηn−(γ2+1)− 1

2

([
1− γ2+1

ηn

]n)η[
1− γ2+1

ηn

]−(1+γ2+ 1
2 )

=
(η − 1)(η−1)

ηη

e−(γ2+1)

e−(γ2+1)

e−(γ2+1)

e−(γ2+1)

,

since ex = limn→∞
(
1 + x

n

)n
. Hence,

R =
(η − 1)(η−1)

ηη
.

Since At is a geometric Brownian motion, At is real and positive, and so the right-hand side of

(A21) is absolutely convergent if At <
(η−1)(η−1)

ηη = R. Hence,

ν−γ2
2,t = 1− γ2

∞∑
n=1

(−At)n

n

(
nη − γ2 − 1

n− 1

)
, At < R.

Using (9) and (14), we can rewrite the above expression as

ν−γ2
2,t =

∞∑
n=0

aπn,2

(
π̂1,t

π̂2,t

) n
γ1

,
π̂1,t

π̂2,t
<
γγ2

1

γγ2
2

(
γ2

γ1
− 1

)γ2−γ1

,

where aπn,2 is defined in (43). Therefore, the equilibrium state-price density is given by

πt =

∞∑
n=0

aπn,2π̂
n
γ1
1,t π̂

1− n
γ1

2,t ,
π̂1,t

π̂2,t
<
γγ2

1

γγ2
2

(
γ2

γ1
− 1

)γ2−γ1

.

To find an expression for the state-price density when At >
(η−1)(η−1)

ηη , we find a series expansion

for ν−γ1
1,t , which is absolutely convergent for At >

(η−1)(η−1)

ηη . Note that

ν−γ1
1,t = (1− ν2,t)

−γ1 ,

and use Theorem C2 to expand around the point ν2,t = 0. To do this, we define

g(z) = (1− z)−γ1 ,
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which is complex analytic in the open ball {z ∈ C : |z| < 1}. Hence, with f and ϕ defined as in

(A10) and (A11), respectively, Theorem C2 implies that

g(ν2,t) = (1− ν2,t)
−γ1

= g(0) +
∞∑
n=1

(A
−1/η
t )n

n!

dn−1

dxn−1

[
g′(x)ϕ(x)n

]
x=0

= 1 +
∞∑
n=1

(A
−1/η
t )n

n!

dn−1

dxn−1

[
γ1(1− x)

n
η
−γ1−1

]
x=0

.

Because,

γ1(1−x)
n
η
−γ1−1

= γ1(−)n−1

(
n

η
− γ1 − 1

)(
n

η
− γ1 − 2

)
. . .

(
n

η
− γ1 − (n− 1)

)
(1−x)

n
η
−γ1−(n−1)

,

it follows that

ν−γ1
1,t = 1− γ1

∞∑
n=1

(−A−1/η
t )n

n

( n
η − γ1 − 1

n− 1

)
.

By comparing the above expression with (A21), we can see that (A22) is absolutely convergent if

A
−1/η
t <

( 1
η
−1)

1
η−1

1
η

1
η

, i.e. if At >
(η−1)η−1

ηη = R. Thus,

ν−γ1
1,t = 1− γ1

∞∑
n=1

(−A−1/η
t )n

n

( n
η − γ1 − 1

n− 1

)
, At > R.

Using (9) and (14), we can rewrite the above expression as

ν−γ1
1,t =

∞∑
n=0

aπn,1

(
π̂2,t

π̂1,t

) n
γ2

,
π̂1,t

π̂2,t
>
γγ2

1

γγ2
2

(
γ2

γ1
− 1

)γ2−γ1

,

where aπn,1 is defined in (42). Therefore, the equilibrium state-price density is given by

πt =

∞∑
n=0

aπn,2π̂
n
γ1
1,t π̂

1− n
γ1

2,t ,
π̂1,t

π̂2,t
>
γγ2

1

γγ2
2

(
γ2

γ1
− 1

)γ2−γ1

.

The expressions in (41) follow from (A22) and (A22).

Now observe that

π̂
1− n

γ2
1,t π̂

n
γ2
2,t = e

−
(

1− n
γ2

)
r̂1te
− 1

2

(
1− n

γ2

)
(θ̂1)

2
t−
(

1− n
γ2

)
θ̂1Zte

− n
γ2
r̂2te
− 1

2
n
γ2

(θ̂2)
2
t− n

γ2
θ̂2Zt (A22)

= e
−
([(

1− n
γ2

)
r̂1+ n

γ2
r̂2
]
+ 1

2

{(
1− n

γ2

)
(θ̂1)

2
+ n
γ2

(θ̂2)
2−
[(

1− n
γ2

)
θ̂1+ n

γ2
θ̂2
]2})

t

× e−
1
2

[(
1− n

γ2

)
θ̂1+ n

γ2
θ̂2
]2
t−
[(

1− n
γ2

)
θ̂1+ n

γ2
θ̂2
]
Zt

Therefore

π̂
1− n

γ2
1,t π̂

n
γ2
2,t = e−r

n,1te−
1
2(θn,1)

2
t−θn,1Zt ,
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where

θn,1 =

(
1− n

γ2

)
θ̂1 +

n

γ2
θ̂2

rn,1 =

(
1− n

γ2

)
r̂1 +

n

γ2
r̂2

+
1

2

{(
1− n

γ2

)(
θ̂1

)2
+
n

γ2

(
θ̂2

)2
−
[(

1− n

γ2

)
θ̂1 +

n

γ2
θ̂2

]2
}
.

Since, (
1− n

γ2

)(
θ̂1

)2
+
n

γ2

(
θ̂2

)2
−
[(

1− n

γ2

)
θ̂1 +

n

γ2
θ̂2

]2

=

(
1− n

γ2

)
n

γ2
(θ̂1 − θ̂2)2

it follows that

rn,1 =

(
1− n

γ2

)
r̂1 +

n

γ2
r̂2 +

1

2

(
1− n

γ2

)
n

γ2
(θ̂1 − θ̂2)2.

Thus, we obtain (44) and (45). Similarly, the term on the second line of (41) is

π̂
n
γ1
1,t π̂

1− n
γ2

2,t = λ
n
γ1
1,0λ

1− n
γ2

2,0 e−r
n,2te−

1
2(θn,2)

2
t−θn,2Zt ,

where

θn,2 =
n

γ1
θ̂1 +

(
1− n

γ1

)
θ̂2, (A23)

rn,2 =
n

γ1
r̂1 +

(
1− n

γ1

)
r̂2 +

1

2

(
1− n

γ1

)
n

γ1
(θ̂1 − θ̂2)2. (A24)

with r̂k and θ̂k defined in (10) and (11).

Proof of Corollary 5: State-price density under identical risk aversion

First we note that

lim
a→0

(
γ + a

γ
− 1

)a
= 1.

Therefore, setting γ1 = γ2 = γ implies that

γγ2
1

γγ2
2

(
γ2

γ1
− 1

)γ2−γ1

= 1.

Also note that after some tedious algebra, we can show that

γ

(
n− γ − 1

n

)
(−)n+1

n
=

(
γ

n

)
.

Therefore, when γ1 = γ2 = γ, (42) and (43) reduce to (47).
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Proof of Proposition 9: Risk premium and volatility of risky assets

Rather than considering equity, we shall derive results for a more general risky asset, which is a

perpetual claim to the cash flow process, X, where the evolution of X is given by

dXt

Xt
= µXdt+ σsysX dZt + σidXdZ

id
t ,

where Zidt is a standard Brownian motion under P, orthogonal to Zt. Under measure Pk, k ∈ {1, 2},
the dynamics of the cash flow process are given by

dXt

Xt
= µX,kdt+ σsysX dZk,t + σidXdZ

id
t ,

where µX,k is given by
µX,k − µX

σsysX

=
µY,k − µY

σY
.

Then, to get the risk premium and the volatility of the stock market, we will set µX = µY ,

σsysX = σY , and σidX = 0.

