

ITAY GOLDSTEIN, WHARTON

OUTLINE

Liquidity Transformation and Fragility

- Early Evidence from Mutual Funds
- The Covid-19 Episode
- Policy Response and Implications

LIQUIDITY TRANSFORMATION AND FRAGILITY

LIQUIDITY TRANSFORMATION AND FRACILITY

A run on American Union Bank, 1931

LIQUIDITY TRANSFORMATION AND FRAGILITY

- Liquidity transformation is at the core of financial services
 - Banks provide liquidity to their depositors and invest in illiquid assets
 - They create liquidity, but end up with liquidity mismatch
- Liquidity mismatch renders banks vulnerable to panicbased runs (Diamond and Dybvig, 1983)
 - Depositors rush to withdraw deposits expecting that others will do so
- Many government policies are enacted to alleviate panicbased runs
 - Deposit insurance, lender of last resort, etc.

HOW DOES IT WORK IN MUTUAL FUNDS?

- Open-end mutual funds are different from banks
 - They do not promise a fixed return, but rather pay according to a floating-NAV model
- Does this eliminate first-mover advantage and strategic complementarities?
- No!
 - In a floating-NAV environment, investors can redeem shares and get the NAV as of the day of redemption
 - But, their redemptions will affect fund trading going forward, hurting remaining investors in illiquid funds

MUTUAL FUNDS REDEMPTIONS

• Key point: redemptions impose costs – commissions, bid-ask spread, price impact, forced deviation from desired portfolio, liquidity-based trading – on remaining investors

EMPIRICAL CHALLENGES

- Fundamental-based vs. panic-based runs:
 - Fundamental-based runs happen when investors withdraw just because of unfavorable news about fundamentals
 - Chari and Jagannathan, 1988; Jacklin and Bhattacharya, 1988; Allen and Gale, 1998
 - Panic-based runs happen when investors withdraw because they believe others will withdraw
 - The belief can be self-fulfilling because of strategic complementarity among investors (Diamond and Dybvig, 1983)
- Separating panic-based run from fundamental based run is important from a policy perspective
 - Many policies, such as deposit insurance, lender of last resort, suspension of convertibility, are premised on the idea that some runs are driven by panics
 - Many believe these policies distort incentives and create more problems than they solve

EMPIRICALLY TESTING FOR PANIC-BASED RUNS

- Early evidence find strong association between bank runs and bank fundamentals (e.g., Gorton, 1988)
 - Such evidence is often interpreted as supporting fundamental based runs and against panic-based runs
- However, this interpretation is incorrect (e.g., Goldstein, 2013):
 - A pre-requisite for panic-based run is weaker fundamentals
 - Strategic complementarity among depositors can exacerbate/magnify the effect of fundamentals
 - Association between run and bad fundamental does not rule out the existence of panic-based behaviors

ILLUSTRATION: BASIC MODEL OF BANK RUNS

- Diamond and Dybvig (1983): depositors observe common, perfect signal about bank fundamental θ
- Without strategic complementarity among depositors, only insolvent banks with $\theta < \underline{\theta}$ should experience run
- With strategic complementarity, self-fulfilling panic-based run can take place (or not) for any solvent bank with $\theta \in [\underline{\theta}, \overline{\theta}]$
 - Multiple equilibria render the model empirically vacuous and untestable (Gorton, 1988)

ILLUSTRATION: UPDATED MODEL OF BANK RUNS

- Goldstein and Pauzner (2005): relax the assumption of common knowledge about fundamental
 - Generate unique equilibrium where runs happen for fundamental below a threshold level of $\theta^{\,*}$
 - Runs when the fundamental is between $(\underline{\theta}, \theta^*)$ are considered panic-based, because they would not occur in the absence of coordination failure
 - But, they are still linked to fundamentals
- Theory is testable. Comparative statics: panic-run region is larger for banks with greater liquidity mismatch

EMPIRICAL PREDICTIONS AND TESTS

- For the same decline in fundamental, higher liquidity mismatch will generate more outflows
 - Testable implication: stronger sensitivity of outflows to performance when liquidity mismatch is higher
- Two papers tested this theory for mutual funds:
 - Chen, Goldstein, and Jiang (2010): Stronger sensitivity of outflows to negative performance in illiquid equity funds than in liquid equity funds
 - Goldstein, Jiang, and Ng (2017): Effect is much stronger in corporatebond funds, where illiquidity of assets is a much bigger problem

