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Abstract

This paper studies the optimal determination of deposit insurance when bank runs are possible.
We show that the welfare impact of changes in the level of deposit insurance coverage can be generally
expressed in terms of a small number of sufficient statistics, which include the level of losses in specific
scenarios and the probability of bank failure. We characterize the wedges that determine the optimal
ex-ante regulation, which map to asset- and liability-side regulation. We demonstrate how to employ
our framework in an application to the most recent change in coverage in the United States, which
took place in 2008.
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1 Introduction

Bank failures have been a recurrent phenomenon in the United States and many other countries
throughout modern history. A sharp change in the United States banking system occurred with the
introduction of federal deposit insurance in 1934, which dramatically reduced the number of bank failures.
For reference, more than 13,000 banks failed between 1921 and 1933, of which 4,000 banks failed in 1933
alone. In contrast, a total of 4,057 banks failed in the United States between 1934 and 2014.1 In many
other countries, the design of deposit insurance schemes is still in progress and is the subject of ongoing
debates; see, e.g., Demirgüç-Kunt, Kane and Laeven (2014) for a recent account of deposit insurance
systems around the world. As of today, deposit insurance is a crucial pillar of financial regulation in
most economies and represents the most salient explicit government guarantee to the financial sector.

Despite its success in reducing bank failures, deposit insurance entails costs when it has to be paid
and affects the ex-ante behavior of market participants — these responses to the policy are often referred
to as moral hazard. Hence, in practice, deposit insurance only guarantees a fixed level of deposits. As
shown in Figure 1, this level of coverage has changed over time in the US. Starting from the original
$2,500 in 1934, the nominal insured limit per account in the US has been $250,000 since October 2008.
A natural question to ask is how the level of this guarantee should be determined to maximize social
welfare. In particular, what is the optimal level of deposit insurance coverage? Are $250,000, the current
value in the US, and €100,000, the current value in most European countries, the optimal levels of deposit
insurance coverage for these economies? How should emerging economies set their insured limits? Which
variables ought to be measured to optimally determine the level of deposit insurance coverage in a given
economy?

This paper provides an analytical characterization, written as a function of observable or potentially
recoverable variables, which directly addresses these questions. Although existing research has been
effective at understanding several of the theoretical tradeoffs associated with deposit insurance, a general
framework that incorporates the most relevant tradeoffs and that can be used to provide explicit guidance
to policymakers when facing these questions has been missing. With this paper, we provide a first step
in that direction.

We initially derive the main results of the paper in a version of the canonical model of bank runs of
Diamond and Dybvig (1983), augmented to consider depositors who hold different levels of deposits. In
our framework, banks offer a predetermined interest rate on a deposit contract to share risks between
early and late depositors in an environment with aggregate uncertainty about the profitability of banks’
investments. Due to the demandable nature of the deposit contract, depending on the aggregate state,
both fundamental-based and panic-based bank failures are possible. Mimicking actual deposit insurance
arrangements, we assume that deposits are guaranteed by the government up to a deposit insurance limit
of δ dollars and then focus on the implications for social welfare of varying the level of coverage δ. We
also assume that any funding shortfall associated with deposit insurance payments entails a distortionary

1These values come from the FDIC Historical Statistics on Banking. Weighting bank failures by the level of banks’
assets or correcting by the total number of banks still generates a significant discontinuity on the level of bank failures after
the introduction of deposit insurance.
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Note: Figure 1 shows the evolution of the level of deposit insurance coverage between 1934 and 2018 in nominal and
real terms. Nominal values are from the FDIC. Real values are reported in 2012 dollars using a consumption expenditure
deflator.

Figure 1: Evolution of Deposit Insurance Coverage Limit

fiscal cost.
After characterizing how changes in the level of coverage δ affect equilibrium outcomes, in particular

depositors’ withdrawal choices and bank failure probabilities, we focus on the welfare implications of
varying δ. We initially characterize the marginal welfare change of varying the level of deposit insurance
coverage, which provides an exact test for whether it is desirable to increase or decrease the level of
coverage. In order to implement this test in practice, a policymaker would need detailed information on
individual deposit balances and consumption across different scenarios. While gathering this information
is conceivable, the informational requirements on the policymaker would be large. To make our results
more applicable, we provide an approximate characterization of the marginal welfare change that can be
expressed in terms of a few sufficient statistics that can be constructed relying exclusively on bank-level
aggregates. The approximation of the marginal welfare change of varying the level of deposit insurance
coverage takes the form

dW
dδ = −Sensitivity of bank failure probability to an increase in δ × Consumption gain of preventing marginal failure

−Probability of bank failure× Expected marginal social cost of intervention.
(1)

Equation (1) embeds the fundamental tradeoffs regarding the optimal determination of deposit
insurance. On the one hand, when a marginal change in δ substantially reduces the likelihood of bank
failure at the same time that there are significant gains from avoiding a marginal bank failure, it is
optimal to increase the level of coverage. On the other hand, when bank failures are frequent and when
the social cost of ex-post intervention associated with them — for instance, when it is very costly to raise
resources through distortionary taxation — is substantial, it is optimal to decrease the level of coverage.

Our formulation in terms of sufficient statistics is appealing for three reasons. First, conceptually, we

2



show that the same characterization of the marginal welfare impact of a change in the level of coverage
is valid for a large set of primitives. In that sense, the high-level variables that we identify are not
specific to a particular set of modeling assumptions. Second, in practice, it is possible to directly infer
or recover the different elements that determine dW

dδ using aggregate information at the bank level. By
directly measuring the variables in Equation (1), our framework provides direct guidance to policymakers
regarding which variables ought to be measured to determine the optimal level of deposit insurance.
Once the relevant variables are known, the policymaker does not need any other information to consider
changes in the level of coverage, at least locally. Third, within a structural model, the sufficient statistics
that we identify can be used as calibration targets or as intermediate outcomes that shed light on the
connection between primitives and welfare assessments.

Our characterization can also be used to derive several analytical insights. In particular, we show that
in an environment in which banks never fail and government intervention is never required in equilibrium,
it is optimal to guarantee deposits fully. This result, which revisits the classic finding by Diamond and
Dybvig (1983), follows from Equation (1) when the probability of bank failure tends towards zero. We
also describe the conditions under which a zero, non-zero, or a maximal level of coverage are optimal.

Moreover, we discuss how to use our framework to understand the role played by alternative
arrangements of mutual insurance either across banks or between banks and other agents/institutions
in a laissez-faire setup. We consider two benchmarks. First, we study the case in which bank failures
are idiosyncratic. In this case, we show that it may be possible to set up ex-post transfers across banks
that eliminate funding shortfalls, by transferring funds from surviving to failed banks. In terms of the
sufficient statistics that we identify, we show that this impacts the expected marginal cost of intervention,
defined above. Second, we study the case in which bank failures are system-wide, which is effectively the
case considered throughout the paper. In this case, we explore the impact of having a deposit insurance
fund or having access to a third party that acts as insurer, and provide conditions under which our
characterization of welfare effects in terms of sufficient statistics remains valid.

Although we initially derive our results when banks’ deposit rates are predetermined, we also study
the scenarios in which banks face no ex-ante regulation or perfect ex-ante regulation. First, we show that
the changes in the behavior of unregulated competitive banks in response to the policy (often referred
to as moral hazard) only modify the optimal policy formula directly through a fiscal externality caused
by banks.2 Next, we use our framework to explore the optimal ex-ante regulation, which in practice
corresponds to optimally setting deposit insurance premia or deposit rate regulations. In particular, we
show that the optimal ex-ante regulation, which requires jointly restricting banks’ asset and liability
choices, is designed so that banks internalize the fiscal externalities of their actions. We characterize the
wedges that banks must face when the optimal ex-ante regulation is implemented, sharply distinguishing

2We use the term fiscal externality to refer to the social resource cost associated with the need to raise funds through
distortionary taxation, as in the public finance literature. This result does not contradict common wisdom, which emphasizes
the role of moral hazard as the primary welfare loss created by having a deposit insurance system. Our results simply show
that the changes in banks’ behavior associated with changes in the level of coverage are subsumed into the sufficient statistics
that we identify. In other words, even though high levels of coverage can induce unregulated banks to make decisions that
will increase the likelihood and severity of bank failures, only their effects through the fiscal externality that we identify
have a first-order impact on welfare.
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between the corrective and revenue-raising roles of ex-ante regulations. In practice, our results imply
that deposit insurance premia, even if optimally determined, are not sufficient when banks can adjust
their asset allocation, so regulating banks’ asset allocations is necessary. Our results also imply that
fairly-priced deposit insurance is neither necessary nor sufficient for the optimal regulation. Note that our
results with optimal regulation can be interpreted as implementing a laissez-faire co-insurance outcome
between banks and a set of outside agents, rather than relying on markets to do so.

Next, we demonstrate how to employ our framework in an application to the most recent change
in deposit insurance coverage in the US, which took place in 2008. We describe how a policymaker,
armed with our framework, would have set the optimal level of coverage in early 2008, sometime before
the moment in which the change in coverage took place. Our quantitative application features two
complementary approaches.

First, we provide direct measures of the sufficient statistics that we identify and implement the test
that determines whether it is optimal to increase or decrease coverage. This approach has the advantage
of sidestepping the need to specify model parameters and functional forms. Using the best empirical
counterparts of the sufficient statistics that we can construct, we explain why our test finds that an
increase in the level of coverage was desirable and discuss the associated welfare gains.

