Global Games and Financial Fragility:

Foundations and a Recent Application

Itay Goldstein

Wharton School, University of Pennsylvania

Outline

Part I:

The introduction of global games into the analysis of financial fragility and crises

Part II:

A recent application, based on a paper "The Interdependence of Bank Capital and Liquidity" (with Elena Carletti and Agnese Leonello)

Financial Fragility and Coordination Failures

- What makes financial systems fragile? What causes crises and breakdowns in financial institutions and markets?
- A primary source for fragility is: coordination failures
- A coordination failure arises when economic agents take a destabilizing action based on the expectation that other agents will do so as well. The result is a **self-fulfilling crisis**
- The key ingredient for this to arise is **strategic complementarities**: agents want to do what others do

Leading Example: Bank Runs

- Diamond and Dybvig (1983): Banks Create liquid claims on illiquid assets using demand-deposit contracts
- Arrangement leads to two equilibria:
 - Good equilibrium: only impatient agents demand early withdrawal
 Bad equilibrium: all agents demand early withdrawal. Bank Run occurs
- Bank runs occur because of strategic complementarities:
 - When everyone runs on the bank, this depletes the bank's resources, and makes running optimal. As a result, runs are **panic-based**

Problems with Multiplicity

• The model provides no tools to determine when runs will occur. This is an obstacle for:

• Understanding bank choices:

- What will be the equilibrium choices of banks, e.g., liquidity provision, when they take into account the possibility of a run and how it is affected by their choices?
- **Policy analysis:** which policy tools are desirable to overcome crises?

- Deposit insurance is perceived as an efficient tool to prevent bank runs, but it might have costs, e.g., moral-hazard
- Without knowing how likely bank runs are, it is hard to assess the desirability of deposit insurance
- Empirical analysis: what constitutes sufficient evidence for the relevance (or lack of) of strategic complementarities in fragility?
 - Large body of empirical research associates crises with weak fundamentals. Is this evidence against the panic-based approach?
 - How can we derive empirical implications?

The Global-Games Approach

- The global-games approach based on Carlsson and van Damme (1993) enables us to derive a unique equilibrium in a model with strategic complementarities and thus overcome the problems associated with multiplicity of equilibria
- The approach assumes that the fundamentals of the bank may be in extreme dominance regions and that agents observe slightly noisy signals of them
- A simple illustration is provided by Morris and Shin (1998)

Equilibrium with Global Games: Step I

• Assuming the existence of dominance regions:

Equilibrium with Global Games: Step II

• Assuming slightly noisy signals:

A run occurs if and only if the fundamentals are below a unique threshold

Working with Global-Games Equilibrium

- Run probability captured by threshold θ^* , which is characterized by indifference condition of marginal agent
- Analyzing this condition, one can:
 - Characterize banks' choices and their interaction with run probability (Goldstein and Pauzner, 2005)
 - o Conduct policy analysis (Allen, Carletti, Goldstein, and Leonello, 2018)
 - Derive and test empirical predictions (Chen, Goldstein, and Jiang, 2010)

The Interdependence of Bank Capital and Liquidity

E. Carletti[†] I. Goldstein[‡] A. Leonello^{*}

[†]Bocconi University and CEPR [‡]University of Pennsylvania

*European Central Bank

Disclaimer: The views expressed here are the authors' and do not reflect those of the ECB or the Eurosystem

Introduction

- Liquidity played a central role in the recent financial crises (e.g., Bernanke, 2008)
- As a result, liquidity regulation (e.g., LCR and NSFR) was introduced to complement capital regulation
- Capital and liquidity requirements are meant to serve different purposes
 - The former deals with solvency issues, the latter with liquidity ones
- (In)solvency and (il)liquidity are closely intertwined concepts
- In light of these considerations, do capital and liquidity interact in affecting bank stability? If so, how?

What we do in the paper

- We present a model to analyze the interdependent effect of capital and liquidity on financial stability
- What is needed:
 - Endogenize crises probability to see how it is affected by banks' balance sheet choices
 - Endogenize banks' balance sheet choices to see how they are affected by regulation, taking into account investors' expected run behavior
- We put all these ingredients together and derive new results on the effects of capital and liquidity on bank stability and some implications for capital and liquidity regulation

▶ Literature

Our paper

- Builds on the model by Goldstein and Pauzner (2005) (GP, 2005), where
 - Depositors' withdrawal decisions are uniquely determined using the global-game methodology
 - Runs occur when the fundamentals are below a unique threshold
 - Crisis probability is endogenous and depends on bank choice of the deposit contract
 - Banks are only deposit financed
- In our framework, the probability of a bank failure depends both its balance sheet choices and overall market conditions
 - Bank funding comes from both equity **and** debt
 - Banks choose their portfolio liquidity
 - Asset liquidation value depends on a bank liquidity choice and that of all other banks in the economy

