

OUTLINE

- Liquidity Transformation and Runs: Theoretical Foundations and Empirical Challenges
- Current Empirical Work
 - Liquidity Transformation and Fragility in the US Banking Sector (Chen, Goldstein, Huang, Vashishtha; 2020)
 - Financial Fragility in the COVID-19 Crisis: The Case of Investment Funds in Corporate Bond Markets (Falato, Goldstein, Hortacsu; 2020)
- Concluding remarks

LIQUIDITY TRANSFORMATION AND RUNS: THEORETICAL FOUNDATIONS AND EMPIRICAL CHALLENGES

LIQUIDITY TRANSFORMATION AND FRAGILITY

Liquidity transformation is at the core of financial services

- Banks, and more recently funds, provide liquidity to their depositors/investors and invest in illiquid assets
- They create liquidity, but end up with liquidity mismatch
- Liquidity mismatch renders financial institutions vulnerable to panic-based runs (Diamond and Dybvig, 1983)
 - Depositors rush to withdraw deposits expecting that others will do so
- Many government policies are enacted to alleviate panic-based runs
 - Deposit insurance, lender of last resort, etc.
- Empirical evidence directly linking depositors'/investors' behavior to liquidity mismatch?

DEFINITIONS AND CHALLENGES

- Fundamental-based vs. panic-based runs:
 - Fundamental-based runs happen when investors withdraw just because of unfavorable news about fundamentals
 - Chari and Jagannathan, 1988; Jacklin and Bhattacharya, 1988; Allen and Gale, 1998
 - Panic-based runs happen when investors withdraw because they believe others will withdraw
 - The belief can be self-fulfilling because of strategic complementarity among investors (Diamond and Dybvig, 1983)
- Separating panic-based run from fundamental based run is important from a policy perspective
 - Many policies, such as deposit insurance, lender of last resort, suspension of convertibility, are premised on the idea that some runs are driven by panics
 - Many believe these policies distort incentives and create more problems than they solve

EMPIRICALLY TESTING FOR PANIC-BASED RUNS

- Early evidence find strong association between bank runs and bank fundamentals (e.g., Gorton, 1988)
 - Such evidence is often interpreted as supporting fundamental based runs and against panic-based runs
- However, this interpretation is incorrect (e.g., Goldstein, 2013):
 - A pre-requisite for panic-based run is weaker fundamentals
 - Strategic complementarity among depositors can exacerbate/magnify the effect of fundamentals
 - Association between run and bad fundamental does not rule out the existence of panic-based behaviors

ILLUSTRATION: BASIC MODEL OF BANK RUNS

- Diamond and Dybvig (1983): depositors observe common, perfect signal about bank fundamental $\boldsymbol{\theta}$
- Without strategic complementarity among depositors, only insolvent banks with $\theta < \underline{\theta}$ should experience run
- With strategic complementarity, self-fulfilling panic-based run can take place (or not) for any solvent bank with $\theta \in [\underline{\theta}, \overline{\theta}]$
 - Multiple equilibria render the model empirically vacuous and untestable (Gorton, 1988)

- Goldstein and Pauzner (2005): relax the assumption of common knowledge about fundamental
 - Generate unique equilibrium where runs happen for fundamental below a threshold level of θ^*
 - Runs when the fundamental is between $(\underline{\theta}, \theta^*)$ are considered panic-based, because they would not occur in the absence of coordination failure
 - But, they are still linked to fundamentals
- Theory is testable. Comparative statics: panic-run region is larger for banks with greater liquidity mismatch