Second, using the sufficient statistics that we identify — along with additional information — as
calibration targets for our structural model, we explore the quantitative results that the model generates.
We draw four main conclusions. First, we find that the welfare gains from increasing the level of coverage
when starting from low levels of coverage are very large. This result implies that having some form of
deposit insurance is highly valuable. This should not be surprising, given that arguably no other financial
regulation has had a more significant impact than the introduction of deposit insurance. Second, given
our assumptions, we find that the optimal level of coverage in the scenario that we consider would
have been $381,000. This magnitude is larger than the $250,000 that was chosen, but is perhaps more
aligned with the extended guarantees that were implemented soon after. Third, we explain why a drop
in confidence (modeled as an increase in the probability of a sunspot) is associated with a higher optimal
level of coverage. We also explain why an increase in the riskiness of bank investments is associated
with a lower optimal level of coverage. Lastly, we find that increasing the level of coverage increases the
welfare of most depositors most of the time but not always.3 In particular, there are situations in which
large depositors may be worse off when the level of coverage increases.

Finally, we explain how our framework accommodates additional features relevant for the
determination of deposit insurance. We formally show how the sufficient statistics of the baseline model
continue to be valid exactly or suitably modified once we allow for i) depositors with a consumption-
savings decision and portfolio decisions, ii) banks that face an arbitrary set of investment opportunities
with different liquidity and return properties, iii) alternative equilibrium selection mechanisms (e.g.,
global games), and iv) spillovers among banks. Lastly, we discuss how to integrate additional channels
within our framework.

3Note that we model depositors and taxpayers as separate groups. We also show that the welfare losses for taxpayers
are non-monotonic in the level of coverage.
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Related Literature This paper is directly related to the well-developed literature on financial fragility,
banking, and bank runs that follows Diamond and Dybvig (1983), which includes contributions by Allen
and Gale (1998), Rochet and Vives (2004), Goldstein and Pauzner (2005), Uhlig (2010), Keister (2016),
and Fernandez-Villaverde et al. (2021), among others. As originally pointed out by Diamond and Dybvig
(1983), bank runs can be prevented by either modifying the trading structure, in particular by suspending
convertibility, or by introducing deposit insurance. Both ideas have been further developed ever since.
A sizable literature on mechanism design, including Peck and Shell (2003), Green and Lin (2003), and
Ennis and Keister (2009), among others, has focused on the optimal design of contracts to prevent runs.
Schilling (2018) has recently studied the optimal delay of bank resolution. Instead, taking the contracts
used as a primitive, we focus on the optimal determination of the deposit insurance limit, a policy
measure implemented in most modern economies.

Purely from a theoretical perspective, our paper expands on previous work by developing a new
tractable framework with a rich cross-section of depositors. Allowing for depositors with different deposit
balances turns out to be a key element for studying the optimal level of deposit insurance coverage, since
changes in the level of coverage vary the composition of the set of fully insured depositors at the margin.
Along this dimension, the recent work of Mitkov (2020) is the most closely related — see also Cooper and
Kempf (2016). Building on the framework of Keister (2016), Mitkov (2020) studies the optimal ex-post
government response (bailouts) to banking failures, relating inequality to financial fragility. While his
focus is different (ex-post bailouts), his work also features a non-trivial distribution of deposit sizes and
a cost of public funds that determines the size of the intervention. We connect our results to his at
different points in the paper.

The papers by Merton (1977), Kareken and Wallace (1978), Pennacchi (1987, 2006), Chan,
Greenbaum and Thakor (1992), Dreyfus, Saunders and Allen (1994), Matutes and Vives (1996), Hazlett
(1997), Freixas and Rochet (1998), Freixas and Gabillon (1999), Cooper and Ross (2002), Duffie et al.
(2003), Manz (2009), and Acharya, Santos and Yorulmazer (2010) have explored different dimensions
of the deposit insurance institution. In particular, they study the role of moral hazard and the
determination of appropriately priced deposit insurance for an imperfectly informed policymaker. More
recently, Allen et al. (2018) show that government guarantees, including deposit insurance, are welfare
improving within a global games framework, while Kashyap, Tsomocos and Vardoulakis (2019) study
optimal asset and liability regulations with credit and run risk, but abstract from modeling deposit
insurance. In this paper, we depart from the existing literature, which has exclusively provided theoretical
results, by developing a general but tractable framework that provides direct guidance to policymakers
regarding the set of variables that must be measured to set the level of deposit insurance optimally.
Our approach crucially relies on characterizing optimal policy prescriptions as a function of potentially
observable variables.

Our emphasis on measurement is related to a growing quantitative literature on the implications of
bank runs and deposit insurance. Demirgüç-Kunt and Detragiache (2002), Ioannidou and Penas (2010),
Iyer and Puri (2012), and Martin, Puri and Ufier (2017) are examples of recent empirical studies that
shed light on how deposit insurance affects the behavior of banks and depositors in practice. Lucas
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(2019) provides economic estimates of the magnitude of transfers associated with deposit insurance.
Our quantitative results complement the work of Egan, Hortaçsu and Matvos (2017), who quantitatively
explore different regulations within a rich empirical structural model of deposit choice. Gertler and
Kiyotaki (2015) have also explored quantitatively the implications of guaranteeing bank deposits. Neither
of these papers has characterized optimal policies, which is the focus of our paper.

Methodologically, we draw from the sufficient statistic approach developed in public finance,
summarized in Chetty (2009), to tackle a core normative question for banking regulation. In the
context of financial intermediation and credit markets, Matvos (2013) follows a similar approach to
measure the benefits of contractual completeness. Dávila (2020) uses a related approach to optimally
determine the level of bankruptcy exemptions. Sraer and Thesmar (2018) build on similar methods to
produce aggregate estimates from individual firms’ experiments. More broadly, this paper contributes
to the growing literature that seeks to inform financial regulation by designing adequate measurement
systems for financial markets, recently synthesized in Haubrich and Lo (2013) and Brunnermeier and
Krishnamurthy (2014).

2 A Model of Bank Runs with Heterogeneous Depositors

This paper develops a framework suitable to determine the optimal level of deposit insurance coverage.
In this section, we introduce our results in a tractable model of bank runs with aggregate risk and
heterogeneous depositors. We explain how our insights extend to richer environments in Sections 3 and
5.

2.1 Environment

Our model builds on Diamond and Dybvig (1983). Time is discrete. There are three dates t = {0, 1, 2},
and a single consumption good (dollar), which serves as numeraire. There is a continuum of aggregate
states realized at date 1, denoted by s ∈ [s, s] and distributed according to a cumulative distribution
function (cdf) F (s). The realization of the state s becomes common knowledge at the beginning of date
1. Figure 2 illustrates the timing of the model.

Deposit insurance
δ determined

Deposit rate
R1 determined

Depositors choose
deposits D1(i, x, s)

State s is realized

t = 0 t = 1 t = 2

Figure 2: Timeline

The economy is populated by a continuum of depositor types, indexed by i ∈ I, and a continuum of
identical taxpayers, indexed by τ . There are also banks and a benevolent planner/regulator/policymaker.

Depositors The cross-sectional distribution of depositor types is given by a cdf G (i), where we
denote the total mass of depositors by G =

´
i∈I dG (i). Each type i depositor is initially endowed
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with D0 (i) dollars, which are deposited in a bank. Hence, the aggregate initial mass of deposits is given
by D0 =

´
i∈I D0 (i) dG (i). We denote the smallest and largest deposit balance by D and D, respectively.

Depositors, whose preferences are identical ex-ante, are uncertain about their preferences over future
consumption. Some will be early depositors (e), who only consume at date 1, and some will be late
depositors (`), who only consume at date 2. We index a generic early or late depositor by x ∈ {e, `}. At
date 0, depositors know the probabilities of being an early or a late depositor, respectively λ and 1− λ,
which are constant across depositor types. At date 1, depositors privately learn whether they are of the
early or the late type. Under a law of large numbers, λ and 1− λ are the exact shares of early and late
depositors, respectively, for every depositor type i.4

Formally, the ex-ante utility of a type i depositor, V (i), is given by

V (i) = λEs [U (C1 (i, e, s))] + (1− λ)Es [U (C2 (i, `, s))] , (2)

where Ct (i, x, s) denotes the consumption at date t of a type i early depositor (if x = e) or late depositor
(if x = `) for a given realization of the state s. Depositors’ flow utility U (·) satisfies standard regularity
conditions: U ′ (·) > 0, U ′′ (·) < 0, and limC→0 U

′ (C) =∞.5

Early depositors receive a stochastic endowment Y1 (i, e, s) > 0 at date 1 while late depositors receive
a stochastic endowment Y2 (i, `, s) > 0 at date 2. Late depositors also have access to a storage technology
between dates 1 and 2. At date 1, after learning their early/late status x ∈ {e, `} and observing the
state s, depositors can change their deposit balance by choosing a new deposit level D1 (i, x, s), which
is the single choice variable for depositors. Anticipating the possibility of multiple equilibria, we assume
that there is an i.i.d. sunspot at date 1 for every realization of the state s.