EARLY EVIDENCE FROM MUTUAL FUNDS

EMPIRICAL ANALYSIS OF FLOWS IN EQUITY MUTUAL FUNDS

- Chen, Goldstein and Jiang (2010)
 - Study flows in 4,393 actively-managed equity funds from 1995-2005
 - Find stronger sensitivity of outflows to negative performance in illiquid funds
 - These funds generate stronger complementarities
 - Illiquid funds are: small-cap & mid-cap equity funds (domestic or international), or single-country funds excluding US, UK, Japan and Canada.
 - Or continuous measure of liquidity of portfolio

EVIDENCE FROM CHEN, GOLDSTEIN, AND JIANG (2010)

Flow Sensitivity by Assets Liquidity

6

CORPORATE BOND FUNDS: GOLDSTEIN, JIANG, AND NG (2017)

- Following the crisis, massive inflows into corporate bond funds
 - Largely as a response to changes in investment opportunities and regulation elsewhere in the financial system
- Concerns mentioned about potential fragility mounting in the corporate bond funds sector, e.g., Feroli, Kashyap, Schoenholtz, and Shin (2014)
 - Concerns are stronger due to greater illiquidity of underlying asset

EMPIRICAL ANALYSIS OF FLOWS IN CORPORATE BOND MUTUAL FUNDS

- Goldstein, Jiang and Ng (2017) study flows in 1,660 activelymanaged corporate bond funds from 1992-2014
- Large literature on the flow-to-performance relation in equity funds, finding convex relation
- We find that corporate bond funds are different:
 - Flow-to-performance relation tends to be concave
 - Pattern strengthens with illiquidity across funds and over time

FLOW PERFORMANCE RELATION OF CORPORATE BOND FUNDS VS. EQUITY FUNDS

18

EMPIRICAL RESULTS: CORPORATE BOND VS. STOCK FUNDS

	(1)	(2)
	Corporate Bond Funds	Stock Funds
Alpha	0.238***	0.994***
	(2.71)	(34.23)
Alpha× (Alpha<0)	0.621***	-0.575***
	(4.34)	(-14.70)
Alpha<0	-0.00979***	-0.00723***
	(-18.45)	(-25.06)
Lagged Flow	0.152***	0.118***
	(21.47)	(29.90)
Log(TNA)	0.000728***	0.000459***
	(5.74)	(5.46)
Log(Age)	-0.0157***	-0.0183***
	(-32.08)	(-70.95)
Expense	-0.200***	-0.0522
	(-2.59)	(-0.77)
Rear Load	-0.00280***	-0.134***
	(-3.68)	(-5.51)
Observations	307,242	1,578,506
Adj. R2	0.0646	0.0583

19

FLOW-PERFORMANCE IN UNDERPERFORMING FUNDS IN ILLIQUID TIMES

	(1) VIX	(2) TED	(3) DFL	(4) MOVE
Alpha	-0.131	-0.121	-0.746***	-0.0909
	(-0.77)	(-1.11)	(-3.22)	(-0.73)
Alpha*IlliqPeriod	0.753***	0.749***	1.412***	0.639***
	(3.89)	(5.37)	(5.21)	(4.58)
IlliqPeriod	0.00690***	0.00148***	0.00745***	0.00252***
	(9.81)	(2.44)	(8.11)	(4.19)
Lagged Flow	0.121***	0.123****	0.152***	0.123***
	(15.37)	(15.47)	(14.90)	(15.50)
Log(TNA)	0.000552****	0.000558***	0.000533***	0.000544***
	(3.78)	(3.82)	(2.98)	(3.75)
Log(Age)	-0.0134***	-0.0136****	-0.0124****	-0.0135****
	(-26.78)	(-26.70)	(-17.88)	(-26.70)
Expense	-0.175***	-0.185**	-0.284**	-0.183**
	(-1.98)	(-2.10)	(-2.45)	(-2.08)
Rear Load	-0.00294***	-0.00285***	-0.00611***	-0.00291****
	(-3.40)	(-3.29)	(-5.87)	(-3.36)
Observations	171,006	171,006	100,215	171,006
Adj. R ²	0.0339	0.0330	0.0429	0.0329