EMPIRICAL PREDICTIONS AND TESTS

- For the same decline in fundamental, higher liquidity mismatch will generate more outflows
 - Testable implication: stronger sensitivity of outflows to performance when liquidity mismatch is higher
- In previous papers, we have tested this theory for mutual funds:
 - Chen, Goldstein, and Jiang (2010): Stronger sensitivity of outflows to negative performance in illiquid equity funds than in liquid equity funds
 - Goldstein, Jiang, and Ng (2017): Effect is much stronger in corporate-bond funds, where illiquidity of assets is a much bigger problem
- In two recent papers, we take this theory to
 - Banks: This is where liquidity transformation has been most important over the years, and where concerns about fragility started from; yet, no empirical test has been done
 - Corporate bond mutual funds in the Covid-19 crisis: This is the first major stress episode since these institutions came into prominence, so it is a good opportunity to size up the fragility they may impose

LIQUIDITY TRANSFORMATION AND FRACILITY IN THE US BANKING SECTOR

CHEN, GOLDSTEIN, HUANG, VASHISHTHA; 2020

OVERVIEW OF ANALYSIS

- Main dimensions of analysis:
 - Effect of liquidity mismatch on depositors' behavior
 - Different effects between insured and uninsured depositors
 - Exploring various explanations: strategic complementarities vs. other
 - Fragility of banks to systematic vs. idiosyncratic shocks
 - Consequences of liquidity mismatch for failure, performance, etc.
- Overall, liquidity mismatch is strongly linked to fragility, pointing to panic-based dynamics and key tradeoffs in bank policies
- Findings are new in the vast empirical literature on bank runs
 - E.g., Iyer and Puri, 2012; Iyer et al., 2016; Egan et al., 2017

OUR MAIN EMPIRICAL SPECIFICATION

 $Y_{i,t} = \beta_0 Perf_{i,t-1} + \beta_1 LiqMismatch_{i,t-1} * Perf_{i,t-1} + \beta_2 LiqMismatch_{i,t-1} + \Gamma X + \varepsilon_{i,t}$

 $Y_{i,t}$ - change in deposits over period t for bank i, scaled by beginning of period assets

 $Perf_{i,t-1}$ - bank performance for period *t-1*; main proxy is *ROE*

 $LiqMismatch_{i,t-1}$ - measure of liquidity mismatch on banks' balance sheet

X – controls, including fixed effects, time-varying bank characteristics and macroconditions (fed fund rate and stock returns)

- When performance declines,
 - $\beta_0 > 0$ indicates depositors withdraw from bad fundamental
 - $\beta_1 > 0$ is consistent with panic-based behaviors (i.e., withdrawals based on beliefs about behaviors of other depositors)
- Our sample: about 8000 unique banks, 290,000 bank-quarter observations from 1994 to 2016

MEASURING BANK LIQUIDITY MISMATCH

- We measure a bank's liquidity mismatch with the liquidity creation measure, *CatFat*, developed by Berger and Bouwman (2009)
 - Banks that create more liquidity are more mismatched themselves.
 - Downloaded from Christa Bouwman's website.
- Three steps
 - Step 1: classify each bank activity (balance sheet account) as liquid, semi-liquid, or illiquid, including both on- and off-balance sheet activities.
 - Step 2a: assign weight of ¹/₂ to illiquid assets, 0 to semi-liquid and -1/2 to liquid assets;
 - Step 2b: assign weight of ½ to liquid liabilities, 0 to semi-liquid, ad -1/2 to illiquid liabilities and equity.
 - Step 3: sum up weighted activities, scaled by total gross assets.

MAIN RESULTS: LIQUIDITY TRANSFORMATION AND DEPOSIT-FLOW SENSITIVITY

	ΔDep_{it}^U	ΔDep^{I}_{it}	ΔDep_{it}^{Total}	ΔDep_{it}^U	ΔDep_{it}^{I}	ΔDep_{it}^{Total}
	(1)	(2)	(3)	(4)	(5)	(6)
ROE it-1	0.101***	0.024***	0.126***	0.094***	0.007**	0.106***
	(35.458)	(7.628)	(34.967)	(28.275)	(2.124)	(29.736)
$ROE_{it-1} \times CatFat_{it-1}$	0.120***	-0.218***	-0.093***	0.211***	-0.176***	0.030
	(7.032)	(-11.628)	(-4.182)	(10.114)	(-8.058)	(1.282)
CatFat _{it-1}	3.204***	7.298***	10.228***	3.144***	11.550***	14.033***
	(12.389)	(25.984)	(30.117)	(6.555)	(22.450)	(26.071)
Controls	Y	Y	Y	Y	Y	Y
Bank fixed effects	Ν	Ν	Ν	Y	Y	Y
Observations	287,018	287,018	287,018	286,831	286,831	286,831
Adj. R-squared	0.064	0.055	0.066	0.102	0.102	0.166