Banks’ Technology and Deposit Contract At date 0, banks have access to a production technology
with the following properties. Every unit of consumption good invested at date 0 is transformed into
ρ1 (s) ≥ 0 units of consumption good at date 1. Every unit of consumption good held by banks at the
end of date 1 is transformed into ρ2 (s) ≥ 0 units of consumption good at date 2.6 For simplicity, we
assume that banks do not have access to an additional storage technology at date 1 with returns that
differ from ρ2 (s).

We assume that both ρ1 (s) and ρ2 (s) are continuous and increasing in the realization of the state
s, so high (low) realizations of s correspond to states in which banks are more (less) profitable. We
further assume i) that ρ2 (s) ≤ 1, which guarantees the existence of fundamental bank failures, ii) that
ρ1 (s) ≤ 1 whenever ρ2 (s) ≤ 1, which simplifies the exposition by limiting the cases to consider, and

4In previous versions of this paper, as in Wallace (1988, 1990) and Chari (1989), among others, we allowed for the share
of early depositors to vary with the state s, by making λ a function of s, as in λ (s). This introduces an additional source of
aggregate risk but does not affect the main insights of the paper. Similarly, the shares of early/late depositors could depend
on the level of deposits, by assuming that λ is also a function of i, as in λ (i). Our framework can also accommodate this
possibility.

5Our framework can accommodate preferences U (·) that vary with a depositor’s type i and the state s. Because depositors
have external resources, our model remains well-behaved even when depositors’ utility satisfies an Inada condition.

6Many models in the Diamond and Dybvig (1983) tradition often set ρ1 (s) = 1, ∀s. Allowing ρ1 (s) to take values
different from 1 is necessary to guarantee that there are regions in which banks cannot fail even when all depositors
withdraw their funds. Goldstein and Pauzner (2005) make an equivalent assumption to generate an upper-dominance
region. By flexibly modeling ρ1 (s) and ρ2 (s) our framework accommodates illiquidity and insolvency scenarios.
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iii) that ρ2 (s) is strictly increasing, which guarantees that the thresholds ŝ (R1) and s∗ (δ,R1) (defined
below) are uniquely defined.

The only contract available to depositors is a deposit contract, so that a depositor who deposits
D0 (i) at date 0 is entitled to withdraw on demand up to D0 (i)R1 dollars at either date 1 or date 2.
At date 1, depositors can withdraw funds or leave them in the bank, but cannot deposit new funds,
so D1 (i, x, s) ∈ [0, D0 (i)R1]. When D1 (i, x, s) < D0 (i)R1, a depositor withdraws a strictly positive
amount of deposits at date 1. When D1 (i, x, s) = D0 (i)R1, a depositor leaves his deposit balance
unchanged. We denote aggregate net withdrawals in state s by Ω (s), given by

Ω (s) = D0R1 −D1 (s) , (Aggregate net withdrawals)

where D0 and D1 (s), which denote the aggregate mass of bank deposits at date 0 and at date 1 in state
s, respectively, are given by

D0 =
ˆ
i∈I

D0 (i) dG (i)

D1 (s) = λ

ˆ
i∈I

D1 (i, e, s) dG (i) + (1− λ)
ˆ
i∈I

D1 (i, `, s) dG (i) .

Depositors make withdrawal decisions at date 1 simultaneously. Similarly to Allen and Gale (1998),
funds are allocated proportionally in case of failure among all depositors. That is, if, given withdrawal
decisions, banks anticipate being unable to satisfy all promised claims at date 1 or 2, they enter into
a liquidation process in which funds are distributed on a proportional basis among claimants after the
deposit insurance guarantee has been satisfied.7

Hence, the actual payoff received by a given depositor at either date 1 or date 2 depends on the
realization of the state, the promised deposit rate, the behavior of all depositors, and the level of deposit
insurance — as described in Equations (4) and (5) below. If a bank does not fail at date 1, similarly to
Diamond and Dybvig (1983), all remaining proceeds of banks’ investments at date 2 are distributed to
depositors in the form of a return on deposits higher than the promised R1.

Deposit Rate Determination Throughout the paper, we consider three alternative assumptions
regarding the determination of the deposit rate. First, we assume that the deposit rate R1 is
predetermined and invariant to the level of deposit insurance coverage δ. That is, we take R1 as a
primitive of the model. This assumption simplifies the characterization of the equilibrium and allows for
a transparent derivation of the optimal policy formulas.

Subsequently, in Section 3, we re-derive our results in two scenarios in which the deposit rate is
endogenously determined, allowing for changes in banks’ choices induced by varying the level of coverage
— this behavior is often referred to as moral hazard. We first study the scenario in which R1 is chosen

7In previous versions of this paper, we adopted a sequential service constraint, without affecting our conclusions. The
current formulation, which is substantially more tractable, eliminates the need to keep track of which specific depositors are
first in line when banks cannot pay back all depositors in full. See Ennis and Keister (2009, 2010) for a detailed exploration
of the dynamics of deposit withdrawals during runs.
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by a benevolent planner and then the case in which R1 is chosen by competitive banks. Comparing both
solutions allows us to study the optimal ex-ante deposit rate regulation.

Deposit Insurance and Taxpayers The level of deposit insurance δ, expressed in dollars (units of
the consumption good), is the single instrument available to the planner. It is modeled to mimic actual
deposit insurance policies: in any event, depositors are guaranteed the promised return on their deposits
up to a predetermined amount δ. The level of the deposit insurance guarantee, δ ≥ 0, is chosen under
commitment at date 0 through a planning problem.

In case of bank failure, the deposit insurance authority recovers a fraction χ (s) ∈ [0, 1] of any
resources held by the banks to cover the deposit insurance guarantee. The remaining fraction 1− χ (s)
captures deadweight losses associated with bank failure. We allow for the recovery rate χ (s) to vary with
the realization of the state s and, to preserve the differentiability of the planner’s problem, we assume
that χ (s) is continuous and that χ (s) = 0.

Whenever the resources recovered from a failed bank are sufficient to cover all insured deposits, the
remaining funds are distributed proportionally among the partially insured depositors, as described in
Equations (4) and (5) below. Whenever the resources recovered from a failed bank are not sufficient
to cover the deposit insurance guarantee, the recovery rate on uninsured deposits is zero. In the latter
scenario, the funding shortfall in state s, denoted by T (s), must be covered through taxation. Any
dollar raised through taxation is associated with a resource loss of κ (T (s)) ≥ 0 dollars, which represents
the cost of public funds. We assume that κ (·) is a weakly increasing and convex function that satisfies
κ (0) = 0 and limT→∞ κ (T ) =∞.8

Finally, we assume that the taxes necessary to cover the funding shortfall and the associated
deadweight losses are borne by taxpayers (equivalently, a representative taxpayer), who have the same
flow utility U (·) as depositors. For simplicity, taxpayers only consume at date 1. We assume that the
endowment of taxpayers Y (τ, s) is sufficiently large to cover the funding shortfall T (s) in any state.
Modeling depositors and taxpayers as distinct groups of agents highlights the fiscal implications of the
deposit insurance policy.

Equilibrium Definition An equilibrium, for a given level of deposit insurance δ and a given deposit
rate R1, is defined as consumption allocations C1 (i, e, s) and C2 (i, `, s) and deposit choices D1 (i, x, s),
for x ∈ {e, `}, such that depositors maximize their utility, given that other depositors behave optimally,
and taxpayers cover the funding shortfall.

Remarks on the Environment We conclude the description of the environment with five remarks.
First, following most of the literature on bank runs, we take the noncontingent nature of deposits

and their demandability as primitives. With this, we depart from the approach that regards deposit
contracts as the outcome of a mechanism. The upside of our approach is that we can map banks’ choices
and outcomes to observables, like deposit rates and failure probabilities, as opposed to focusing on more
abstract assignment procedures.

8It is trivial to make the fiscal distortion endogenous by endowing taxpayers with a labor supply choice and assuming
that raising public funds distorts their consumption-leisure decision. The model can also accommodate a cost of public
funds that varies with the state by making s an additional argument of κ (·).
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Second, we restrict our attention to the choice of a single policy instrument under commitment:
a maximum amount of deposit insurance coverage. Consequently, we study a second-best problem in
the Ramsey tradition. The form of the policy that we consider (deposits are insured 100% up to a
maximum, and 0% insured above that amount) matches well the policies implemented in many deposit
insurance systems. The arguments in Mitkov (2020) can be adapted to show that this form of policy
can be credible ex-post (for a given s) in our model under plausible circumstances, as follows. It is
evident that deposit insurance policies can only be effective if they provide full coverage of deposits for
at least some depositors.9 In principle, there is some indeterminacy regarding which depositors should
be fully insured. However, whenever a planner has a preference for protecting the consumption of smaller
depositors, perhaps because they are poorer, a deposit insurance policy of the form we consider in this
paper is ex-post optimal. That said, policies that are explicitly or implicitly state-contingent, for instance,
lender-of-last-resort policies, can bring social welfare closer to the first-best. Even when those policies
are available, independently of whether they are chosen optimally, our main characterization and the
insights associated with it remain valid as long as these additional policies do not restore the first-best, as
we discuss in Section 5. In the quantitative analysis in Section 4, we show how alternative calibrations of
our model can be used to explore how the optimal level of coverage varies with financial/business cycle
conditions. Note also that the assumption of full commitment may require credible fiscal backing in
practice, as highlighted by Ennis and Keister (2009) — see Bonfim and Santos (2020) for recent evidence
consistent with this view.