What we do in details

We start from one bank and

- Disentangle the effect of capital and liquidity on run probabilities
- Identify inefficiency of the unregulated equilibrium
- Characterize optimal micro-prudential regulation
- In the case with multiple bank, we show that
 - Banks are linked as they sell assets in a common asset market
 - The existence of a common asset market affects crisis probability, banks' choices and inefficiency; and
 - Characterize optimal macro-prudential regulation (in progress)

Results in a nutshell

- Capital and liquidity may have detrimental effects on crisis probability, depending on banks' asset liquidity and capital structure
 - Regulation should consider both sides of bank balance sheet
- Banks choose to be exposed to inefficient crises
 - Crises destroy good investments
- Capital and liquidity regulation are substitutes from a micro-pru perspective
- In a multiple bank setting, fire sales increase the probability of a crisis (contagion) and cost of premature liquidation
- Both capital and liquidity regulation are necessary from a macro-pru perspective
 - Capital regulation reduces inefficient crisis
 - Liquidity regulation reduces fire sales

The baseline model: Banks and investors

- Three dates (t = 0, 1, 2) economy with a bank and a continuum [0, 1] of (risk-neutral) investors
- ► At date 0, the bank raises a fraction k as capital and 1 k as short-term debt, and invests in a risky portfolio
 - Capital entails a per unit cost ho > 1
 - ▶ Debt holders are promised $r_1 = 1$ at date 1 and $r_2 \ge 1$ at date 2 in case of rollover and must obtain at least 1 in expectation
- ► Portfolio returns $\ell \in [0, 1]$ at date 1 and $R(\theta)(1 \alpha \ell)$ at date 2, where
 - $\blacktriangleright~\ell$ is a choice variable capturing bank portfolio liquidity \rightarrow liquidity/return trade-off
 - ▶ $\theta \sim U[0, 1]$, $R'(\theta) > 0$ and $0 < \alpha \leq \overline{\alpha}$ is cost of liquidity

The baseline model: debt holders' information

At the beginning of date 1, each debt holder receives a private signal s_i on the fundamental of the economy of the form

$$s_i = \theta + \varepsilon_i$$

with $\varepsilon_i \sim U[-\varepsilon, +\varepsilon]$ being i.i.d. across agents and $\varepsilon \to 0$

- Based on the signal, debt holders decide whether to withdraw (run) at date 1 or roll over their debt
 - They update their beliefs about θ and the others' actions
- The bank satisfies early withdrawals by liquidating its portfolio
- Debt holders receive a pro-rata share, whenever bank proceeds are not enough to repay r₁ or r₂

Payoffs to early and late withdrawal

- Debt holders choose the action that gives them the highest payoff
 - Both θ and *n* matter (strategic complementarity)

Debt holders' rollover decision and crises

	Fundamental crises		Panic crise	No crises		
0						1
	debt holders withdraw	$\underline{\theta}$	debt holders withdraw	$ heta^*$	no debt holders withdraw	
	as low $ heta$		because of			
			$ heta$ and $m{n}$			

where $\underline{\theta}$ is the solution to

$$R\left(heta
ight)\left(1-lpha\ell
ight)=\left(1-k
ight)r_{1}$$

and θ^* to

$$\int_{n=0}^{\hat{n}(\theta)} r_2 + \int_{n=\hat{n}(\theta)}^{\bar{n}} \frac{R(\theta)(1-\alpha\ell)\left[1-\frac{(1-k)nr_1}{\ell}\right]}{(1-k)(1-n)} = \int_{n=0}^{\bar{n}} r_1 + \int_{n=\bar{n}}^{1} \frac{\ell}{(1-k)nr_1} \frac{1}{(1-k)nr_1} \frac{1}{(1-k)$$

The effect of capital on crisis probability

Capital is ambiguous for crises due to two opposing effects

► Initial balance sheet composition (i.e., k and l) determines which effect dominates The effect of liquidity on crisis probability