ASSET LIQUIDITY AND FLOW-PERFORMANCE RELATION

Alpha<0	Low Cash	Low (Cash + Government Bonds)	Low NSAR Cash	Illiquid Corporate Bond Holdings 1	Illiquid Corporate Bond Holdings 2
Alpha	0.554***	0.567***	0.631***	0.688***	0.662***
	(6.42)	(6.17)	(6.09)	(3.20)	(3.16)
Alpha×IlliqFund	0.814***	0.647***	0.767***	1.305***	1.174***
	(3.21)	(2.74)	(3.82)	(3.02)	(2.82)
IlliqFund	-0.000288	0.00113	0.00211*	0.00472***	0.00435***
	(-0.38)	(1.51)	(1.73)	(2.89)	(2.74)
Lagged Flow	0.131***	0.132***	0.121***	0.180***	0.179***
	(12.50)	(12.52)	(7.15)	(10.67)	(11.11)
Log(TNA)	0.000561***	0.000555***	0.000470*	0.000831***	0.000928***
	(3.18)	(3.15)	(1.80)	(2.58)	(2.86)
Log(Age)	-0.0140***	-0.0140***	-0.0142***	-0.0153***	-0.0157***
	(-20.26)	(-20.22)	(-14.61)	(-12.59)	(-12.95)
Expense	-0.443***	-0.449***	-0.521***	-0.0281	-0.0158
	(-3.99)	(-4.02)	(-3.10)	(-0.14)	(-0.08)
Rear Load	-0.00485***	-0.00482***	-0.00221	-0.00474**	-0.00482**
	(-4.78)	(-4.74)	(-1.45)	(-2.49)	(-2.50)
Observations	108,745	108,745	49,759	25,389	25,370
Adj. R ²	0.0500	0.0498	0.0473	0.0732	0.0750

THE COVID-19 EPISODE

THE GROWING IMPORTANCE OF INVESTMENT FUNDS IN THE CORPORATE BOND MARKET

OUTFLOWS IN COVID-19 CRISIS IN PERSPECTIVE OF RECENT DECADE

Mutual funds in corporate bond markets saw massive outflows during the COVID-19 crisis

THE COVID-19 SHOCK HIT ACROSS THE BOARD

In mid-March, more than a third of the bond funds experienced large daily

FUNDS FACED SUSTAINED OUTFLOWS

In mid-March, more than a quarter of the bond funds experienced <u>sustained</u> large daily outflows (also, many funds experienced <u>correlated</u> large daily

Daily Net Fraction of Funds with Large (top decile) Outflows (vs. inflows) in Two Consecutive Days

SIGNS OF STRESS IN CORPORATE BOND MARKET OVER THE CRISIS PERIOD

Panel A: Investment-Grade Bond Spreads

Panel B: High-Yield Bond Spreads

27

EVOLUTION OF FLOWS OVER THE CRISIS

Daily outflows started in the last week of February and accelerated in the second and third weeks of March, peaking at almost 1% of net assets

Daily Aggregate Net Fund Flows (Fraction of Lagged Net Asset)

SOURCES OF FRAGILITY

- Liquidity mismatch: holding illiquid assets, but providing high level of liquidity to their investors – can lead to "run" type behavior from their investors
 - Chen, Goldstein, and Jiang (2010); Goldstein, Jiang, and Ng (2017)
- <u>Fire-sale vulnerability</u>: forced asset sales have spillovers on peer funds that can lead to outflows
 - Falato, Hortacsu, Li, and Shin (2020)
- What happened in Covid-19 crisis? Did these fragilities play a role?
 - Analyzed in Falato, Goldstein, and Hortacsu (2021)

TRACKING THE EVOLUTION OF FLOWS ACROSS ILLIQUID VS. LIQUID FUNDS

Panel A: Evolution of the Crisis by Fund Liquidity								
	Ro	oll	Bid-	Ask	Rati	Ratings		
	Illiq	Liq	Illiq	Liq	Illiq	Liq		
	(1)	(2)	(3)	(4)	(5)	(6)		
			-					
Buildup (Feb 2020)	-0.03	0.25^{***}	-0.07	0.27^{***}	-0.15**	0.20^{***}		
	(0.07)	(0.06)	(0.06)	(0.06)	(0.06)	(0.06)		
Outbreak (Mar 1-13, 2020)	-0.27***	0.34^{***}	-0.31***	0.43***	-0.68***	0.54^{***}		
	(0.07)	(0.10)	(0.08)	(0.10)	(0.07)	(0.11)		
Peak (Mar 13-23, 2020)	-1.28***	-0.67***	-1.35***	-0.45***	-1.72***	-0.02		
	(0.10)	(0.16)	(0.11)	(0.15)	(0.10)	(0.16)		
Month, Fund FE	Yes	Yes	Yes	Yes	Yes	Yes		
N obs	86,954	87,134	88,600	86,599	100,923	86,795		
$R^{2}(\%)$	14.2	8.6	12.4	7.4	14.3	8.0		