The risk premium for the claim paying X in perpetuity is given by the standard asset pricing

equation:

Et

[
dPXt +Xtdt

PXt
− rtdt

]
= −Et

[
dπt
πt

dPXt
PXt

]
. (A25)

Applying Ito’s Lemma to PXt = Xtp
X
t gives

dPXt
PXt

=
dXt

Xt
+
dpXt
pXt

+
dXt

Xt

dpXt
pXt

= µXdt+ σsysX dZt + σidXdZ
id
t +

1

pXt

∂pXt
∂ν1,t

ν1,t(µν1,tdt+ σν1,tdZt)

+
1

2

1

pXt

∂2pXt
∂ν2

1,t

ν2
1,tσ

2
ν1,t
dt+ σsysX

1

pXt

∂pXt
∂ν1,t

ν1,tσν1,tdt.

Thus, the total volatility of the return on the claim that pays X in perpetuity, σXR,t, is given by

σXR,t =

√(
σX,sysR,t

)2
+
(
σX,idR,t

)2
.

where the idiosyncratic component of the volatility of the claim’s returns is given by

σX,idR,t = σidX ,

and the systematic component of the volatility of the claim’s returns is given by

σX,sysR,t = σsysX + σν1,t
ν1,t

pXt

∂pXt
∂ν1,t

.

Hence, substituting (A26) into (A25) gives

µXR,t − rt = θtσ
X,sys
R,t , (A26)
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where

µXR,tdt = Et

[
dPXt +Xtdt

PXt

]
.

Substituting (35) into (A26) gives

µXR,t − rt =

(
Rt σY +

[
µY − µY,t

σY

])
σX,sysR,t .

Also, Agent k’s perception of the risk premium for the claim paying X in perpetuity is given by

the standard asset pricing equation:

Ekt

[
dPXt +Xtdt

PXt
− rtdt

]
= −Ekt

[
dπk,t
πk,t

dPXt
PXt

]
.

Hence,

µXR,k,t − rt = θk,tσ
X,sys
R,t , (A27)

where

µXR,k,tdt = Ekt

[
dPXt +Xtdt

PXt

]
.

Substituting (36) and (37) into (A27) gives

µXR,1,t − rt = Rt

(
σY +

ν2,t

γ2

[
µY,1 − µY,2

σY

])
σX,sysR,t ,

Agent 2’s perception of the risk premium is given by

µXR,2,t − rt = Rt

(
σY +

ν1,t

γ1

[
µY,2 − µY,1

σY

])
σX,sysR,t ,

Setting µX = µY , σsysX = σY , and σidX = 0 in the above expressions gives the results in the

proposition.

Proof of Proposition 10: Prices of risky assets

Again, rather than considering equity, we shall derive results for a more general risky asset, which

is a perpetual claim to the cash flow process, X, where the evolution of X is given by (A25). Then,

to get the equations giving the price of equity in the proposition, we will set µX = µY , σsysX = σY ,

and σidX = 0.

To derive a closed-form expression for (50), we use (41) to write the equilibrium state-price

density as

πt =

∞∑
n=0

aπn,1π̂
1− n

γ2
1,t π̂

n
γ2
2,t 1

{
π̂1,t
π̂2,t

>R

} +
∞∑
n=0

aπn,2π̂
n
γ1
1,t π̂

1− n
γ1

2,t 1{ π̂1,t
π̂2,t

<R

}.
Since the event

{
π̂1,t

π̂2,t
= R

}
is of measure zero, it follows from (50) that

pXt = (πtXt)
−1jt, (A28)
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where

jt = Et

[∫ ∞
t

( ∞∑
n=0

aπn,1π̂
1− n

γ2
1,t π̂

n
γ2
2,uXu1{ π̂1,u

π̂2,u
>R

} +

∞∑
n=0

aπn,2π̂
n
γ1
1,uπ̂

1− n
γ1

2,u Xu1{ π̂1,u
π̂2,u

<R

}
)
du

]
. (A29)

Since the two infinite series in the above expression stem from ν−γ2
2,t in (A21), and ν−γ1

1,t in (A22),

which are complex analytic for A ∈ C such that |A| < R, and |A| > R, respectively, we can

interchange both the conditional expectation and integral with the infinite sum to obtain

jt =
∞∑
n=0

aπn,1Et

[∫ ∞
t

π̂
1− n

γ2
1,u π̂

n
γ2
2,uXu1{ π̂1,u

π̂2,u
>R

}du
]

+
∞∑
n=0

aπn,2Et

[∫ ∞
t

π̂
n
γ1
1,uπ̂

1− n
γ1

2,u Xu1{ π̂1,u
π̂2,u

<R

}du
]
.

We now rewrite the above expression as follows:

jt = πtXt

( ∞∑
n=0

ωn,1,tζ
X
n,1,t +

∞∑
n=0

ωn,2,tζ
X
n,2,t

)
,

where ωn,1,t and ωn,2,t are given by

ωn,1,t = aπn,1
π̂

1− n
γ2

1,t π̂
n
γ2
2,t

πt
, n ∈ N0, (A30)

ωn,2,t = aπn,2
π̂
n
γ1
1,t π̂

1− n
γ1

2,t

πt
, n ∈ N0, (A31)

and ζXn,1,t and ζXn,2,t are given by

ζXn,1,t = Et

∫ ∞
t

π̂
1− n

γ2
1,u π̂

n
γ2
2,u

π̂
1− n

γ2
1,t π̂

n
γ2
2,t

Xu

Xt
1{ π̂1,u

π̂2,u
>R

}du
 , n ∈ N0,

ζXn,2,t = Et

∫ ∞
t

π̂
n
γ1
1,uπ̂

1− n
γ1

2,u

π̂
n
γ1
1,t π̂

1− n
γ1

2,t

Xu

Xt
1{ π̂1,u

π̂2,u
<R

}du
 , n ∈ N0.

Equation (56) follows from (A28), and (58) follows from (41), (A30), and (A31).

We now express the weights, ωn,1,t and ωn,2,t, in terms of the consumption shares, ν1,t and ν2,t.

From (9) and (26) it follows that

πt = π̂1,tν
−γ1
1,t = π̂2,tν

−γ2
2,t .

Hence, for all a ∈ R
πt = π̂a1,tν

−aγ1
1,t π̂1−a

2,t ν
−(1−a)γ2

2,t ,

which implies that

π̂a1,tπ̂
1−a
2,t = πtν

aγ1
1,t ν

(1−a)γ2

2,t . (A32)

Therefore, we can rewrite the weights, ωn,1,t and ωn,2,t, given in (A30) and (A31) as (56) and (57),

respectively.
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We now derive exact closed-form expressions for ζXn,1,t and ζXn,2,t. Note that

π̂k,u
π̂k,u

Xu

Xt
= e−(r̂k+γkσ

sys
X σY −µX,k)(u−t)Mk,u

Mk,t
,

where Mk,t is the following exponential martingale under Pk:

dMk,t

Mk,t
= σidXdZ

id
t + (σsysX + σξ,k − γkσY )dZk,t, Mk,t = 1. (A33)

We can thus define the new probability measures P̂k on (Ω,F) via

P̂k(A) = E(1AMk,T ), A ∈ FT , k ∈ {1, 2}.

It follows that

ζXn,1,t = Ê1
t

∫ ∞
t

e−k1(u−t)
(
Au
At

)−n/η
1{Au>R}du, n ∈ N0,

ζXn,2,t = Ê2
t

∫ ∞
t

e−k2(u−t)
(
Au
At

)n
1{Au<R}du, n ∈ N0,

where Êit [·] is the time-t conditional expectation operator under P̂i and

ki = r̂i + γiσ
sys
X σY − µX,i, (A34)

is the discount rate used to value a security paying X units of consumption per unit time in

perpetuity, when Agent i is the sole agent in the economy. From Lemma B1, it follows that

ζXn,1,t =


1

1
2
σ2
A

(
n
η

+a∗+(k1)
)
(a∗+(k1)−a∗−(k1))

(
At
R

)a∗+(k1)+n
η

, At < R,

1
1
2
σ2
A

(
n
η

+a∗−(k1)
)
(a∗+(k1)−a∗−(k1))

(
At
R

)a∗−(k1)+n
η − 1

1
2
σ2
A

(
n
η

+a∗+(k1)
)(

n
η

+a∗−(k1)
) , At ≥ R,

and

ζXn,2,t =


− 1

1
2
σ2
A(n−a∗−(k2))(n−a∗+(k2))

+ 1
1
2
σ2
A(n−a∗+(k2))(a∗+(k2)−a∗−(k2))

(
At
R

)a∗+(k2)−n
, At < R,

1
1
2
σ2
A(n−a∗−(k2))(a∗+(k2)−a∗−(k2))

(
At
R

)a∗−(k2)−n
, At ≥ R,

where µA and σA are defined in (A18) and (A18), respectively, and µ̂iA is the drift of ln π̂1
π̂2

under

P̂i, i.e.