Liquidity is ambiguous for crises due to three different effects

$$\underbrace{-\int_{\hat{n}(\theta)}^{\overline{n}} \frac{R(\theta) nr_{1}}{\ell^{2}(1-n)} dn}_{\text{Higher repayment}} + \underbrace{\int_{\hat{n}(\theta)}^{\overline{n}} \frac{\alpha R(\theta)}{(1-k)(1-n)} dn}_{\text{Lower repayment}} + \underbrace{\int_{\overline{n}}^{1} \frac{1}{(1-k)n} dn}_{\text{Higher repayment}} + \underbrace{\int_{\overline{n}}^{1} \frac{1}{(1-k)n} dn}_{\text{at date } 2 \text{ due to less}} + \underbrace{\int_{\overline{n}(\theta)}^{\overline{n}} \frac{\alpha R(\theta)}{(1-k)(1-n)} dn}_{\text{at date } 2 \text{ due to less}} + \underbrace{\int_{\overline{n}(\theta)}^{1} \frac{1}{(1-k)n} dn}_{\text{at date } 1} + \underbrace{\int_{\overline{n}(\theta)}^{1} \frac{\alpha R(\theta)}{(1-k)(1-n)} dn}_{\text{at dat } 1} + \underbrace{\int_{\overline{n}(\theta)}^{1} \frac{\alpha R(\theta)}{(1-k)(1-n)} dn}_{\text{at dat } 1} + \underbrace{\int_{\overline{n}(\theta)}^{1} \frac{\alpha R(\theta)}{(1-k)(1-k)} dn}_{\text{at dat } 1} + \underbrace{\int_{\overline{n}(\theta)}^{1} \frac{\alpha R(\theta)}{(1-k)(1-k)}$$

► Again, initial balance sheet composition (i.e., k and l) determines which effect dominates

The bank's choice

► Given debt holders' rollover decisions, at date 0 each bank chooses k, ℓ and r₂ to maximize

$$\Pi^{B} = \int_{\theta^{*}}^{1} \left[R\left(\theta\right) \left(1 - \alpha \ell\right) - \left(1 - k\right) r_{2} \right] d\theta - k\rho$$

subject to

$$\int_{0}^{ heta^{st}}rac{\ell}{(1-k)}d heta+\int_{ heta^{st}}^{1}r_{2}d heta\geq 1 ext{ and } \Pi^{B}\geq 0$$

- ► The choice of (k, ℓ) trades-off their impact on runs, funding costs and portfolio returns
 - Banks choose to be exposed to liquidity crises
- Inefficiency: crises entail premature liquidation of profitable investments

Capital, liquidity and bank fragility

When (1 − k) = ℓ (i.e., for k = k^{max}(ℓ)), there are no strategic complementarities (i.e., θ* → <u>θ</u>) and crises are efficient (i.e., <u>θ</u> ≡ <u>θ</u>^E)

Effect of capital on crisis probability

 Banks never choose to be where capital increases crisis probability

Effect of liquidity on crisis probabilities

 Banks never choose to be where liquidity increases crisis probability

Regulatory intervention

• Regulator sets capital and liquidity requirements (i.e., k^R or ℓ^R) to minimize

$$\int_{\underline{ heta}^{\mathcal{B}^{*}}}^{ heta^{*}}\left[R\left(heta
ight)\left(1-lpha\ell
ight)-\ell
ight]d heta$$

subject to

$$r_2^B = rg \max \Pi^B$$
 , $\Pi^B \ge 0$

- Then, it sets requirements so that $(1 k^R) = \ell^R$ holds
 - ▶ The exact point on $(1 k^R) = \ell^R$ frontier depends on how costly k and ℓ are for banks
- Capital and liquidity are substitutes in restoring efficiency if adequately designed

Banks in the system

• Two banks (i = A, B) with the same θ (aggregate shock)

- They sell assets to outside investors with finite wealth and ability w in a common asset market
- Now, bank i liquidation value is lⁱ * χ, where χ depends on investors' wealth w and total amount of illiquid assets sold Q

$$\chi(Q, w) = \begin{cases} 1 & \text{if } Q \leq w \\ h(Q) & \text{if } Q > w \end{cases}$$

with $h\left(Q
ight)<$ 1, $h'\left(Q
ight)<$ 0 and $Q'_{\ell}<$ 0

- ► A debt holder in bank A cares about what debt holders do in bank B because it affects Q and so the bank's liquidation needs via χ (Q, w)
 - Between banks strategic complementarities emerge on top of within bank ones

Equilibrium with fire sales

The model has still a unique threshold equilibrium

- ▶ Debt holders run if $\theta < \theta_F^*$ and do not above, with $\theta_F^* \ge \theta^*$
- Some crises are only driven by fire sales (contagion)

	Individual bank failure		Contagion		No crises	
0						1
	Banks	$ heta^*$	Banks	$ heta_F^*$	no banks	
	fail		fail		fail	
	because of		because of			
	their own <i>n</i>		the other bank' s <i>n</i>			

Banks' choice

- Banks problem is as before, but
 - Crisis threshold is θ_F^*
 - ▶ Debt holders receive $\frac{\ell \chi(Q^{tot},w)}{(1-k)}$ in the event of a run
- As before, banks choose to be exposed to liquidity crises
- But, bank solution now entails two inefficiencies:
 - Inefficient liquidation of good projects:

$$\int_{\theta^{E}}^{\theta^{*}_{F}}\left[R\left(\theta\right)\left(1-\alpha\ell\right)-\ell\right]d\theta$$