Third, note that the level of coverage in our paper is not depositor-specific. One could envision a
case in which banks offer different deposit contracts to depositors and in which deposit contracts feature
different levels of deposit insurance coverage for different depositors. This is a different dimension in
which we study a second-best problem, leaving the door open to further considering richer alternative
welfare-enhancing policies.

Fourth, our paper departs from Diamond and Dybvig (1983) in three significant ways. First, we
allow for a non-degenerate distribution of deposit balances, which is crucial to capture the extensive
margin effects of deposit insurance. Second, the profitability of banks’ investments at dates 1 and 2 is
subject to aggregate risk, which is necessary to observe bank failures in equilibrium under the optimal
deposit insurance policy, as in Goldstein and Pauzner (2005). Finally, instead of a sequential service
constraint, we adopt a proportional sharing rule for the distribution of funds in the case of bank failure.
This formulation, similar to Allen and Gale (1998), allows us to eliminate the ex-post consumption
heterogeneity among depositors of the same type that emerges under sequential service and to simplify
the model solution, but it is otherwise inessential.

Finally, our baseline model should be interpreted as describing a single representative bank within
a banking sector. Therefore, deposit withdrawals in our model should be interpreted as transfers to
cash. In Section 4, we explain how our framework can be used to build system-wide welfare assessments.
In Section 5, we discuss the role of general equilibrium spillovers among banks, identifying interactions

9See Goldsmith-Pinkham and Yorulmazer (2010) for an account of the Northern Rock failure episode in 2007 in the UK,
which illustrates why partial and delayed coverage of deposits fails to stop runs.
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between banks absent in our baseline framework, for instance through the relocation of deposits via
interbank markets.

2.2 Equilibrium Characterization

We first characterize depositors’ equilibrium choices at date 1. Subsequently, we study the planning
problem that determines δ?.

Depositors’ Optimal Choices The amount of aggregate deposit withdrawals determines the funds
available to banks to satisfy their promises to depositors. Two scenarios may arise, depending on the
aggregate level of deposits at date 1, D1 (s). In the no bank failure scenario, banks have sufficient funds
to satisfy their commitments. In the bank failure scenario, banks do not have sufficient funds to satisfy
their commitments to depositors either at date 1 or at date 2. In that case, banks fail and depositors
resort to the deposit insurance guarantee. Formally, bank failure is determined by

Bank Failure, if ρ2 (s)
(
ρ1 (s)D0 − Ω (s)

)
< D1 (s)

No Bank Failure, if ρ2 (s)
(
ρ1 (s)D0 − Ω (s)

)
≥ D1 (s) ,

(3)

where the left-hand side of the inequalities in Equation (3) represents the total resources available to
banks to satisfy deposits at date 2.

We must separately consider the behavior of i) early depositors, ii) fully insured late depositors, and
iii) partially insured late depositors, in both the failure and no-failure scenarios. Under our assumptions,
regardless of the actions of other depositors, it is optimal for early depositors to withdraw all their
deposits at date 1, setting D?

1 (i, e, s) = 0, ∀s. Hence, the equilibrium consumption of early depositors is
given by

C1 (i, e, s) =

min {D0 (i)R1, δ}+ αF (s) max {D0 (i)R1 − δ, 0}+ Y1 (i, e, s) , Bank Failure

D0 (i)R1 + Y1 (i, e, s) , No Bank Failure,
(4)

where αF (s) ≥ 0 corresponds to the equilibrium recovery rate on uninsured deposits, characterized in
Equation (15) below.

Fully insured late depositors are those whose deposit balances are weakly less than the level of deposit
insurance coverage, that is, D0 (i)R1 ≤ δ. Regardless of the actions of other depositors, fully insured
late depositors are indifferent between withdrawing or leaving all their funds inside the banks in case of
failure, as long as they have access to a perfect storage technology. They also weakly prefer to leave all
deposits inside the banks if there is no bank failure. We restrict our attention to equilibria in which fully
insured late depositors leave all their funds in banks at date 1, so D?

1 (i, `, s) = D0 (i)R1 if D0 (i)R1 ≤ δ.
This equilibrium behavior is consistent with a small fixed cost of withdrawing funds or an imperfect
storage technology.

Partially insured late depositors are those whose deposit balances are larger than the level of deposit
insurance coverage, that is, D0 (i)R1 > δ. If banks do not fail, it is weakly optimal for these depositors
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to set D?
1 (i, `, s) = D0 (i)R1, since they will receive a positive net return on their deposits between dates

1 and 2, as shown below. In the case of bank failure, we restrict our attention to equilibria in which these
depositors leave up to the level of coverage inside the banks, setting D?

1 (i, `, s) = δ. In net terms, this
behavior is consistent with the recent evidence uncovered by Martin, Puri and Ufier (2017), which shows
that depositors rarely exceed the level of deposit insurance coverage when a bank failure is likely.10

Formally, the equilibrium consumption of both fully insured and partially insured late depositors can
be expressed as

C2 (i, `, s) =

min {D0 (i)R1, δ}+ αF (s) max {D0 (i)R1 − δ, 0}+ Y2 (i, `, s) , Bank Failure

αN (s)D0 (i)R1 + Y2 (i, `, s) , No Bank Failure,
(5)

where αN (s) ≥ 1 corresponds to the additional gross return earned by those deposits that stay within
the bank until date 2. When a bank does not fail, late depositors receive a higher return relative to
early depositors, modulated by αN (s), which is fully characterized in Equation (15) below. Note that
the consumption of early and late depositors with the same deposit balance is identical in the case of
bank failure.

Equilibria at Date 1 After characterizing the optimal individual behavior of depositors for a given
level of aggregate withdrawals, we now show that two different types of equilibria may emerge at date 1,
depending on the realization of s. We refer to the first type of equilibrium as a no-failure equilibrium. In
that equilibrium, partially insured depositors keep their deposits in banks, allowing banks to honor their
promises at dates 1 and 2. We refer to the second type of equilibrium as a failure equilibrium. In that
equilibrium, partially insured depositors withdraw all deposits in excess of the level of coverage, making
banks unable to honor their promises either at date 1 or date 2. As explained above, in both types of
equilibria early depositors find it optimal to withdraw all their funds, and fully insured late depositors
find it optimal not to withdraw any of their funds.

Note that we can reformulate Equation (3), which determines the type of equilibrium that arises, as
follows:

Bank Failure, if D̃1 (s) > D1 (s)
No Bank Failure, if D̃1 (s) ≤ D1 (s) ,

(6)

where the deposit failure threshold D̃1 (s) is given by

D̃1 (s) =


(R1−ρ1(s))D0

1− 1
ρ2(s)

, if ρ2 (s) > 1

∞, if ρ2 (s) ≤ 1,
(7)

10Martin, Puri and Ufier (2017) provide the most detailed available evidence on the behavior of depositors in the case
of a representative bank failure in the US. They show that a fraction of existing depositors abandon the bank in question
when it is close to failure. They also show that these depositors are replaced by new depositors who hold exactly up to
the level of coverage. In net terms, which is the relevant dimension for the problem we study, our model is consistent with
their evidence. Our model can also accommodate a type of failure equilibrium in which partially insured late depositors
optimally set D?

1 (i, `, s) = 0, yielding similar conclusions.
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and where D1 (s) corresponds to the aggregate level of deposits in state s, which can potentially take two
values, depending on the behavior of partially insured depositors.11 If partially insured late depositors
decide to withdraw all their uninsured deposits, the aggregate level of deposits D1 (s) is given by the
total amount of insured deposits among late depositors, that is,

D1 (s) = D−1 (δ,R1) ≡ (1− λ)
ˆ
i∈I

min {D0 (i)R1, δ} dG (i) . (8)

Alternatively, if partially insured late depositors decide not to withdraw their deposits, the aggregate
level of deposits D1 (s) corresponds to

D1 (s) = D+
1 (R1) ≡ (1− λ)D0R1. (9)

Figure 3 illustrates how Equation (6) determines whether there is a unique equilibrium or multiple
equilibria. There are three possibilities. First, for sufficiently low realizations of s, both D+

1 (R1) and
D−1 (δ,R1) are less than the deposit failure threshold D̃1 (s). Within this region, even if there are no
withdrawals by late depositors, bank profitability is so low that early depositors’ withdrawals make bank
failure unavoidable. In this case, a unique failure equilibrium exists. We refer to bank failures in this
region as fundamental failures.12 Second, for intermediate realizations of s, if the level of aggregate
deposits corresponds to D+

1 (R1), banks are able to honor their promises, and a no-failure equilibrium
exists. However, if the level of aggregate deposits corresponds to D−1 (δ,R1), banks are unable to honor
their promises, and a failure equilibrium exists. Within this region, there are multiple equilibria. We
refer to bank failures in this region as panic failures. Finally, for sufficiently high realizations of s, both
D+

1 (R1) and D−1 (δ,R1) are higher than the deposit failure threshold D̃1 (s). Within this region, even if
partially insured late depositors decide to withdraw all their uninsured funds, bank profitability is high
enough to be able to honor all promises, so a unique no-failure equilibrium exists.