µ̂iA = µA + (σsysX + σξ,i − γiσY )σA,

and

a∗±(ki) =
−(µ̂iA −

1
2σ

2
A ±

√
(µ̂iA −

1
2σ

2
A)2 + 2kiσ2

A

σ2
A

,
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We can rewrite the above expressions in the following more symmetric form

ζXn,1,t =


1

1
2
σ2

∆

(
n
γ2

+a+(k1)
)

(a+(k1)−a−(k1))

(
π̂1,t
π̂2,t

R

)a+(k1)+ n
γ2

,
π̂1,t

π̂2,t
< R,

1
1
2
σ2

∆

(
n
γ2

+a−(k1)
)

(a+(k1)−a−(k1))

(
π̂1,t
π̂2,t

R

)a−(k1)+ n
γ2

− 1
1
2
σ2

∆

(
n
γ2

+a+(k1)
)(

n
γ2

+a−(k1)
) ,

π̂1,t

π̂2,t
≥ R,

(A35)

and

ζXn,2,t =


− 1

1
2
σ2

∆

(
n
γ1
−a−(k2)

)(
n
γ1
−a+(k2)

) + 1
1
2
σ2

∆

(
n
γ1
−a+(k2)

)
(a+(k2)−a−(k2))

(
π̂1,t
π̂2,t

R

)a+(k2)− n
γ1

,
π̂1,t

π̂2,t
< R,

1
1
2
σ2

∆

(
n
γ1
−a+(k2)

)
(a+(k2)−a−(k2))

(
π̂1,t
π̂2,t

R

)a−(k2)− n
γ1

,
π̂1,t

π̂2,t
≥ R,

(A36)

where µ∆ and σ∆ are given by (A18) and (A19), respectively, and µ̂i∆ is the drift of ln π̂1
π̂2

under P̂i,
i.e.

µ̂i∆ = µ∆ + (σsysX + σξ,i − γiσY )σ∆, ,

and

a±(ki) =
−µ̂i∆ ±

√
(µ̂i∆)2 + 2kiσ2

∆

σ2
∆

.

Proof of Corollary 6: Prices of risky assets under identical risk aversions

Again, rather than considering equity, we shall derive results for a more general risky asset, which

is a perpetual claim to the cash flow process, X, where the evolution of X is given by (A25). Then,

to get the price of equity, we will set µX = µY , σsysX = σY , and σidX = 0.

By setting γ1 = γ1 = γ, (56) and (57) reduce to (60) and (61), respectively, and (54) and (55)

reduce to (58) and (59), respectively. Also, the closed-form expressions for ζXn,1,t and ζXn,2,t in (A35)

and (A36) reduce to

ζXn,1,t =


1

1
2
σ2

∆

(
n
γ

+a+(k1)
)

(a+(k1)−a−(k1))

(
π̂1,t

π̂2,t

)a+(k1)+n
γ

,
π̂1,t

π̂2,t
< 1,

1
1
2
σ2

∆

(
n
γ

+a−(k1)
)

(a+(k1)−a−(k1))

(
π̂1,t

π̂2,t

)a−(k1)+n
γ − 1

1
2
σ2

∆

(
n
γ

+a+(k1)
)(

n
γ

+a−(k1)
) ,

π̂1,t

π̂2,t
≥ 1,

(A37)

and

ζXn,2,t =


− 1

1
2
σ2

∆

(
n
γ
−a−(k2)

)(
n
γ
−a+(k2)

) + 1
1
2
σ2

∆

(
n
γ
−a+(k2)

)
(a+(k2)−a−(k2))

(
π̂1,t

π̂2,t

)a+(k2)−n
γ

,
π̂1,t

π̂2,t
< 1,

1
1
2
σ2

∆

(
n
γ
−a(k2)

)
(a+(k2)−a−(k2))

(
π̂1,t

π̂2,t

)a−(k2)−n
γ

,
π̂1,t

π̂2,t
≥ 1,

(A38)
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where µ∆, µ̂i∆ and σ∆ are now given by

µ∆ = β2 − β1 −
1

2
σ2
ξ ,

µ̂i∆ = µ∆ + (σsysX + σξ,i − γσY )σ∆,

σ∆ = σξ.

When γ ∈ N, (56) reduces to

pXt =

γ∑
n=0

ωn,1,tζ
X
n,1,t +

γ∑
n=0

ωn,2,tζ
X
n,2,t

=

γ∑
n=0

ωn,t
(
ζXn,1,t + ζXγ−n,2,t

)
, (A39)

where ωn,t is given in (63). It follows from (58) and (59) that

ζXn,1,t + ζXγ−n,2,t = Et

∫ ∞
t

π̂
1−n

γ

1,u π̂
n
γ

2,u

π̂
1−n

γ

1,t π̂
n
γ

2,t

Xu

Xt
du

 , n ∈ N0 andn ≤ γ.

From (44) it follows that

π̂
1−n

γ

1,t π̂
n
γ

2,t = λ
1−n

γ

1,0 λ
n
γ

2,0e−rnte
− 1

2
(θn)2t−θnZt ,

where rn is given in (63), and

θn =

(
1− n

γ

)
θ̂1 +

n

γ
θ̂2

= γσY −
(

1− n

γ

)
σξ,1 −

n

γ
σξ,2

= γσY +
µY − µnY
σY

,

where

µnY =

(
1− n

γ

)
µY,1 +

n

γ
µY,2.

Hence,

ζXn,1,t + ζXγ−n,2,t = Et

[∫ ∞
t

e−r
n(u−t)e−

1
2

(θn)2(u−t)−θn(Zu−Zt)Xu

Xt
du

]
= Et

[∫ ∞
t

e−(rn−µX+ 1
2((θn)2+σ2

X))(u−t)−(θn−σsysX )(Zu−Zt)+σidX (Zidu −Zidt )du

]
=

∫ ∞
t

e−(rn−µX+ 1
2((θn)2+σ2

X))(u−t)Et

[
e−(θn−σsysX )(Zu−Zt)+σidX (Zidu −Zidt )

]
du,

where the last step is valid, because of Fubini’s Theorem. Now note that

Et

[
e−(θn−σsysX )(Zu−Zt)+σidX (Zidu −Zidt )

]
= e

1
2 [(θn−σsysX )2+(σidX )2](u−t),
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and so

ζXn,1,t + ζXγ−n,2,t =

∫ ∞
t

e−(rn+θnσsysX −µX)(u−t)du

=
(
rn + θnσsysX − µX

)−1
.

From (A25) it follows that
µY − µnY
σY

=
µX − µnX
σsysX

,

and so

ζXn,1,t + ζXγ−n,2,t = pXn .

where pXn is given in (63). Thus, (A39) implies (62).

Proof of Proposition 11: Long-term yield

Note that

ν1,t + ν2,t = 1.

Hence,

ν1,t = 1− ν2,t.

Because γ1 < γ2, we have

ν
γ1
γ2
1,t ≥ 1− ν2,t.

Also note that since

πt = π̂k,tν
−γk
k,t = λk,0e

−r̂kte−
1
2
θ̂2
kt−θ̂kZtν−γkk,t ,

we have

π
− 1
γk

t = π̂
− 1
γk

k,t νk,t

νk,t = π
− 1
γk

t π̂
1
γk
k,t .