- Uninsured deposit flows are more sensitive to performance of banks that create more liquidity
- 1 σ increase in CatFat (0.17) increases uninsured flow-performance sensitivity by 20% (=0.17*0.12/0.101). Equivalent to 44%=(1.2*1.2-1) higher deposit flow volatility for the same change in ROE volatility
- Sensitivity of insured deposit flows to performance decreasing in CatFat, consistent with banks managing insured flows to offset impact of uninsured flows (Martin et al., 2018; Chen et al., 2020)

	(1)	(2)	(3)
	ΔDep_{it}^U	ΔDep_{it}^{I}	ΔDep_{it}^{Total}
$ROE_Systematic_{it-1}$	0.561***	-0.519***	0.063***
	(60.068)	(-49.670)	(5.761)
$ROE_Systematic_{it-1}*CatFat_{it-1}$	0.593***	-0.222***	0.409***
	(13.052)	(-4.907)	(7.293)
<i>ROE_Idiosyncratic it-1</i>	0.060***	0.045***	0.108***
	(18.344)	(13.850)	(29.991)
$ROE_Idiosyncratic_{it-1}$ *CatFat _{it-1}	0.121***	-0.131***	-0.022
	(5.730)	(-6.111)	(-0.896)
Bank fixed effects	Y	Y	Y
Macro controls	Y	Y	Y
Observations	286,831	286,831	286,831
R-squared	0.118	0.124	0.167

SYSTEMATIC VS. IDIOSYNCRATIC PERFORMANCE: RESULTS

- Systematic component: average bank ROE in the same quarter
- A decline in systematic component of ROE is associated with 9 (=0.561/0.06) times of deposit outflows as the same amount of decline in idiosyncratic component
- Effect of mismatch is almost 5 times as strong when decline is from systematic component

EFFECTS OF MISMATCH DURING THE FINANCIAL CRISIS OF 2007-2009

Dependent Variable	ΔDep_{it}^U	ΔDep_{it}^{I}	ΔDep_{it}^{Total}	Core Deposits rate	Large Time Deposits	ΔLoan	ΔCommit
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Crisis	10.612***	17.535***	5.846***	0.464***	0.703***	5.230***	9.332***
$Crisis \times CatFat_{it-1}$	(-9.450) -5.424*** (-9.789)	(16.045) 1.314*** (2.578)	(4.427) -3.950*** (-6.483)	(5.608) 0.511*** (13.126)	(6.706) 0.317*** (6.838)	(4.284) -0.020 (-0.035)	(14.122) -5.965*** (-20.689)
Catfat _{it-1}	8.220*** (21.936)	8.525*** (22.160)	16.074*** (32.317)	-0.983*** (-23.223)	0.066 (1.359)	17.400*** (35.866)	1.960*** (10.785)
Controls	Y	Y	Y	Y	Y	Y	Y
Controls*Crisis	Y	Y	Y	Y	Y	Y	Y
Bank fixed effects	Y	Y	Y	Y	Y	Y	Y
Observations	287,018	287,018	287,018	281,816	281,798	287,018	287,018
Adj. R-squared	0.204	0.211	0.188	0.892	0.813	0.275	0.099

16

Mismatched banks experienced more deposit outflow, offered higher deposit rates and extend less commitment during crisis