Figure 3 also illustrates the mechanism through which deposit insurance affects the set of equilibria.
Since the value of D−1 (δ,R1) is increasing in δ, a higher level of deposit insurance coverage reduces the
multiplicity region. Note that lim

δ→DR1

D−1 (δ,R1) = D+
1 (R1), so bank failure is possible even when all

deposits are covered. In this case, when the realization of s is sufficiently low, the withdrawals of early
depositors are sufficient to make banks fail. Note also that if δ → 0, the equilibrium still features three
regions. For very low realizations of the state s, there is a unique fundamental failure equilibrium, while
for very high realizations of s, there is a unique no-failure equilibrium. In an intermediate region of s
there are multiple equilibria. Therefore, high enough levels of deposit insurance eliminate the failure
equilibrium as long as banks are not completely insolvent. Interestingly, the expression for the deposit
failure threshold D̃1 (s) features a “multiplier” 1

1− 1
ρ2(s)

> 1. Intuitively, every dollar left inside the banks
not only reduces the net loss on investments that must be liquidated, but also earns the extra marginal

11If R1 < ρ1 (s), the deposit failure threshold D̃1 (s) can be negative and only the no-failure equilibrium trivially exists.
12There exists a long tradition that distinguishes between fundamental failures (business cycle view) and panic failures

(sunspot view). Our model purposefully accommodates both. See the earlier work by Chari and Jagannathan (1988),
Gorton (1988), and Jacklin and Bhattacharya (1988), among others, as well as the more recent discussions by Allen and
Gale (1998) and Goldstein (2012).
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State (s)

D−1 (δ,R1) = (1− λ)
∫
i∈I min {D0(i)R1, δ} dG (i)

D+
1 (R1) = (1− λ)D0R1

D̃1 (s) =
(R1−ρ1(s))D0

1− 1
ρ2(s)

s ss∗(δ,R1)ŝ(R1) ρ−11 (R1)ρ−12 (1)

Fundamental
Failures

Panic
Failures

Unique
(Failure)

Equilibrium

Multiple
Equilibria

Unique
(No Failure)
Equilibrium

↑ δ ⇒ ↓ Multiplicity Region

Figure 3: Equilibrium Regions
Note: Figure 3 illustrates, for a given level of deposit insurance coverage δ and for a given deposit rate R1, whether there
exists a unique equilibrium or multiple equilibria for different realizations of the state s. The red dashed line is defined in
Equation (7). The black solid lines are defined in Equations (8) and (9). The intersections between the red dashed line and
the black solid lines define the thresholds ŝ (R1) and s∗ (δ,R1), characterized in Equations (10) and (11) and represented
in Figure 4 as a function of the level of coverage δ.

net return on banks’ investments. This mechanism amplifies the impact of deposit insurance.
To characterize ex-ante behavior and welfare, it is useful to formally define the regions of s that

determine the different type of equilibria that may arise at date 1. Formally,

Unique (Failure) equilibrium, if s ≤ s < ŝ (R1)
Multiple equilibria, if ŝ (R1) ≤ s < s∗ (δ,R1)
Unique (No-Failure) equilibrium, if s∗ (δ,R1) ≤ s ≤ s,

where the thresholds ŝ (R1) and s∗ (δ,R1) are defined as follows:

ŝ (R1) =
{
s
∣∣∣D+

1 (R1) = D̃1 (s)
}

(10)

s∗ (δ,R1) =
{
s
∣∣∣D−1 (δ,R1) = D̃1 (s)

}
, (11)

where s∗ (δ,R1) = s whenever the Equation D−1 (δ,R1) = D̃1 (s) cannot be satisfied for any value of s.
Figure 4 illustrates the three regions graphically. In Section C of the Online Appendix, we explicitly
establish the relevant properties of the thresholds ŝ (R1) and s∗ (δ,R1). We show that

∂s∗

∂δ
≤ 0, ∂s∗

∂R1
≥ 0, and ∂ŝ

∂R1
≥ 0.

That is, the region of multiplicity decreases with the level of deposit insurance while the region with a
unique failure equilibrium increases in the deposit rate offered by banks. The region of multiplicity can
increase or decrease with the deposit rate offered by banks.
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Figure 4: Regions Defined by s∗ (δ,R1) and ŝ (R1)
Note: For a given deposit rate R1, Figure 4 illustrates which realizations of the state s are associated with a unique
equilibrium and its type, or with multiple equilibria, for different levels of deposit insurance coverage δ.

Probability of Bank Failure In order to compute ex-ante welfare whenever there are multiple
equilibria at date 1, we must take a stance on which equilibrium materializes for every realization
of s. For now, a sunspot coordinates depositors’ behavior: for a given realization of s, the failure
equilibrium occurs with probability π ∈ [0, 1] and the no-failure equilibrium occurs with probability
1 − π.13 Alternatively, we could have introduced imperfect common knowledge of fundamentals, as in
Goldstein and Pauzner (2005), which would allow us to endogenize the probability of bank failure. We
explain in Section 5 how the main insights of the paper extend to that case.

Therefore we can write the unconditional probability of bank failure in this economy, which we denote
by qF (δ,R1), as

qF (δ,R1) = F (ŝ (R1)) + π [F (s∗ (δ,R1))− F (ŝ (R1))] . (Failure Probability) (12)

The unconditional probability of bank failure qF (·) inherits the properties of s∗ (·) and ŝ (·). Formally,
we express the sensitivity of the probability of failure to a change in the level of coverage holding the
deposit rate constant, ∂q

F

∂δ , which is a key input for the optimal determination of δ, and the sensitivity
of the probability of failure to a change in R1, ∂q

F

∂R1
, as follows:

∂qF

∂δ
= πf (s∗ (δ,R1)) ∂s

∗

∂δ
≤ 0 (13)

∂qF

∂R1
= (1− π) f (ŝ (R1)) ∂ŝ

∂R1
+ πf (s∗ (δ,R1)) ∂s

∗

∂R1
≥ 0, (14)

where f (s) is the probability density associated with F (s). Intuitively, holding the deposit rate constant,
a higher level of deposit insurance coverage decreases the likelihood of bank failures in equilibrium by

13Our model also accommodates the case in which the sunspot probability π varies with the state s, as in π (s).
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reducing the region in which there are multiple equilibria. Figure 4 illustrates why ∂qF

∂δ is weakly negative.
Similarly, holding the level of deposit insurance constant, a higher deposit rate increases the likelihood of
bank failure both by reducing the region with a unique no-failure equilibrium, ∂s∗

∂R1
≥ 0, and by enlarging

the region with a unique failure equilibrium, ∂ŝ
∂R1
≥ 0. Note that deposit insurance is more effective in

reducing bank failures whenever depositors are more likely to coordinate in the failure equilibrium, that
is, when π → 1.

Depositors’ Equilibrium Consumption To determine depositors’ consumption in equilibrium, it
is necessary to characterize the equilibrium objects αN (s) and αF (s). As shown in Section C of the
Online Appendix, the recovery rate on uninsured claims in case of failure αF (s) and the additional gross
return in case of no-failure αN (s) are respectively given by

αF (s) =
max

{
χ (s) ρ1 (s)D0 −

´
i∈I min {D0 (i)R1, δ} dG (i) , 0

}
´
i∈I max {D0 (i)R1 − δ, 0} dG (i)

and αN (s) = ρ2 (s) ρ1 (s)− λR1

(1− λ)R1
. (15)

Figure 5 illustrates how both αF (s) and αN (s) vary with the state s. Intuitively, the recovery rate on
uninsured claims in case of failure is given by the ratio of total funds available after insurance payments
to uninsured claims. The funds available after liquidation correspond to the difference between the total
amount of bank resources χ (s) ρ1 (s)D0 and the level of insured payments,

´
i∈I min {D0 (i)R1, δ} dG (i).

The level of uninsured claims corresponds to
´
i∈I max {D0 (i)R1 − δ, 0} dG (i). Note that for sufficiently

low values of bank profitability at date 1 or their recovery rate on assets χ (s), αF (s) can be zero in
some states, implying that the recovery rate on uninsured deposits is zero. The funding shortfall will be
positive in those scenarios. The value of αF (s) ∈ [0, 1) is decreasing in the deposit rate R1 and in the
level of coverage δ, and it is increasing in the realization of the state s.

0

T (s)

State (s)

αN (s)

s s s s0 State (s)

αF (s)

ŝ

1

Figure 5: Depositors’ Equilibrium Consumption Determinants and Funding Shortfall
Note: For a given level of deposit insurance coverage δ and a given deposit rate R1, the left panel in Figure 5 shows the
recovery rate on uninsured deposits in case of failure, αF (s), as well as the funding shortfall, T (s), for different values of
the realizations of the state s. For the same levels of δ and R1, the right panel in Figure 5 shows the additional gross return
earned by the deposits that stay within the bank until date 2, αN (s). Note that ŝ can also be defined as the value of s
such that αN (ŝ) = 1.