Therefore, (
π
− 1
γ1

t π̂
1
γ1
1,t

) γ1
γ2

≥ 1− λ
1
γ2
2,0π

− 1
γ2

t π̂
1
γ2
2,t(

π−1
t π̂1,t

) 1
γ2 ≥ 1− λ

1
γ2
2,0π

− 1
γ2

t π̂
1
γ2
2,t

2∑
k=1

π̂
1
γ2
k,t ≥ π

1
γ2
t(

2∑
k=1

π̂
1
γ2
k,t

)γ2

≥ πt

If we define γ2 = max[1, γ2], then

ν
γ1
γ2
1,t ≥ 1− ν2,t,
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and so (
2∑

k=1

π̂
1
γ2
k,t

)γ2

≥ πt

Now note that

ν
γ2
γ1
2,t ≤ 1− ν1,t.

Therefore, (
π
− 1
γ2

t π̂
1
γ2
2,t

) γ2
γ1

≤ 1− π̂
1
γ1
1,tπ

− 1
γ1

t

λ
1
γ1
2,0π

− 1
γ1

t π̂
1
γ1
2,t ≤ 1− π̂

1
γ1
1,tπ

− 1
γ1

t

πt ≥

(
2∑

k=1

π̂
1
γ1
k,t

)γ1

.

If we define γ
1

= min[1, γ1], then

ν
γ2
γ1
2,t ≤ 1− ν1,t.

Then,

πt ≥

(
2∑

k=1

π̂
1
γ

1
k,t

)γ
1

.

Therefore, (
2∑

k=1

π̂
1
γ2
k,t

)γ2

≥ πt ≥

(
2∑

k=1

π̂
1
γ1
k,t

)γ1

,

and (
2∑

k=1

π̂
1
γ2
k,t

)γ2

≥ πt ≥

(
2∑

k=1

π̂
1
γ

1
k,t

)γ
1

.

The latter inequality implies that(
2∑

k=1

π̂
1
γ2
k,T

)γ2

≥ πT ≥

(
2∑

k=1

π̂
1
γ

1
k,T

)γ
1

,

which implies that (
2∑

k=1

(π̂k,TXT )
1
γ2

)γ2

≥ πTXT ≥

(
2∑

k=1

(π̂k,TXT )
1
γ

1

)γ
1

.

Since f(x, y) = (x1/γ + y1/γ)γ is strictly convex (concave) iff γ < 1 (γ > 1), it follows from Jensen’s

Inequality that (
2∑

k=1

(Et [π̂k,TXT ])
1
γ2

)γ2

≥ Et[πTXT ] ≥

(
2∑

k=1

(Et [π̂k,TXT ])
1
γ

1

)γ
1

. (A40)
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Since, Et [π̂k,TXT ] = e−(r̂k+γkσ
sys
X σX−µX,k)T Êkt [Mk,T ] = e−(r̂k+γkσ

sys
X σX−µX,k)TMk,t, where Mk,t is

the exponential martingale under Pk defined in (A33), it follows that(
2∑

k=1

(
e−(r̂k+γkσ

sys
X σX−µX,k)TMk,t

) 1
γ2

)γ2

≥ Et[πTXT ] ≥

(
2∑

k=1

(
e−(r̂k+γkσ

sys
X σX−µX,k)TMk,t

) 1
γ

1

)γ
1

,

which can be rewritten as(
2∑
i=1

(
e−kiTMi,t

) 1
γ2

)γ2

≥ Et[πTXT ] ≥

(
2∑
i=1

(
e−kiTMi,t

) 1
γ

1

)γ
1

,

where ki is

ki = r̂i + γiσ
2
Y − µY,i.

We can rewrite V X
T−t as

V X
T−t = π−1

t Et[πTXT ],

and so, from (63), we obtain

yXT−t = − 1

T − t
ln
VT−t
Xt

=
1

T − t
ln(πtXt)−

1

T − t
lnEt[πTXT ].

Therefore,

lim
T→∞

yXT−t = − lim
T→∞

1

T − t
lnEt[πTXT ].

From (A40) it follows that

− 1

T − t
ln

(
2∑
i=1

(
e−kiTMi,t

) 1
γ2

)γ2

≤ − 1

T − t
lnEt[XTπT ]

≤ − 1

T − t
ln

(
2∑
i=1

(
e−kiTMi,t

) 1
γ

1

)γ
1

.

Letting T →∞ gives

min(k1, k2) ≤ − 1

T − t
lnEXt [πT ] ≤ min(k1, k2),

and so

lim
T→∞

yXT−t = min(k1, k2).

The other results in the proposition, for the yield on riskless bonds and the term premium, follow

once we set σ2
Y = µY,i = 0 in the equation above.

Proof of Corollary 7: Survival and price impact under identical preferences and
different beliefs.

The corollary follows immediately from Propositions 3 and 11, after setting β1 = β2 = β and

γ1 = γ2 = γ.
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B Appendix: Two Lemmas for Valuing Contingent Cashflows

The following two lemmas, on the valuation of contingent cashflows, are used in Appendix A.

Lemma B1 The date-t price of the claim which pays out Dn
t units of consumption per unit time

in perpetuity as long as Du < B, where Du = Dte
(µ− 1

2
σ2)(u−t)+σ(Zu−Zt) and the discount rate is

assumed to be k2, is given by V2,n,t = V2,n(Dt), where

V2,n(Dt) = Et

∫ ∞
t

e−k2(u−t)Dn
u1{Du<B}. (B1)

The date-t price of the claim which pays out D
−n/η
t units of consumption per unit time in perpetuity

as long as Du > B, where Du = Dte
(µ− 1

2
σ2)(u−t)+σ(Zu−Zt) and the discount rate is assumed to be

k1, is given by V1,n,t = V1,n(Dt), where

V1,n(Dt) = Et

∫ ∞
t

e−k1(u−t)D−n/ηu 1{Du>B}. (B2)

Observe that ki, defined in (A34), is the discount rate used to value the security paying X units of

consumption per unit time in perpetuity, when Agent i is the sole agent in the economy. The prices

of the above claims are given by

V2,n(D) =


− Dn

1
2
σ2(n−a−(k2))(n−a+(k2))

+ Bn
1
2
σ2(n−a+(k2))(a+(k2)−a−(k2))

(
D
B

)a+(k2)
, D < B

Bn
1
2
σ2(n−a−(k2))(a+(k2)−a−(k2))

(
D
B

)a−(k2)
, D ≥ B

,

and

V1,n(D) =


B

−n
η

1
2
σ2
(
n
η

+a+(k1)
)

(a+(k1)−a−(k1))

(
D
B

)a+(k1)
, D < B

B
−n
η

1
2
σ2
(
n
η

+a−
)

(a+(k1)−a−(k1))

(
D
B

)a−(k1) − D
−n
η

1
2
σ2
(
n
η

+a+(k1)
)(

n
η

+a−(k1)
) , D ≥ B

,

where

a±(k) =
−(µ− 1

2σ
2)±

√
(µ− 1

2σ
2)2 + 2kσ2

σ2
.

Proof

We start by defining δ = lnD, b = lnB, and so (B1) can be rewritten in terms of the arithmetic

Brownian motion e, i.e.

V2,n(δt) = Et

∫ ∞
t

exp(−k2(u− t)) exp(nδu)1{δu<b}du.

The Feynman-Kac Theorem implies that V2,n(δ) satisfies the following set of ordinary differential

equations

1

2
σ2V ′′2,n +

(
µ− 1

2
σ2

)
V ′2,n − k2V2,n = 0, δ ≥ b, (B3)

1

2
σ2V ′′2,n +

(
µ− 1

2
σ2

)
V ′2,n − k2V2,n + exp(nδ) = 0, δ < b. (B4)
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We also have the following boundary conditions

0 < lim
δ→∞

V2,n(δ) <∞, (B5)

lim
δ→b+

V2,n(δ) = lim
δ→b−

V2,n(δ), (B6)

lim
δ→b+

V ′2,n(δ) = lim
δ→b−

V ′2,n(δ), (B7)

0 < lim
δ→−∞

V2,n(δ) <∞. (B8)

The general solution of (B3) is

V2,n(δ) = Ku,− exp(a−δ) +Ku,+ exp(a+δ),

where Ku,± are constants of integration and a± are the roots of the characteristic equation 1
2σ

2a2 +(
µ− 1

2σ
2
)
a− k2 = 0:

a± =
−(µ− 1

2σ
2)±

√
(µ− 1

2σ
2)2 + 2k2σ2

σ2
.