FINANCIAL FRAGILITY IN THE COVID-19 CRISIS: THE CASE OF INVESTMENT FUNDS IN CORPORATE BOND MARKETS

FALATO, GOLDSTEIN, HORTACSU; 2020

MAIN FINDINGS

- Corporate-bond markets in the U.S. suffered severe stress in March 2020
- Investment funds in the corporate-bond market experienced massive outflows, far greater than anything seen since they became a major player
 - See comparison to previous biggest stress, the taper-tantrum episode, analyzed by Feroli, Kashyap, Schoenholtz, and Shin (2014)
- Outflows were sustained for several weeks and widespread across different types of funds
- Previously identified fragility factors illiquidity of fund assets and vulnerability to fire sales – prove to be important factors in explaining outflows
- It seems that a couple of policy announcements by the Federal Reserve about direct interventions in corporate-bond markets were crucial for alleviating the stress
 - March 23: PMCCF and SMCCF; purchase of investment-grade bonds on primary and secondary markets
 - April 9: Extend PMCCF and SMCCF to \$850bn (from less than \$300bn); extend SMCCF to purchase high-yield bonds if they were investment-grade as of March 22

THE GROWING IMPORTANCE OF INVESTMENT FUNDS IN THE CORPORATE BOND MARKET

SIGNS OF STRESS IN CORPORATE BOND MARKET OVER THE CRISIS PERIOD

Panel A: Investment-Grade Bond Spreads

Panel B: High-Yield Bond Spreads

LONG TERM PERSPECTIVE ON MONTHLY AGGREGATE NET FLOWS

Mutual funds in corporate bond markets saw massive outflows during the COVID-19 crisis

EVOLUTION OF FLOWS OVER THE CRISIS

Daily outflows started in the last week of February and accelerated in the second and third weeks of March, peaking at almost 1% of net assets

Daily Aggregate Net Flows (Fraction of Lagged Net Asset)

TRACKING THE EVOLUTION OF FLOWS ACROSS ILLIQUID VS. LIQUID FUNDS

- Evidence that illiquidity played an important role in the crisis; initially, outflows mostly affect illiquid funds
- While the effect reverses for both liquid and illiquid funds, lower-rated funds benefitted the most from the April 9 policy announcement

Panel C: Evol	ution of th	e Crisis an	d Policy Re	esponse		
	Roll		BM-Ask		Ratings	
	Illiq	Liq	Illiq	Liq	Illiq	Liq
	(1)	(2)	(3)	(1)	(5)	(6)
Crisis (Feb-Mar 23, 2020)	-0.30***	0.14^{**}	-0.41***	0.16**	-0.54***	0.28***
	(0.06)	(0.07)	(0.06)	(0.06)	(0.06)	(0.07)
First Response (Mar 23-Apr 9, 2020)	-0.63***	-0.67***	-0.53***	-0.55***	-0.18***	-0.37***
	(0.07)	(0.10)	(0.07)	(0.09)	(0.08)	(0.10)
Second Response (Apr 9-, 2020)	-0.01	0.08	0.05	-0.03	0.45***	0.06
	(0.10)	(0.13)	(0.11)	(0.13)	(0.13)	(0.15)
Month FE	Yes	Yes	Yes	Yes	Yes	Yes
Fund FE	Yes	Yes	Yes	Yes	Yes	Yes
N obs	86,954	87,134	88,600	86,599	100,923	86,795
$R^{2}(\%)$	13.1	8.1	11.3	7.1	13.0	7.7

CONCLUDING REMARKS

CONCLUDING REMARKS

- Liquidity transformation creates fragility
 - Empirical distinction between fundamentals and panic is difficult
 - But, building on theory, panic can be detected in the data, and it acts to amplify the effect of fundamentals
 - Channel exists in banks and mutual funds, and acted to amplify response of outflows from corporate-bond mutual funds in the Covid-19 episode
- Policy implications across the financial system, as various policies can be used to reduce fragility
- There is clearly a tradeoff, and we need better understanding of the key issue: Why is liquidity transformation so desirable and at what cost?