The additional gross return in case of no-failure, αN (s), corresponds to the ratio of available funds
at date 2, given by ρ2 (s) (ρ1 (s)− λR1)D0, to the level of date 1 deposits, given by (1− λ)D0R1. The
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value of αN (s) is increasing in the realization of the state s and decreasing in λ and R1.
As we show below, a key determinant of the optimal test for whether to increase or decrease the

optimal level of deposit insurance is the consumption gap between failure and no-failure equilibria.
Formally, for a given realization of s, the consumption gaps for early and late depositors are respectively
given by

CN1 (i, e, s)− CF1 (i, e, s) = (1− αF (s)) max {D0 (i)R1 − δ, 0}︸ ︷︷ ︸
Unrecovered Uninsured Deposits

(Early Depositors) (16)

CN2 (i, `, s)− CF2 (i, `, s) = (αN (s)− 1)D0 (i)R1︸ ︷︷ ︸
Additional Net Return

+ (1− αF (s)) max {D0 (i)R1 − δ, 0}︸ ︷︷ ︸
Unrecovered Uninsured Deposits

. (Late Depositors) (17)

Note that the consumption gap between failure and no-failure equilibria is zero for early depositors who
are fully insured. The consumption gap for partially insured early depositors corresponds to the funds
that are not recovered in the case of bank failure. The consumption gap for late depositors contains an
additional term relative to early depositors that captures the forgone additional net return on deposits
between dates 1 and 2.

Funding Shortfall and Taxpayers’ Equilibrium Consumption Finally, we characterize the
funding shortfall in state s, T (s), given by

T (s) = max
{ˆ

i∈I
min {D0 (i)R1, δ} dG (i)− χ (s) ρ1 (s)D0, 0

}
. (Funding Shortfall) (18)

The funding shortfall is positive when the total amount of deposit insurance claims exceeds the funds
available after liquidation. In this case, the recovery rate on uninsured deposits is zero, that is, αF (s) = 0.
The funding shortfall is zero when the funds available after liquidation are sufficient to cover all insured
deposits. Figure 5 illustrates how T (s) varies with the state s and how T (s) and αF (s) are related.

Given that the deadweight loss of taxation κ (T (s)) is borne by taxpayers, we can express taxpayers’
equilibrium consumption C (τ, s) =

{
CN (τ, s) , CF (τ, s)

}
in failure and no-failure scenarios as

CF (τ, s) = Y (τ, s)− T (s)− κ (T (s)) and CN (τ, s) = Y (τ, s) , (19)

where T (s) is defined in Equation (18). The consumption gap between failure and no-failure equilibria
for taxpayers is simply given by the funding shortfall augmented by the deadweight loss of taxation, that
is,

CN (τ, s)− CF (τ, s) = T (s) + κ (T (s)) . (20)

2.3 Normative Analysis

After characterizing the equilibrium of this economy for a given level of deposit insurance coverage δ, we
now study how changes in the level of coverage affect social welfare. We initially consider a scenario in
which the deposit rate offered by banks is predetermined and invariant to the level of coverage δ. This
case provides a tractable benchmark from which we study multiple departures in the next section.
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We denote by V (i, δ, R1) and V (τ, δ, R1) the ex-ante indirect utilities of type i depositors and
taxpayers, respectively, for given levels of deposit insurance and the deposit rate, which are given by

V (i, δ, R1) = λ

≡V (i,e,δ,R1)︷ ︸︸ ︷
Es [U (C1 (i, e, s))] + (1− λ)

≡V (i,`,δ,R1)︷ ︸︸ ︷
Es [U (C2 (i, `, s))] (Depositors)

V (τ, δ, R1) = Es [U (C (τ, s))] , (Taxpayers)

where V (i, e, δ, R1) and V (i, `, δ, R1) denote the indirect utility of type i depositors conditional on
being of the early or late type, respectively. In the Appendix, we provide explicit characterizations of
Es [U (C1 (i, e, s))], Es [U (C2 (i, `, s))], and Es [U (C (τ, s))], which account for the possibility of multiple
equilibria. Going forward, to simplify the exposition, we use the index j to jointly refer to early and
late depositors of type i, as well as taxpayers. For instance, we use V (j, δ, R1), to refer to V (i, e, δ, R1),
V (i, `, δ, R1), and V (τ, δ, R1). When integrating over j, we define a new measure H (j) that accounts
for the mass of agents in each group.

Because our model features a rich cross-section of depositors, we must set a criterion to aggregate
welfare. Instead of directly maximizing a weighted sum of the utilities of depositors and taxpayers, we
assess the aggregate welfare gains/losses of a marginal change in the level of coverage by aggregating the
money-metric utility change (in dollars of the marginal failure state) across all agents. This approach
can be interpreted as selecting a set of “generalized social marginal welfare weights” — see Saez and
Stantcheva (2016) — for all agents. As we show in Section E of the Online Appendix, there is a one-to-
one mapping between using generalized welfare weights and selecting a particular set of traditional social
welfare weights. There are two main advantages to using our approach. First, this approach allows us
to quantify aggregate marginal welfare changes in dollars. Second, it facilitates aggregation by making
(approximate) welfare assessments exclusively a function of bank-level aggregates, as we formally show
in Proposition 2 below.

Formally, we express the change in social welfare induced by a marginal change in the level of deposit
insurance coverage δ, dWdδ , as follows:

dW

dδ
=
ˆ
ω (j) dVm (j, δ, R1)

dδ
dH (j)

= λ

ˆ
i∈I

ω (i, e) dVm (i, e, δ, R1)
dδ

dG (i)︸ ︷︷ ︸
Early Depositors

+ (1− λ)
ˆ
i∈I

ω (i, `) dVm (i, `, δ, R1)
dδ

dG (i)︸ ︷︷ ︸
Late Depositors

+ω (τ) dVm (τ, δ, R1)
dδ︸ ︷︷ ︸

Taxpayers

, (21)

where dVm(j,δ,R1)
dδ =

dV (j,δ,R1)
dδ

U ′(CF (j,s∗)) denotes the money-metric change in indirect utility, using the marginal
failure state, s∗, as reference.14 The subindex m indicates that dVm

dδ is a “money-metric” welfare
representation. The weights ω (j) = {ω (i, e) , ω (i, `) , ω (τ)} are generalized social marginal welfare
weights. We derive Proposition 1 for general weights, although we specialize to the case of uniform
weights — ω (j) = 1, ∀j — in Proposition 2.

Given the definition of dWdδ , Proposition 1, which presents a central result of this paper, provides an
14In principle, any state could be chosen as reference for the money-metric normalization. By choosing s∗, we slightly

simplify the characterization of Proposition 1. In Section E of the Online Appendix, we re-derive Equation (22) for any
reference state and show that Proposition 2 remains valid in that case after suitably redefining m (j, s).
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exact test that determines whether it is optimal to increase or decrease the level of deposit insurance
coverage.

Proposition 1. (Exact directional test) The change in social welfare induced by a marginal change
in the level of deposit insurance coverage δ, dW

dδ , is given by

dW

dδ
=
ˆ
ω (j)

−∂q
F

∂δ

(
U
(
CN (j, s∗)

)
− U

(
CF (j, s∗)

)
U ′ (CF (j, s∗))

)
︸ ︷︷ ︸

Marginal Benefit

+ qFEFs
[
m (j, s) ∂C

F (j, s)
∂δ

]
︸ ︷︷ ︸

Marginal Cost

 dH (j) , (22)

where ω (j) denotes the generalized social welfare weight for agent j, m (j, s) = U ′(CF (j,s))
U ′(CF (j,s∗)) denotes the

stochastic discount factor of agent j in state s relative to the marginal failure state s∗, EFs [·] denotes
the conditional expectation over bank failure states, and qF denotes the unconditional probability of bank
failure. If dW

dδ > (<) 0, it is optimal to locally increase (decrease) the level of coverage.

Proposition 1 characterizes the effect on social welfare of a marginal change in the level of deposit
insurance, and formalizes the tradeoffs that determine the optimal deposit insurance limit. The first
element of the weighted sum in Equation (22) can be interpreted as the marginal benefit of increasing
the level of deposit insurance by a dollar. A marginal increase in the deposit insurance limit decreases
the likelihood of bank failure by ∂qF

∂δ .15 The marginal utility gain associated with such a reduction in the
probability of bank failure is captured by the differences in utilities between the failure and no-failure
equilibria evaluated at the marginal failure state s∗, U

(
CN (j, s∗)

)
−U

(
CF (j, s∗)

)
. For each agent, this

difference in utilities is determined by the difference in consumption, characterized in Equations (16),
(17), and (20).

To better understand the aggregate marginal benefit of increasing coverage, in Lemma 1 we formally
characterize the aggregate consumption difference between failure and no-failure equilibria at the
marginal failure state.

Lemma 1. (Aggregate consumption difference between failure and no-failure equilibria) The aggregate
consumption change induced by a bank failure in the marginal failure state s∗ is given by
ˆ (

CN (j, s∗)− CF (j, s∗)
)
dH (j) = (ρ2 (s∗)− 1) (ρ1 (s∗)− λR1)D0︸ ︷︷ ︸

Net Return Loss

+ (1− χ (s∗)) ρ1 (s∗)D0︸ ︷︷ ︸
Bank Failure

Deadweight Loss

+ κ (T (s∗))︸ ︷︷ ︸
Net Cost of
Public Funds

. (23)

As we show below, Equation (23) corresponds to the approximate social gain from avoiding the
marginal bank failure. Its first term corresponds to the marginal net return loss caused by bank failure.
Intuitively, at date 1, a bank failure forfeits the net return ρ2 (s∗) − 1 per unit of available funds
(ρ1 (s∗)− λR1)D0. The second term corresponds to the deadweight loss on banks’ assets associated

15As we show in Section 3, the total impact of a change in coverage on the probability of failure when deposit rates react
to the level of δ can be decomposed as dqF

dδ
= ∂qF

∂δ
+ ∂qF

∂R1
dR1
dδ

. In this section, note that we adopt the partial derivative
notation, even though dR1

dδ
= 0. It will become clear in Sections 3 and 5 that the partial derivative is the relevant object of

interest more generally.
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with bank failure. The final term is the total cost of public funds, which is non-zero at the margin
whenever banks do not have enough resources after liquidation to pay for all insurance claims at the
marginal failure state s∗. Part of the marginal benefit of preventing a bank failure comes from avoiding
fiscal distortions at the marginal state.