TRACKING THE EVOLUTION OF FLOWS ACROSS VULNERABLE AND OTHER TYPES OF FUNDS

· · ·								
Panel C: Evolution of the Crisis and Policy Response by Fund Fire-Sale Vulnerability								
	Vulner	rability	А	ge	Maturity			
	Low	High	Young	Old	Short	Long		
	(1)	(2)	(3)	(4)	(5)	(6)		
Peak (Mar 13-23, 2020)	-0.65***	-1.09***	-0.79***	-0.64***	-0.56**	-0.75***		
	(0.06)	(0.08)	(0.11)	(0.07)	(0.24)	(0.16)		
First Response (Mar 23-Apr 9, 2020)	-0.54***	-0.58***	-0.54***	-0.31***	-0.59***	-0.59***		
	(0.03)	(0.05)	(0.07)	(0.05)	(0.14)	(0.10)		
Second Response (Apr 9-17, 2020)	-0.04	-0.12*	-0.22**	0.10	0.13	-0.14		
	(0.05)	(0.07)	(0.10)	(0.08)	(0.18)	(0.20)		
Month Fund FF	Yes	Yes	Yes	Yes	Ves	Ves		
N obs	165.403	177.561	169.086	182,969	32,973	33.710		
$R^{2}(\%)$	13.6	13.9	15.1	9.7	6.4	10.3		

MATCHED-SAMPLE ANALYSIS OF ETFS

- ETFs were more resilient during the crisis relative to similar funds (matched on size, age, and performance)
- Consistent with their redemptions being less prone to liquidity mismatch

Panel A: Crisis								
	Flows (%)	Large	2-Day Large	2+SC Large				
	\mathbf{FE}	Outflows	Outflows	Outflows				
	(1)	(2)	(3)	(4)				
Crisis (Feb-April 2020)	0.16 ^{***} (0.06)	-0.07*** (0.01)	-0.05*** (0.01)	-0.16 ^{***} (0.00)				
FE N obs	Month, Fund 93,654	Month, Fund 93,654	Month, Fund 93,654	Month, Fund 93,654				
$R^{2}(\%)$	10.6	10.2	7.9	33.0				

TRACKING THE EVOLUTION OF FLOWS ACROSS HIGH VS. LOW COVID-19 EXPOSURE FUNDS

Panel A: An	alysis by Fund	Sector Exposure	2		
	Cr	isis	Crisis and Policy Response		
	OLS	FE	OLS	FE	
	(1)	(2)	(3)	(4)	
Crisis (Feb-April 2020)	-0.15***	-0.19***			
1	(0.05)	(0.05)			
Peak (Mar 13-23, 2020)			-0.78***	-0.81***	
			(0.12)	(0.12)	
First Response (Mar 23-Apr 9, 2020)			-0.51***	-0.53***	
			(0.07)	(0.07)	
Second Response (Apr 9-17, 2020)			-0.13	-0.16	
			(0.13)	(0.13)	
High Exposure Fund	-0.01		-0.01		
	(0.03)		(0.03)		
High Exposure Fund*Crisis	-0.27***	-0.22***			
	(0.06)	(0.06)			
High Exposure Fund*Peak			-0.76***	-0.71***	
0 1			(0.18)	(0.18)	
High Exposure Fund*First Response			-0.01	0.05	
			(0.10)	(0.10)	
High Exposure Fund*Second Response			0.32*	0.37**	
			(0.17)	(0.17)	
Month FE	Yes	Yes	Yes	Yes	
Fund FE	No	Yes	No	Yes	
N obs	183,331	183,331	183,331	183,331	
$R^{2}(\%)$	1.2	11.5	2.1	12.0	

 Exposed funds saw greater outflows in the crisis and stronger recovery after policy announcemen ts

DECOMPOSING FLOWS BASED ON SOURCES OF FRAGILITY

Panel A: Cumulative Flows in the Crisis							
	Feb-Mar, 2020	Mar-Apr, 2020					
	(1)	(2)					
Cumulative Flows	-10.2%	-6.7%					
Cumulative Flows, Illiquid Funds (Roll)	-18.7%	-14.8%					
Cumulative Flows, Fire-Sale Vulnerable Funds	-16.5%	-11.4%					
Cumulative Flows, High Sector Exposure Funds	-21.4%	-16.6%					
Share Explained (Fund Liquidity (Roll))	40.1%	27.6%					
Share Explained (Fund Fire-Sale Vulnerability)	55.7%	37.3%					
Share Explained (Fund Sector Exposure)	63.8%	55.4%					
Aggregating Across Proxies: Fragility Factor	Feb-Mar, 2020	Mar-Apr, 2020					
Cumulative Flows	-23.2%	-17.7%					
Historical Comparison: Taper Tantrum	May-Jun, 2013	Jun-Jul, 2013					
Cumulative Flows	-2.2%	-2.4%					