The general solution of (B4) is

V2,n(δ) = Kd,− exp(a−δ) +Kd,+ exp(a+δ)−
(

1

2
σ2n2 +

(
µ− 1

2
σ2

)
n− k

)−1

exp(nδ),

where Kd,± constants of integration. The boundary conditions (B5) and (B8) imply that Ku,+ = 0

and Kd,− = 0, respectively. The boundary conditions (B6) and (B7) imply that

Ku,−e
a−b = −

(
1

2
σ2n2 +

(
µ− 1

2
σ2

)
n− k

)−1

enb +Kd,+e
a+b,

a−Ku,−e
a−b = −n

(
1

2
σ2n2 +

(
µ− 1

2
σ2

)
n− k

)−1

enb + a+Kd,+e
a+b,

respectively. Writing the above linear equation system in matrix form, we obtain(
eba− −eba+

a−e
ba− −a+e

ba+

)(
Ku,−
Kd,+

)
= −

(
1
n

)(
1

2
σ2n2 +

(
µ− 1

2
σ2

)
n− k

)−1

enb.

Hence, (
Ku,−
Kd,+

)
= −

(
eba− −eba+

a−e
ba− −a+e

ba+

)−1(
1
n

)(
1

2
σ2n2 +

(
µ− 1

2
σ2

)
n− k

)−1

enb

=
1

1
2σ

2(a+ − a−)

(
e(n−a−)b

n−a−
e(n−a+)b

n−a+

)
.

Therefore,

V2,n(δ) =

 −
enδ

1
2
σ2(n−a−)(n−a+)

+ enb
1
2
σ2(n−a+)(a+−a−)

ea+(δ−b) , δ < b,

enb
1
2
σ2(n−a−)(a+−a−)

ea−(δ−b) , δ ≥ b.
(B9)
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Hence,

V2,n(D) =

 −
Dn

1
2
σ2(n−a−)(n−a+)

+ Bn
1
2
σ2(n−a+)(a+−a−)

(
D
B

)a+
, D < B,

Bn
1
2
σ2(n−a−)(a+−a−)

(
D
B

)a−
, D ≥ B. (B10)

The expression in (B2) can be rewritten in terms of the arithmetic Brownian motion δ:

V1,n(δt) = Et

∫ ∞
t

exp(−k1(u− t)) exp

(
−n
η
δu

)
1{δu>b}du. (B11)

The Feynman-Kac Theorem implies that V1,n(e) satisfies the following set of ordinary differential

equations

1

2
σ2V ′′1,n +

(
µ− 1

2
σ2

)
V ′1,n − k1V1,n + exp

(
−n
η
δ

)
= 0, δ ≥ b, (B12)

1

2
σ2V ′′1,n +

(
µ− 1

2
σ2

)
V ′1,n − k2V1,n = 0, δ < b. (B13)

We also have the following boundary conditions

0 < lim
δ→∞

V1,n(δ) <∞,

lim
δ→b+

V1,n(δ) = lim
δ→b−

V2,n(δ),

lim
e→b+

V ′1,n(δ) = lim
δ→b−

V ′2,n(δ),

0 < lim
δ→−∞

V1,n(δ) <∞.

The general solution of (B12) is

V1,n(δ) = Ku,− exp(a−δ) +Ku,+ exp(a+δ)−

(
1

2
σ2

(
n

η

)2

−
(
µ− 1

2
σ2

)
n

η
− k1

)−1

exp

(
−n
η
δ

)
,

where Ku,± are constants of integration and a± are the roots of the characteristic equation 1
2σ

2a2 +(
µ− 1

2σ
2
)
a− k1 = 0:

a± =
−(µ− 1

2σ
2)±

√
(µ− 1

2σ
2)2 + 2k1σ2

σ2
.

Thus, we can rewrite the general solution of (B12) as

V1,n(δ) = Ku,− exp(a−δ) +Ku,+ exp(a+δ)−
1

1
2σ

2
(
n
η + a+

)(
n
η + a−

) exp

(
−n
η
δ

)
.

The general solution of (B13) is

V1,n(δ) = Kd,− exp(a−δ) +Kd,+ exp(a+δ),

where Kd,± constants of integration. The boundary conditions (B5) and (B8) imply that Ku,+ = 0

and Kd,− = 0, respectively. The boundary conditions (B6) and (B7) imply that

Kd,+e
a+b = − 1

1
2σ

2
(
n
η + a+

)(
n
η + a−

) exp

(
−n
η
b

)
+Ku,−e

a−b,

a+Kd,+e
a+b =

n

η

1

1
2σ

2
(
n
η + a+

)(
n
η + a−

) exp

(
−n
η
b

)
+ a−Ku,−e

a−b,
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respectively. Writing the above linear equation system in matrix form, we obtain(
eba+ −eba−
a+e

ba+ −a−eba−

)(
Kd,+

Ku,−

)
=

(
1
−n
η

)
1

1
2σ

2
(
n
η + a+

)(
n
η + a−

)e−nη b.
Hence, (

Kd,+

Ku,−

)
=

 1
1
2
σ2
(
n
η

+a+

)e−a+b

1
1
2
σ2
(
n
η

+a−
)e−a−b

 e
−n
η
b

a+ − a−
.

Therefore,

V1,n(δ) =


exp
(
−n
η
b
)

1
2
σ2
(
n
η

+a+

)
(a+−a−)

exp (a+(δ − b)) , δ < b,

exp
(
−n
η
b
)

1
2
σ2
(
n
η

+a−
)

(a+−a−)
exp (a−(δ − b))−

exp(−n
η
δ)

1
2
σ2
(
n
η

+a+

)(
n
η

+a−
) , δ ≥ b.

Hence,

V1,n(D) =


B

−n
η

1
2
σ2
(
n
η

+a+

)
(a+−a−)

(
D
B

)a+
, D < B,

B
−n
η

1
2
σ2
(
n
η

+a−
)

(a+−a−)

(
D
B

)a− − D
−n
η

1
2
σ2
(
n
η

+a+

)(
n
η

+a−
) , D ≥ B.

Lemma B2 The date-t price of the zero-coupon claim which pays out Dn
T units of consumption at

time T if DT < B, where DT = Dte
(µ− 1

2
σ2)(T−t)+σ(ZT−Zt) and the discount rate is assumed to be

k2, is given by L2,n,t = L2,n(Dt), where

L2,n(Dt) = Ete
−k2(T−t)Dn

T 1{DT<B}. (B14)

The date-t price of the fundamental financial security which pays out D
−n/η
T units of consumption

at time T if DT > B, where DT = Dte
(µ− 1

2
σ2)(T−t)+σ(ZT−Zt) and the discount rate is assumed to

be k1, is given by L1,n,t = L1,n(Dt), where

L1,n(Dt) = Ete
−k1(T−t)D

−n/η
T 1{DT>B}.

The prices of the above zero-coupon claims are given by

L2,n(Dt) = Dn
t e
−[k2−nµ− 1

2
n(n−1)σ2](T−t)Φ

 ln
(
B
Dt

)
−
(
µ+ 1

2(2n− 1)σ2
)

(T − t)

σ(T − t)1/2

 ,

and

L1,n(Dt) = D
−n
η

t e
−
[
k2+n

η

(
µ− 1

2

(
1+n

η

)
σ2
)]

(T−t)

1− Φ

 ln
(
B
Dt

)
−
(
µ− 1

2

(
1 + 2nη

)
σ2
)

(T − t)

σ(T − t)1/2

 .
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Proof

We start by defining δ = lnD, b = lnB, and so (B14) can be rewritten in terms of the arithmetic

Brownian motion δ:

L2,n(δt) = Et exp(−k2(T − t)) exp(nδT )1{δT<b}.