The second element of the weighted sum in Equation (22) can be interpreted as the marginal cost of
increasing the level of deposit insurance by a dollar. A marginal increase in the level of deposit insurance
changes the consumption of depositors and taxpayers in the case of bank failure by ∂CF (j,s)

∂δ over the set
of failure states, which take place with probability qF . Each agent values consumption changes in state s
according to his stochastic discount factor relative to the marginal failure state: m (j, s) = U ′(CF (j,s))

U ′(CF (j,s∗)) . In

Section C of the Online Appendix, we provide explicit characterizations of ∂CF (j,s)
∂δ for both depositors

and taxpayers. There we show that ∂CF (j,s)
∂δ is zero for fully insured depositors and can be positive

(for depositors whose deposits are right above the coverage limit) or negative (for depositors with large
uninsured balances) for partially insured depositors. We also show that the aggregate effect among
depositors, λ

´ ∂CF (i,e,s)
∂δ dG (i)+(1− λ)

´ ∂CF (i,`,s)
∂δ dG (i), is weakly positive and is zero when the funding

shortfall is zero, i.e., T (s) = 0. We also show that ∂CF (τ,s)
∂δ is weakly negative for taxpayers.

To better understand the aggregate marginal cost of increasing coverage, in Lemma 2 we formally
characterize the aggregate change in consumption in case of bank failure in state s induced by an increase
in the level of coverage δ.

Lemma 2. (Aggregate consumption change induced by a change in coverage in failure states) The
aggregate consumption change in case of bank failure in state s induced by a marginal change in the
level of deposit insurance coverage δ is given by

ˆ
∂CF (j, s)

∂δ
dH (j) =


−

Marginal
Cost of

Public Funds︷ ︸︸ ︷
κ′ (T (s))

Mass of
Partially Insured

Depositors︷ ︸︸ ︷ˆ
i∈PI

dG (i) , if T (s) > 0

0, if T (s) = 0,

(24)

where PI = { i|D0 (i)R1 > δ} denotes the set of partially insured depositors.

Lemma 2 shows that the marginal cost of increasing δ is increasing in the marginal cost of public
funds κ′ (·) and the mass of partially insured depositors

´
i∈PI dG (i). The value of

´ ∂CF (j,s)
∂δ dH (j) is

strictly negative whenever the transfer of resources among different agents associated with the deposit
insurance system is distortionary, in this case due to the deadweight losses of taxation. Intuitively, the
net social cost of a marginal increase in δ is given by the deadweight loss associated with transferring
a dollar from taxpayers to the partially insured depositors. Equation (24) highlights that only partially
insured depositors are marginal as the coverage limit changes. In other words, a marginal change in the
coverage limit has no marginal cost impact on already fully insured depositors. Taking an expectation
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over the failure states, we can express the marginal cost of increasing the level of coverage as

qFEFs

[ˆ
∂CF (j, s)

∂δ
dH (j)

]
= −qF · qT+|F · EFs

[
κ′ (T (s))

∣∣T (s) > 0
]
·
ˆ
i∈PI

dG (i) . (25)

Intuitively, the cost increasing the level of coverage by a dollar is given by the marginal cost of public
funds, κ′ (T (s)), which has to be paid to partially insured depositors,

´
i∈PI dG (i), whenever banks fail

(which occurs with probability qF ) and the funding shortfall is positive (which occurs with probability
qT+|F conditional on bank failure).

Even though the test characterized in Proposition 1 is exact, it is challenging to operationalize
in practice by directly measuring its constituents. A policymaker would need detailed information on
individual deposit balances and consumption across different scenarios. While gathering this information
is conceivable, the informational requirements on the policymaker would be large. Instead, in Proposition
2, we introduce an approximate directional test that determines whether it is optimal to increase or
decrease the level of coverage relying exclusively on aggregate outcomes at the bank level. As we explain
in our remarks below, the elements of Equation (26) are sufficient statistics to determine whether to
increase or decrease the level of coverage.

Proposition 2. (Approximate directional test based on bank-level aggregates) When the
planner i) sets uniform generalized marginal social welfare weights, i.e., ω (j) = 1, ∀j, ii) approximates
U
(
CN (j, s∗)

)
linearly around CF (j, s∗), and iii) values consumption equally across agents and states,

i.e., computes welfare as if m (j, s) = 1, ∀j, ∀s, the change in social welfare induced by a marginal change
in the level of deposit insurance coverage δ, dW

dδ , is given by

dW

dδ
≈ −∂q

F

∂δ

ˆ (
CN (j, s∗)− CF (j, s∗)

)
dH (j) + qFEFs

[ˆ
∂CF (j, s)

∂δ
dH (j)

]
, (26)

where EFs [·] denotes the conditional expectation over bank failure states, qF denotes the unconditional
probability of bank failure, and where

´ (
CN (j, s∗)− CF (j, s∗)

)
dH (j) and

´ ∂CF (j,s)
∂δ dH (j) are

characterized in Lemmas 1 and 2, respectively. If dW
dδ > (<) 0, it is approximately optimal to locally

increase (decrease) the level of coverage.

The approximate test characterized in Proposition 2 is based on three premises. First, it uses uniform
generalized marginal social welfare weights. This choice of weights eliminates distributional motives by
valuing resources equally among all agents, using the state s∗ as reference. Second, it approximates the
difference in utilities at the marginal failure state s∗ as U ′

(
CF (j, s∗)

) (
CN (j, s∗)− CF (j, s∗)

)
, which

is necessary to express individual valuations in terms of marginal utilities. Note that this approximation
also allows us to express dW

dδ in terms of consumption differences, CN (j, s∗) − CF (j, s∗), and not in
consumption levels, CN (j, s∗) and CF (j, s∗), which makes the result substantially more applicable.
Finally, it imposes that all agents value resources equally in all (failure) states, which further eliminates
any desire to redistribute across agents with different valuations. As a whole, these three requirements
allow the planner to give equal weight to dollar transfers across different agents and different states,
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abstracting away from distributional issues.16 Since the distributional implications of policies may be
an important practical concern for policymakers, any conclusion obtained from applying Equation (26)
should be understood as a reference point.

In practice, Equation (26) allows anyone interested in making approximate welfare assessments
to rely only on information on failure probabilities, qF and ∂qF

∂δ , and aggregate consumption,´ (
CN (j, s∗)− CF (j, s∗)

)
dH (j) and

´ ∂CF (j,s)
∂δ dH (j). In Section 4, we show how to combine

Proposition 2 with Lemmas 1 and 2 to find specific estimates of Equation (26) in a particular scenario,
illustrating how to implement our approximate test in practice.

We conclude our normative analysis with five remarks. In these remarks, we focus on the implications
of Proposition 2, because it is more widely applicable, although similar insights emerge when we consider
the test in Proposition 1.

Remark 1. Sufficient statistics. Proposition 2 provides a simple test for whether to increase or decrease
the level of coverage that exclusively relies on a few potentially observable sufficient statistics. These
sufficient statistics are: i) the probability of bank failure, ii) its sensitivity to changes in the level
of coverage, iii) the aggregate consumption losses associated with a marginal bank failure, and iv)
the marginal impact on aggregate consumption in failure states induced by changing the level of
coverage. These sufficient statistics can a) be potentially recovered from measured data, or b) be
used to shed light on the results of a calibrated structural model. In Section 4, we make use of
both approaches within a particular application. Even though we characterize dW

dδ locally, the welfare
change caused by a non-local change in the level of coverage can be recovered by integrating over the
values of dW

dδ . Formally, for a non-local policy change from δ to δ′, we can write the welfare change as
follows: W (δ′)−W (δ) =

´ δ′
δ

dW
dδ

(
δ̃
)
dδ̃, where dW

dδ (·) is determined in Proposition 1. Therefore, direct
measurement of these variables for different levels of δ is sufficient to assess the welfare impact of any
change in the level of coverage.