Fire-sales losses:

$$\int_{0}^{\theta_{F}^{*}} \ell\left[1-\chi\left(Q^{tot},w\right)\right] d\theta$$

Regulatory intervention

▶ Regulator sets capital and liquidity requirements { k^R, ℓ^R } to minimize

$$TL = \int_{\theta^{E}}^{\theta^{*}_{F}} \left[R\left(\theta\right) \left(1 - \alpha \ell\right) - \ell \right] d\theta + \int_{0}^{\theta^{*}_{F}} \ell \left[1 - \chi \left(Q^{tot}, w \right) \right] d\theta$$

subject to

$$r_2^B = \arg \max \Pi^B$$
, $\Pi^B \ge 0$

One tool is no longer enough

- Eliminating liquidity crises (i.e., imposing $(1 k) = \ell \chi(.)$) still leaves inefficient liquidation and fire sales losses (i.e., $\theta_{FS}^* \rightarrow \underline{\theta} > \theta^E$ and $\chi = \chi(Q^{tot}, w) < 1$)
- Banks must be forced to hold a sufficient amount of liquidity so that *χ* = 1 and capital should be set to satisfy (1 − *k*) = *ℓ*
 - **But**, this may not feasible if α and ρ are large as constraint $\Pi^B \ge 0$ binds

Conclusions

- In the absence of regulation, banks choose to be exposed to inefficient liquidity crises
- From a micro perspective, capital and liquidity regulation are substitutes in restoring efficiency
- From a macro perspective, both capital and liquidity regulation are needed
- It may not be feasible if market conditions are tight and capital and liquidity are costly for banks

Liquidity regulation

 Liquidity Coverage Ratio (LCR) aims at improving banks' ability to withstand large withdrawals

 $\frac{{\rm Stock ~of}~{\it HQLA}}{{\rm Total ~net ~cash ~outflows ~over ~30~days}} \geq 100\%$

- Total net cash outflows computed by applying weights to different types of liabilities
- Introduced in 2015, but full implementation from 01.01.2019
- Net Stable Funding Ratio (NSFR) aims at improving banks' resilience

 $\frac{\text{Total available stable funding (ASF)}}{\text{Total required stable funding (RSF)}} \geq 100\%$

- ASF and RSF computed by assigning weights to different types of liabilities and assets, respectively, based on runnability and liquidity
- Applicable to internationally active banks from 01.01.2018

(Some) Related literature

Liquidity regulation

- Diamond and Kashyap (2016): DD(1983) plus depositors having incomplete info about bank's ability to survive a run. LCR and NSFR reduce run probability, but do not correspond to optimal regulation
- König (2015): Rochet and Vives (2004) and Vives (2014) plus liquid assets earning lower return on average than illiquid ones. Liquidity regulation may lead to more runs

Capital and liquidity regulation

- Calomiris, Heider and Hoerova (2015): bankers need to exert costly effort to make loan portfolio safe. Liquidity curbs moral hazard problem when equity is scarce. Regulation is only needed when depositors' discipline is limited
- Kashyap, Tsomocos and Vardoulakis (2017): Bank run model plus bank's asset side risk choice. Regulations always reduce run probability, but none achieve the efficient allocation

Solvency crises

• For any $\theta \leq \underline{\theta}$, withdrawing early is a dominant strategy

 \blacktriangleright Crises are only due to bad realization of θ

Liquidity crises

• For any $\theta > \underline{\theta}$, withdrawing early is only optimal if $\theta \le \theta^*$

▶ Crises are only due to fear of high *n*, i.e., coordination failure

Bank FOC

► FOC k

$$-\frac{\partial \theta^*}{\partial k} \left[R(\theta)(1-\alpha\ell) - (1-k)r_2 \right] + \int_{\theta^*}^1 r_2 d\theta - \rho \\ + \frac{dr_2}{dk} \left[\int_{\theta^*}^1 (1-k)d\theta - \frac{\partial \theta^*}{\partial r_2} \left[R(\theta)(1-\alpha\ell) - (1-k)r_2 \right] \right] = 0$$

► FOC ℓ

$$-\frac{\partial \theta^*}{\partial \ell} \left[R(\theta)(1-\alpha\ell) - (1-k)r_2 \right] + \int_{\theta^*}^1 r_2 d\theta - \rho \\ + \frac{dr_2}{d\ell} \left[\int_{\theta^*}^1 (1-k)d\theta - \frac{\partial \theta^*}{\partial r_2} \left[R(\theta)(1-\alpha\ell) - (1-k)r_2 \right] \right] = 0$$

▶ Back

Reaction functions