We now evaluate the above expectation directly.

L2,n(δt) = Ete
−k2(T−t)enδT 1{δT<b}

= Ete
−k2(T−t)e(n(δt+(T−t)(µ− 1

2σ
2)+σ(ZT−Zt))1{δt+(T−t)(µ− 1

2σ
2)+σ(ZT−Zt)<b}

= e−k2(T−t)en(δt+(T−t)(µ− 1
2σ

2))Ete
n(σ(ZT−Zt))1{σ(ZT−Zt)<b−(δt+(T−t)(µ− 1

2σ
2))}.

Now note that

Ete
n(σ(ZT−Zt))1{σ(ZT−Zt)<b−(δt+(T−t)(µ− 1

2
σ2))}

=

∫ ∞
−∞

1√
2π
e−

1
2
ε2enσ(T−t)1/2ε1{σ(T−t)1/2ε<b−(δt+(T−t)(µ− 1

2
σ2))}dε

= e
1
2
n2σ2(T−t)Φ

(
b−

(
δt + (T − t)

(
µ− 1

2σ
2
))

σ(T − t)1/2
− nσ(T − t)1/2

)
.

Therefore,

L2,n(δt) = e−k2(T−t)+n(δt+(T−t)(µ− 1
2
σ2))+ 1

2
n2σ2(T−t)Φ

(
b−

(
δt + (T − t)

(
µ− 1

2σ
2
))

σ(T − t)1/2
− nσ(T − t)1/2

)

= enδte−[k2−nµ− 1
2
n(n−1)σ2](T−t)Φ

(
b− δt −

(
µ+ 1

2(2n− 1)σ2
)

(T − t)
σ(T − t)1/2

)
.

Hence,

L2,n(Dt) = Ent e
−[k2−nµ− 1

2
n(n−1)σ2](T−t)Φ

(
ln( BDt )−

(
µ+ 1

2(2n− 1)σ2
)

(T − t)
σ(T − t)1/2

)
.

Also,

L1,n(Dt) = Ete
−k1(T−t)D

−n/η
T 1{DT>B}

= Ete
−k2(T−t)e

(
−n
η (δt+(T−t)(µ− 1

2
σ2)+σ(ZT−Zt))

)
1{δt+(T−t)(µ− 1

2
σ2)+σ(ZT−Zt)>b}

= e−k2(T−t)e
−n
η (δt+(T−t)(µ− 1

2
σ2))Ete

−n
η
σ(ZT−Zt)1{δt+(T−t)(µ− 1

2
σ2)+σ(ZT−Zt)>b}.

Now note that

Et exp

(
−n
η
σ(ZT − Zt)

)
1{δt+(T−t)(µ− 1

2
σ2)+σ(ZT−Zt)>b}

=

∫ ∞
−∞

1√
2π
e−

1
2
ε2e
−n
η
σ(T−t)1/2ε

1{σ(T−t)1/2ε>b−(δt+(T−t)(µ− 1
2
σ2))}dε

= e
1
2

(
n
η

)2
σ2(T−t)

1− Φ

b− δt − (T − t)
(
µ− 1

2

(
1 + 2nη

)
σ2
)

σ(T − t)1/2

 .
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Therefore,

L1,n(Dt)

= e−k2(T−t)e
−n
η (δt+(T−t)(µ− 1

2
σ2))e

1
2

(
n
η

)2
σ2(T−t)

1− Φ

b− δt − (T − t)
(
µ− 1

2

(
1 + 2nη

)
σ2
)

σ(T − t)1/2


= D

−n
η

t e
−
[
k2+n

η

(
µ− 1

2

(
1+n

η

)
σ2
)]

(T−t)

1− Φ

 ln
(
B
DT

)
−
(
µ− 1

2

(
1 + 2nη

)
σ2
)

(T − t)

σ(T − t)1/2

 .

C Appendix: Lagrange’s Theorem

In this section, we state a number of definitions and theorems from complex analysis that are used

to derive results in the paper. In particular, the insight from Lagrange that is central to the analysis

in the paper is given in Theorem C2 of this appendix.

Definition C1 If U is an open subset of C and f : U → C is a complex function on U , we say

that f is complex differentiable at a point z0 of U if the limit

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0

exists. The limit here is taken over all sequences of complex numbers approaching z0, and for all

such sequences the difference quotient has to approach the same number f ′(z0).

Definition C2 If f is complex differentiable at every point z0 in U , we say that f is holomorphic

on U . We say that f is holomorphic at the point z0 if it is holomorphic on some neighborhood

of z0. We say that f is holomorphic on some non-open set A if it is holomorphic in an open set

containing A.

Definition C3 A function f is complex analytic on an open set D in the complex plane if for any

z0 in D one can write

f(z) =
∞∑
n=0

an(z − z0)n,

in which the coefficients a0, a1, ... are complex numbers and the series is convergent for z in a

neighborhood of z0.

Theorem C1 A function f is complex analytic on an open set D in the complex plane if and only

if it is holomorphic in D.

We are now ready to state the theorem that allows us to find closed-form series expansions for

the sharing rule and complex analytic functions of the sharing rule.
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Theorem C2 (Lagrange) Suppose the dependence between the variables w and z is implicitly

defined by an equation of the form

w = f(z),

where f is complex analytic in a neighborhood of 0 and f ′(0) 6= 0. Then for any function g which

is complex analytic in a neighborhood of 0,

g(z) = g(0) +

∞∑
n=1

wn

n!

[
dn−1

dxn−1
g′(x)[ϕ(x)n]

]
x=0

,

where ϕ(z) = z
f(z) .

Note that the above theorem does not provide a radius of convergence for the series (C1). While

the original proof of Theorem C2 due to Lagrange is not very straightforward, a relatively easier

proof can be obtained by using Cauchy’s Integral Formula.

D Appendix: Wealth and Portfolio Holdings of Individual Agents

The approach we have used to identify the equilibrium prices in this model is to first identify

the utility function of a “central planner” or “representative agent” (see Equation (4)), then solve

for each agent’s share of optimal consumption (Proposition 1), and then use this to identify the

state price density (Proposition 8), and finally use that to identify asset prices (Proposition 10).

Alternatively, one could have solved for the competitive market equilibrium, where each agent

solved recursively the problem of maximizing lifetime utility by choosing at each instant the optimal

consumption and portfolio policies subject to the dynamic wealth constraint. In this section, we

show how one can still determine the wealth and optimal portfolio policy of each agent by applying

the insight from Cox and Huang (1989) and using the already identified consumption-sharing rule

and state-price density.

Observe that the financial wealth of each agent at date t, Wk,t for k ∈ {1, 2}, is the present

value of that agent’s future consumption:

Wk,t = Et

[∫ ∞
t

πu
πt
Ck,udu

]
= Et

[∫ ∞
t

πu
πt
νk,uYudu

]
.

Now, this looks very much like the problem of finding the value of a claim with payout Ck,t = νk,uYu,

and we can use the same approach as the one we used in Proposition 10 to obtain the price of a

risky asset, which leads to the following result.

Proposition D1 Agent k’s wealth at time t is given by Wk,t = wYk,tYt, where

wY1,t = ν1,t

( ∞∑
n=0

εn,1,tζ
Y
n,1,t +

∞∑
n=0

εn,2,tζ
Y
n,2,t

)
+

∞∑
n=0

(ωn,2,t − εn,2,t)ζYn,2,t (D1)

wY2,t = ν2,t

( ∞∑
n=0

εn,1,tζ
Y
n,1,t +

∞∑
n=0

εn,2,tζ
Y
n,2,t

)
+
∞∑
n=0

(ωn,1,t − εn,1,t)ζYn,1,t, (D2)
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where the weights εn,1,t, n ∈ N0, are given by

εn,1,t =
(νγ2

2,t)
1− n

γ2 (νγ1
1,t)

n
γ2

ν1,t
bπn,1, (D3)

εn,2,t =
(νγ1

1,t)
n
γ1 (νγ2

2,t)
1− n

γ1

ν2,t
bπn,2, (D4)

and bn,1 = bn,2 = 0,

bπn,1 =
(−)n+1

n
(γ1 − 1)

(
nγ1

γ2
− γ2

n− 1

)
, n ∈ N, (D5)

bπn,2 =
(−)n+1

n
(γ2 − 1)

(
nγ2

γ1
− γ1

n− 1

)
, n ∈ N (D6)

and where both sets of weights sum to one:

∞∑
n=0

εn,1,t =

∞∑
n=0

εn,2,t = 1. (D7)

Proof

We start by deriving expressions for each agent’s financial wealth at date t, denoted by Wk,t for

k ∈ {1, 2}. Since W1,t +W2,t = P Yt , we need only derive an expression for W1,t. We know that

W1,t = Et

[∫ ∞
t

πu
πt
C1,udu

]
.