OTHER OBSERVATIONS

- ETFs showed much greater resilience during crisis period than mutual funds
 - Payoff structure does not create as much liquidity transformation, and so less prone to fragility
- Equity mutual funds also showed resilience, according to Pastor and Vorsatz (2020)
 - They also provide lower liquidity transformation
- Stress in corporate bond markets had peculiar features, whereby more liquid securities experienced greater dislocations, as documented by Haddad, Moreira, and Muir (2021)
 - Evidence by Ma, Xiao, and Zeng (2021) ties this to mutual funds following a pecking order and selling liquid securities in response to flows
- Mutual fund outflows interacted with constraints on dealers to aggravate illiquidity in corporate bond market
 - Evidence and quantification in Kargar, Lester, Lindsay, Liu, Weil, and Zuniga (2021)

POLICY RESPONSE AND IMPLICATIONS

IMPACT OF FED PURCHASE ELIGIBILITY ON FUNDS IN THE POST-CRISIS PERIOD (THROUGH AUGUST 2020)

- Evidence so far indicates that the two Fed announcements helped to stop the panic and reverse outflows
- But how sustained was the rebound over the post-crisis months and did the Fed actions continue to help over the longer run?
- Falato, Goldstein and Hortacsu (2021) examine the cross-sectional relation between cumulative fund flows over the post-crisis period (through August 2020) and a measure of fund exposure to the Fed facilities
- Specifically, we construct a measure, SMCCF Share, that ranks funds based on how many of their bonds are eligible to be purchased by the SMCCF
 - For each fund, we take the sum over the fund's securities holdings (as of February 2020) of the percentage portfolio share holdings of each eligible security
 - The eligibility criteria are: maturity of under 5 years, domiciled in the US, not an insured depository institution, and rated investment grade as of March 22, 2020 and not lower than BB+ afterwards ("fallen angels")

IMPACT OF FED PURCHASE ELIGIBILITY ON FUNDS IN THE POST-CRISIS PERIOD (THROUGH AUGUST 2020)

- By providing a liquidity backstop for bonds, the Fed bond purchase program helped to reverse outflows
- Effects of exposure to SMCCF were economically large: 1-st dev increase in exposure corresponds to about 1/3 of mean rebound in the post-crisis period
- Larger benefits of the facilities for the most fragile funds
- Important implications
 - Helps explain big speedy rally without the need for the Fed to take on credit risk

Panel A: Fund Impact									
	Cun	nulative Flow	vs (%)	Ι	Large Outflo	WS			
	All	Illiquid	Vulnerable	All	Illiquid	Vulnerable			
	(1)	(2)	(3)	(4)	(5)	(6)			
SMCCF Share _i	2.76*** (0.82)	5.39*** (1.16)	7.69*** (2.69)	-0.02*** (0.00)	-0.02*** (0.01)	-0.04*** (0.01)			
N obs.	2,441	324	346	2,441	324	346			
$R^{2}(\%)$	0.70	1.87	2.45	2.27	4.07	10.20			
Mean LHS	9.33	-2.32	3.62	0.10	0.13	0.12			

THE FRAGILITY CHANNEL OF THE SMCCF: SPILLOVER EFFECTS OF FED PURCHASE ELIGIBILITY OVER THE POST-CRISIS PERIOD (THROUGH AUGUST 2020)

Panel B: Bond Spillover							
		All]	Illiquid Holders		
-	Issuance	Pr. Spreads	Sec. Spreads	Issuance	Pr. Spreads	Sec. Spreads	
	(1)	(2)	(3)	(4)	(5)	(6)	
SMCCF Share _b	0.46^{***}	-0.16***	-0.10***	0.48^{***}	-0.39***	-0.22***	
	(0.05)	(0.04)	(0.02)	(0.09)	(0.09)	(0.03)	
N obs.	116	483	5,602	41	82	858	
$R^{2}(\%)$	5.03	22.76	3.61	15.25	28.92	10.12	
Mean LHS	1.57	1.99	-0.82	1.57	2.59	-0.82	
		Panel C	: Fund Spillover	•			
	Cui	nulative Flov	vs (%)	-	Large Outflow	WS	
-	All	Illiquid	Vulnerable	All	Illiquid	Vulnerable	
	(1)	(2)	(3)	(4)	(5)	(6)	
Peer SMCCF Share _i	0.12	0.26	0.44	-0.02***	-0.03***	-0.03***	
	(0.97)	(1.68)	(2.34)	(0.00)	(0.01)	(0.01)	
N obs.	2,441	324	346	2,441	324	346	
$R^{2}(\%)$	0.94	1.86	5.44	2.42	6.63	11.30	