Hence,

W1,t = π−1
t

(
Et

[∫ ∞
t

π̂2,uν
−γ2

2,u C1,u1{Au<R}du

]
+ Et

[∫ ∞
t

π̂1,uν
−γ1

1,u C1,u1{Au>R}du

])
,

which can be rewritten as

W1,t = π−1
t

(
Et

[∫ ∞
t

π̂2,uν
−γ2

2,u ν1,uYu1{ π̂1,u
π̂2,u

<R
}du

]
+ Et

[∫ ∞
t

π̂1,uν
1−γ1

1,u Yu1{ π̂1,u
π̂2,u

>R
}du

])
.

= π−1
t

(
Et

[∫ ∞
t

π̂2,uν
−γ2

2,u (1− ν2,u)Yu1{ π̂1,u
π̂2,u

<R
}du

]
+ Et

[∫ ∞
t

π̂1,uν
1−γ1

1,u Yu1{ π̂1,u
π̂2,u

>R
}du

])
.

Since the series expression in (A22) is valid for all real γ1, it follows that

ν1−γ1
1,t = 1− (1− γ1)

∞∑
n=1

(−A−1/η
t )n

n

( n
η − γ1

n− 1

)
, |At| > R.

We already know that (A21) provides a convergent series expansion for |At| < R for all real γ2.

Hence,

ν1−γ2
2,t = 1− (1− γ2)

∞∑
n=1

(−At)n

n

(
nη − γ2

n− 1

)
, |At| < R.
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Therefore,

πtν1,t = π̂1,tν
1−γ1
1,t =

∞∑
n=0

bπn,1π̂
n
γ2
2,t π̂

1− n
γ2

1,t ,
π̂1,t

π̂2,t
> R, (D8)

πtν2,t = π̂2,tν
1−γ2
2,t =

∞∑
n=0

bπn,2π̂
n
γ1
1,t π̂

1− n
γ1

2,t ,
π̂1,t

π̂2,t
< R, (D9)

where bπn,1 and bπn,2 are given by (D5) and (D6), respectively. Note also that

πt = π̂2,tν
−γ2
2,t =

∞∑
n=0

aπn,2π̂
n
γ1
1,t π̂

1− n
γ1

2,t ,
π̂1,t

π̂2,t
< R.

Therefore

W1,t = π−1
t

(
Et

[∫ ∞
t

( ∞∑
n=0

aπn,2π̂
n
γ1
1,uπ̂

1− n
γ1

2,u −
∞∑
n=0

bπn,2π̂
n
γ1
1,uπ̂

1− n
γ1

2,u

)
Yu1{ π̂1,u

π̂2,u
<R

}du
]

+ Et

[∫ ∞
t

∞∑
n=0

bπn,1π̂
n
γ2
2,uπ̂

1− n
γ2

1,u Yu1{ π̂1,u
π̂2,u

>R

}du
])

Since the expressions for ν1−γk
k,t , k ∈ {1, 2}, and ν−γ1

1,t are complex analytic functions of At, term-

by-term integration is valid, and we obtain

W1,t

Yt
= π−1

t

 ∞∑
n=0

(aπn,2 − bπn,2)π̂
n
γ1
1,t π̂

1− n
γ1

2,t Et

∫ ∞
t

π̂
n
γ1
1,uπ̂

1− n
γ1

2,u

π̂
n
γ1
1,t π̂

1− n
γ1

2,t

Yu
Yt

1{ π̂1,u
π̂2,u

<R

}du


+

∞∑
n=0

bπn,1π̂
n
γ2
2,t π̂

1− n
γ2

1,t Et

∫ ∞
t

π̂
n
γ2
2,uπ̂

1− n
γ2

1,u

π̂
n
γ2
2,t π̂

1− n
γ2

1,t

Yu
Yt

1{ π̂1,u
π̂2,u

>R

}du
 ,

i.e.

wY1,t = π−1
t

( ∞∑
n=0

(aπn,2 − bπn,2)π̂
n
γ1
1,t π̂

1− n
γ1

2,t ζYn,2,t +

∞∑
n=0

bπn,1π̂
n
γ2
2,t π̂

1− n
γ2

1,t ζYn,1,t

)
,

where w1,t =
W1,t

Yt
. Hence,

wY1,t =
∞∑
n=0

(ωn,2,t − ν2,tεn,2,t)ζ
Y
n,2,t + ν1,t

∞∑
n=0

εn,1,tζ
Y
n,1,t,

which implies (D1), where

εn,1,t =
π̂

1− n
γ2

2,t π̂
n
γ2
1,t

πtν1,t
bπn,1, n ∈ N0, (D10)

εn,2,t =
π̂
n
γ1
1,t π̂

1− n
γ1

2,t

πtν2,t
bπn,2, n ∈ N0. (D11)
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Note that (D8) and (D9) imply that the weights εn,1,t, n ∈ N0 and εn,2,t, n ∈ N0 each sum to one,
i.e. (D7). Using (A32), we can rewrite (D10) and (D11) as (D3) and (D4), respectively. Since the

bond is in zero net supply
∑2

k=1Wk,t = P Yt , and so
∑2

k=1w
Y
k,t = pYt . Thus,

wY2,t =
∑
n=0

ωn,1,tζ
Y
n,1,t +

∑
n=0

ωn,2,tζ
Y
n,2,t −

∞∑
n=0

(ωn,2,t − ν2,tεn,2,t)ζ
Y
n,2,t − ν1,t

∞∑
n=0

εn,1,tζ
Y
n,1,t

=
∑
n=0

ωn,1,tζ
Y
n,1,t + ν2,t

∞∑
n=0

εn,2,tζ
Y
n,2,t − ν1,t

∞∑
n=0

εn,1,tζ
Y
n,1,t,

which implies (D2).

Finally, we wish to determine the proportion of investor k’s wealth invested in the risky stock

and the proportion invested in the instantaneously riskless asset. Denoting by NB
k,t and NP

k,t the

number of bonds and units of stock, respectively, held by Agent k, we have that the financial wealth

of the agent is the sum of the wealth invested in bonds and stocks:

Wk,t = NB
k,tBt +NP

k,tP
Y
t .

Moreover, because there is only a single risky asset available in this market, the volatility of each

investor’s wealth will depend only on the proportion of that investor’s wealth invested in the stock

market. We exploit this observation to determine the share of each agent’s wealth that is invested

in the stock market.

Proposition D2 The proportion of Agent k’s wealth invested in the stock market, Πk,t, is given

by

Πk,t =
σWk,t

σYR,t
, k ∈ {1, 2}, (D12)

where σYR,t is the volatility of stock returns on the claim to the aggregate endowment, Y and is given

in (52) and σWk,t is the volatility of Agent k’s portfolio return:

σWk,t = σY + σν1,t
ν1,t

wYk,t

∂wYk,t
∂ν1,t

, k ∈ {1, 2}. (D13)

The proportion of Agent k’s wealth invested in the locally riskfree bond is 1−Πk,t.

Proof

To find the optimal portfolio policies note that

Wk,t = NB
k,tBt +NP

k,tP
Y
t , (D14)

where NB
k,t and NP

k,t are the number of bonds and units of stock, respectively, held by Agent k.