THE FRAGILITY CHANNEL OF THE SMCCF: IMPACT OF FED PURCHASE ELIGIBILITY THRESHOLD ON FUNDS (THROUGH AUGUST 2020)

- Impact of Fed bond purchase facilities is robust to addressing endogeneity
- Exploit 5-year maturity threshold to compare funds that hold eligible bonds with 5-year maturity ("treated") to those that hold otherwise eligible bonds with 6-year maturity ("control")

Panel A: Fund Impact								
	Cur	nulative Flow	ws (%)	Large Outflows				
	All	Illiquid	Vulnerable	All	Illiquid	Vulnerable		
	(1)	(2)	(3)	(4)	(5)	(6)		
SMCCF Treated _i	7.35**	7.85**	7.47^{**}	-0.04***	-0.05***	-0.04***		
	(3.33)	(3.75)	(3.33)	(0.01)	(0.02)	(0.01)		
N obs.	1,412	254	215	1,412	254	215		
$R^{2}(\%)$	0.40	4.01	0.66	2.61	9.57	14.41		

THE FRAGILITY CHANNEL OF THE SMCCF: SPILLOVER EFFECTS OF FED PURCHASE ELIGIBILITY THRESHOLD OVER THE POST-CRISIS PERIOD (THROUGH AUGUST 2020)

Panel B: Bond Spillover								
		All		Ι	Illiquid Holders			
-	Issuance	Pr. Spreads	Sec. Spreads	Issuance	Pr. Spreads	Sec. Spreads		
	(1)	(2)	(3)	(4)	(5)	(6)		
SMCFF Treated _b	0.30***	-0.09**	-0.16***	0.56***	-0.25***	-0.28**		
	(0.04)	(0.04)	(0.04)	(0.14)	(0.08)	(0.11)		
N obs.	116	483	1,669	41	82	341		
$R^{2}(\%)$	4.71	16.32	4.72	15.61	23.08	13.28		
		Panel C:	Fund Spillover					
	Cui	nulative Flow	vs (%)	1	Large Outflows			
-	All	Illiquid	Vulnerable	All	Illiquid	Vulnerable		
	(1)	(2)	(3)	(4)	(5)	(6)		
Peer SMCFF Treated _i	4.18	5.27	4.31	-0.02***	-0.03**	-0.03**		
	(3.16)	(4.94)	(5.89)	(0.01)	(0.01)	(0.01)		
N obs.	1,413	222	195	1,413	222	195		
$R^{2}(\%)$	1.26	3.55	8.80	1.43	8.40	11.12		

POLICY LESSONS GOING FORWARD

- The Federal Reserve interventions were crucial for alleviating the stress
 - Quick reversal of outflows after two announcements (March 23: PMCCF and SMCCF to purchase investment-grade bonds; April 9: Extend facilities to \$850bn and to purchase high-yield bonds if they were IG as of March 22)
 - Sustained recovery of flows over the post-crisis period (through August 2020) for funds that held more bonds eligible for purchase by the Fed facilities
- Relying on such interventions in the future might not be sustainable
 - Moral hazard problem with funds taking excessive risks as they expect outside intervention
 - If government provides a safety net, then other regulatory measures should be in place to promote resilience, like in banks

POLICY LESSONS GOING FORWARD - CONT'D

- Going forward, underlying vulnerabilities should be assessed and potentially addressed:
 - Improving liquidity of underlying corporate bond assets
 - These are difficult reforms to enact
 - Requiring funds to hold more liquid securities
 - Might defeat the purpose of having corporate-bond funds
 - Reducing liquidity available to investors
 - Swing pricing is a solution that is directly targeted to the problem
 - It has only recently been introduced in the U.S. but has not been adopted yet
 - Evidence from other countries before the Covid episode suggests it has been quite effective: Jin, Kacperczyk, Kahraman, and Suntheim (2020)
 - ETF structure acts as natural swing pricing