Market clearing implies that

0 =
2∑

k=1

NB
k,t,

1 =
2∑

k=1

NP
k,t.
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Thus, we need to determine only NP
1,t, and given this, it follows that

NP
2,t = 1−NP

1,t

NB
1,t = −NB

2,t =
W1,t −NP

1,tP
Y
t

Bt
.

Applying Ito’s Lemma to (D14) when k = 1, gives

dW1,t = BtdN
B
1,t + PtdN

P
1,t +NB

1,tdBt +NP
1,tdP

Y
t .

The self-financing condition

BtdN
B
1,t + PtdN

P
1,t +NB

1,tdBt = 0,

implies that

dW1,t = NP
1,tdP

Y
t ,

and hence,
dW1,t

W1,t
= Π1,t

dP Yt
P Yt

,

where

Πk,t =
NP
k,tP

Y
t

Wk,t

is the proportion of Agent k’s wealth held in the stock market. Hence,

Π1,t =
σW1,t

σYR,t
,

where σW1,t is given by
dW1,t

W1,t
= µW1,tdt+ σW1,tdZt,

and σYR,t is given by (52). It follows from Ito’s Lemma that

σW1,t = σY + σν1,t
ν1,t

wY1,t

∂wY1,t
∂ν1,t

.

Similarly,

Π2,t =
σW2,t

σR,t
,

where

σW2,t = σY + σν1,t
ν1,t

wY2,t

∂wY2,t
∂ν1,t

.

Thus, we obtain (D12) and (D13).
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Table 1: Parameter Values

This table gives the parameter values we use to evaluate the quantitative implications of our model
for asset prices. There are five cases we consider: (i) the base case, in which the two agents are
assumed to be identical; (ii) the case with identical preferences but heterogeneous beliefs that are
pessimistic; (iii) the case with identical beliefs and subjective discount rates but heterogeneous risk
aversions; (iv) the case with heterogeneous beliefs and heterogeneous risk aversions; and, (v) the
case where the parameters are chosen in such a way that they satisfy the stationarity condition.

Description of parameter Symbol Value

Expected growth rate of aggregate endowment µY 0.02
Volatility of growth rate of aggregate endowment σY 0.03

Case (i): Both agents identical
Belief of both agents about expected growth rate of endowment µY,k 0.02
Subjective discount rate for both agents βk 0.01
Relative risk aversion for both agents γk 3.00

Case (ii): Heterogeneous beliefs that are also pessimistic
Agent 1’s belief about expected growth rate of aggregate endowment µY,1 0.0125
Agent 2’s belief about expected growth rate of aggregate endowment µY,2 0.01

Case (iii): Heterogeneity only in risk aversions
Relative risk aversion for Agent 1 γ1 0.50
Relative risk aversion for Agent 2 γ2 5.50

Case (iv): Heterogeneity in both beliefs and risk aversions
Agent 1’s belief about the expected growth rate of aggregate endowment µY,1 0.0125
Agent 2’s belief about the expected growth rate of aggregate endowment µY,2 0.01
Relative risk aversion for Agent 1 γ1 0.50
Relative risk aversion for Agent 2 γ2 5.50

Case (v): Parameters satisfying the stationarity condition
Belief of both agents about expected growth rate of endowment µY,k 0.01
Subjective discount rate for Agent 1 β1 0.01956
Subjective discount rate for Agent 2 β1 0.00001
Relative risk aversion for Agent 1 γ1 2.50
Relative risk aversion for Agent 2 γ2 1.50
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Figure 1: The Riskfree Interest Rate

This figure plots the instantaneously riskfree interest rate, r, as a function of the consumption
share of the first agent, ν1. The figure has five plots corresponding to the following cases: (i) Iden-
tical agents; (ii) Agents with different beliefs, which are pessimistic on average; (iii) Agents with
different risk aversions but identical beliefs; (iv) Agents with different beliefs and different risk
aversions; and (v) Agents with beliefs and preference such that the stationarity condition is
satisfied.
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Figure 2: Volatility of the Instantaneously Riskfree Rate

This figure plots the volatility of the instantaneously riskfree rate, |σr|, as a function of the
consumption share of the first agent, ν1. The figure has five plots corresponding to the following
cases: (i) Identical agents; (ii) Agents with different beliefs, which are pessimistic on average;
(iii) Agents with different risk aversions but identical beliefs; (iv) Agents with different beliefs
and different risk aversions; and (v) Agents with beliefs and preference such that the stationarity
condition is satisfied.
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Figure 3: Market Price of Risk

This figure plots the market price of risk, θ, as a function of the consumption share of the first
agent, ν1. The figure has five plots corresponding to the following cases: (i) Identical agents;
(ii) Agents with different beliefs, which are pessimistic on average; (iii) Agents with different
risk aversions but identical beliefs; (iv) Agents with different beliefs and different risk aversions;
and (v) Agents with beliefs and preference such that the stationarity condition is satisfied.
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Figure 4: Volatility of Stock Market Returns

The figure has five plots corresponding to the following cases: (i) Identical agents; (ii) Agents
with different beliefs, which are pessimistic on average; (iii) Agents with different risk aversions
but identical beliefs; (iv) Agents with different beliefs and different risk aversions; and (v) Agents
with beliefs and preference such that the stationarity condition is satisfied.
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Figure 5: Equity Risk Premium

The figure has five plots corresponding to the following cases: (i) Identical agents; (ii) Agents
with different beliefs, which are pessimistic on average; (iii) Agents with different risk aversions
but identical beliefs; (iv) Agents with different beliefs and different risk aversions; and (v) Agents
with beliefs and preference such that the stationarity condition is satisfied.
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Figure 6: Term Premium

This figure plots the the limit of the term premium, which is the difference between the yield on a
zero-coupon discount bond, y1

T−t, and the instantaneous interest rate, rt: limT→∞ y1
T−t−rt, as a

function of the consumption share of the first agent, ν1. The figure has five plots corresponding to
the following cases: (i) Identical agents; (ii) Agents with different beliefs, which are pessimistic on
average; (iii) Agents with different risk aversions but identical beliefs; (iv) Agents with different
beliefs and different risk aversions; and (v) Agents with beliefs and preference such that the
stationarity condition is satisfied.

æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æà à à à à à à à à à à à à à à à à à à à à

ì

ì

ì

ì

ì

ì
ì

ì
ì

ì
ì ì ì ì ì ì ì ì ì ì ì

ò

ò

ò
ò

ò
ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò òô ô ô ô ô ô ô ô ô ô ô ô ô ô ô ô ô ô ô ô ô

0.2 0.4 0.6 0.8 1.0
Ν1

-0.08

-0.06

-0.04

-0.02

0.00

Term premium

ô Stationary economy
ò Different beliefs & risk aversions
ì Different risk aversions

à Different beliefs

æ Identical agents

71



References

Basak, S., 2000, “A Model of Dynamic Equilibrium Asset Pricing with Extraneous Risk,” Journal

of Economic Dynamics and Control, 24, 63–95.

Basak, S., 2005, “Asset Pricing with Heterogeneous Beliefs,” Journal of Banking and Finance, 29,

2849–2881.

Basak, S., and D. Cuoco, 1998, “An Equilibrium Model with Restricted Stock Market Participa-

tion,” Review of Financial Studies, 11, 309–341.

Beber, A., A. Buraschi, and F. Breedon, 2009, “Differences in Beliefs and Currency Risk Premia,”

forthcoming in Journal of Financial Economics.

Benninga, S., and J. Mayshar, 2000, “Heterogeneity and Option Pricing,” Review of Derivatives

Research, 4, 7–27.

Berrada, T., 2006, “Incomplete Information, Heterogeneity and Asset Pricing,” Journal of Financial

Econometrics, 4, 136–160.

Berrada, T., and J. Hugonnier, 2010, “Incomplete Information, Idiosyncratic Volatility and Stock

Returns,” Working Paper, University of Geneva and Swiss Finance Institute.

Bhamra, H. S., and R. Uppal, 2009, “The Effect of Introducing a Non-Redundant Derivative on the

Volatility of Stock-Market Returns when Agents Differ in Risk Aversion,” Review of Financial

Economics, 22, 2303–2330.
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