Remark 2. Diamond and Dybvig (1983) revisited. In the baseline version of their model, which features
no aggregate risk, Diamond and Dybvig (1983) show that it is optimal to provide unlimited deposit
insurance coverage, eliminating bank failure equilibria altogether. The prescription of optimal unlimited
coverage also extends to the setting in which the share of early consumers is stochastic, hence featuring
aggregate risk, but in which deposit insurance can be made contingent on such share. Importantly, in
either version of their model, deposit insurance never has to be paid in equilibrium. In our model, due
to the fact that δ is not contingent on the aggregate state, there are scenarios in which deposit insurance
must be paid even if the level of coverage is unlimited, which makes unlimited coverage suboptimal.
Equation (26) allows us to heuristically recover the Diamond and Dybvig (1983) result by setting qF = 0
and assuming that ∂qF

∂δ < 0. In this case, banks never fail, so there is no cost of intervention, but
increasing the level of coverage reduces the probability of failure, making unlimited deposit insurance

16In Section F.8 of the Online Appendix, we describe the quantitative impact of the three conditions needed to derive
Equation (26). There we show that removing redistributional concerns calls for higher levels of coverage. Moreover, in
Section E.4 of the Online Appendix, we describe an alternative approach that leads to the exact same characterization of
Equation (26). This derivation, which does not involve approximations, relies on a welfare assessment based on dynamic
stochastic generalized social marginal social welfare weights, introduced in Dávila and Schaab (2021).
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optimal. This logic extends more broadly to other models of multiple equilibria, in which policies that
costlessly eliminate bad equilibria are optimal.

Remark 3. Convexity and limiting results. Our assumptions guarantee that the planner’s problem is
continuous and differentiable in δ. When numerically solving the model, we find that the planner’s
problem is well-behaved for standard functional forms and distributional assumptions, although the
convexity of the planner’s problem is not guaranteed in general, as in most normative problems. Note
that Equation (26) can be used to conclude whether a non-zero or a maximal level of coverage is desirable.
For instance, if the marginal cost of a small increase in the level of coverage is zero, because qF , qT+|F ,
or κ′ (·) are zero when δ = 0, but a small increase in the level of coverage is effective at reducing the
probability of failure, ∂qF

∂δ

∣∣∣
δ=0

< 0, then Equation (26) implies that dW
dδ

∣∣∣
δ=0

> 0, so a strictly positive
level of coverage is optimal. Note that as long as banks fail in equilibrium when coverage is unlimited,
δ = DR1, and fiscal costs are positive, κ′ (·) > 0, a maximal level of coverage is not optimal, since
∂qF

∂δ

∣∣∣
δ=DR1

= 0, which implies that dW
dδ

∣∣∣
δ=DR1

< 0.

Remark 4. Optimal level of coverage δ?. At an interior optimum, the optimal level of deposit insurance
δ? satisfies dW

dδ (δ?) = 0, which implies the following relations exactly and approximately:

δ? = εqδ

´ U(CN (j,s∗))−U(CF (j,s∗))
U ′(CF (j,s∗)) dH (j)

EFs
[´
m (j, s) ∂C

F (j,s)
∂δ dH (j)

] ≈ εqδ
´ (

CN (j, s∗)− CF (j, s∗)
)
dH (j)

EFs
[´ ∂CF (j,s)

∂δ dH (j)
] , (27)

where εqδ = −∂ log qF
∂ log(δ) denotes the elasticity of the probability of bank failure to a change in the level

of coverage. Intuitively, a high (low) value for δ? is optimal when
∣∣εqδ∣∣ and ∣∣∣CN (j, s∗)− CF (j, s∗)

∣∣∣ are
large (small), or when

∣∣∣EFs [´ ∂CF (j,s)
∂δ dH (j)

]∣∣∣ is large (small), all else equal. As it is common in optimal
policy exercises, δ? cannot be written as a function of primitives, since all right-hand side variables in
Equation (27) are endogenous to the level of δ.17 Since solving for the fixed point that determines δ?

in Equation (27) would require finding measures of all right-hand side variables for every level of δ, we
focus on characterizing dW

dδ , which can be computed for a given level of δ.

Remark 5. Role of the approximation/welfare weights. It is not obvious whether the approximate test
in Proposition 2 delivers results that are similar to those obtained using Proposition 1. In Section
F of the Online Appendix, we address this issue in detail within the calibrated quantitative model
from Section 4.2. First, as expected, we conclude that the choice of welfare weights is important.
Using generalized welfare weights that are not uniform will deliver different conclusions regarding the
desirability of changing the level of coverage. For instance, we find that a classic utilitarian planner who
values resources in the hands of smaller depositors more would prefer lower levels of coverage. Second,
we find that the actual approximations, i.e., approximating U

(
CN (j, s∗)

)
linearly around CF (j, s∗) and

setting m (j, s) = 1, ∀j, ∀s, have a small quantitative impact, at least for our calibration. As we explain
in the Online Appendix, a planner who uses the approximate results tends to overestimate the welfare
gains from increasing the level of coverage, mostly by underweighting the marginal cost of providing

17This logic is similar to conventional characterizations of optimal taxes. For instance, optimal Ramsey commodity taxes
are a function of demand elasticities, which are endogenous to the level of taxes.
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public funds for taxpayers. Moreover, it is worth highlighting that there are welfare weights under
which no deposit insurance at all is optimal in our framework. Formally, since taxpayers are always
worse off when there is deposit insurance, by putting an increasingly large welfare weight on taxpayers
(equivalently, a vanishingly small weight on depositors) a planner may find zero deposit insurance to be
optimal.

2.4 A Laissez-Faire Interpretation

Up to now, we have assumed that the funds needed to pay for deposit insurance are raised directly
from taxpayers. We do so because, in the presence of large aggregate shocks, governments typically
act as ultimate sources of funding. However, our framework can be used to understand the role
played by alternative arrangements of mutual insurance either across banks or between banks and other
agents/institutions.

There are two benchmark scenarios to consider. First, there is the case in which bank failures
are idiosyncratic — we study this case in Section E.1 of the Online Appendix, summarizing here our
conclusions. There, we consider an environment in which there is a continuum of ex-ante identical banks
of the form studied so far. Instead of assuming that all banks fail in the multiple equilibria region
according to an aggregate sunspot, we assume that, whenever the realization of s lies in the multiple
equilibria region, a fraction of banks fails, which makes the risk of failure idiosyncratic in those states. In
this case, we show that it may be possible to set up ex-post transfers across banks that eliminate funding
shortfalls, by transferring funds from surviving to failed banks. In terms of the sufficient statistics that
we identify, the probability of facing a funding shortfall conditional on failure, qT+|F , subsumes the
impact of introducing idiosyncratic risk and ex-post transfers across banks.

Second, there is the case in which bank failures are system-wide, which is effectively the case
considered throughout the paper. In this case, by construction, deposit insurance funds must come
from outside of the banking sector. In this case, there are two natural possibilities. The first one, which
we study in Section E.2 of the Online Appendix, is one in which a deposit insurance fund funded by
contributions of insured banks is responsible for paying insured deposits in case of failure. Our analysis
in the Appendix shows that our main characterization remains valid in that case, provided that the
returns on the resources held in the fund are commensurate with the returns obtained by banks. The
second possibility involves banks obtaining insurance against system-wide failures from a third party.
That case can be mapped to our results with optimal regulation — which we describe next — in which
the level of coverage and the optimal regulation fully internalize the welfare of depositors and the outside
sector. In fact, our results with optimal regulation can be interpreted as implementing a laissez-faire
co-insurance outcome between banks and a set of outside agents, rather than relying on markets to do
so.
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3 Endogenous Deposit Rate and Optimal Regulation

So far, we have considered the case in which the deposit rate R1 offered by banks is predetermined.
We now analyze two environments in which R1 is endogenously determined. First, we consider an
environment in which a regulator can directly determine the deposit rate offered by banks. Next, we
consider a different environment in which competitive banks choose the deposit rate offered to depositors.
Finally, by comparing the solution to both problems, we characterize the optimal deposit rate regulation.

We draw three major conclusions from this analysis. First, we show that the equation that
characterizes dW

dδ when deposit rates are fixed is identical to the equation that characterizes dW
dδ under

the optimal deposit rate regulation. Therefore, in both scenarios, the same set of sufficient statistics is
needed to determine the optimal policy. Second, we show that this equation only has to be augmented
by the fiscal externality induced by banks’ behavior when deposit rates can vary freely. Finally, we show
that the optimal deposit rate regulation should be designed to counteract the fiscal externality caused
by banks, regardless of whether deposit insurance is “fairly-priced”.

3.1 Regulated Deposit Rate

We now allow the policymaker to jointly determine the welfare maximizing deposit rate along with the
optimal level of deposit insurance. Letting the planner choose the deposit rate directly is analogous to
allowing for a rich set of ex-ante policies that modify banks’ behavior at date 0. Deposit rate regulation
has been commonly used in practice, in particular before the financial deregulation wave at the end of
the last century. We first characterize the set of constrained efficient policies and then discuss possible
decentralizations, including, for instance, imposing deposit rate ceilings or requiring a deposit insurance
premium.

Formally, we let the planner jointly choose the level of δ and the deposit rate offered to households.
Going forward, we assume that the planner uses uniform generalized marginal social welfare weights,
i.e., ω (j) = 1. In this case, the optimal choice of R1 ∈

[
1, R1

]
is characterized by the solution to

∂W
∂R1

= 0, where social welfare is now a function of both δ and R1. Importantly, the planner internalizes
the effect of changing R1 on the funding shortfall T (s). In Section B of the Online Appendix, we
formally characterize the expression that determines the optimal rate. Here, we directly characterize the
directional test for how social welfare varies with the level of coverage.

Proposition 3. (Directional test for δ under perfect ex-ante regulation) The change in welfare
induced by a marginal change in the level of deposit insurance dW

dδ when R1 is optimally determined by
the planner is given by

dW

dδ
=
ˆ −∂qF

∂δ

U
(
CN (j, s∗)

)
− U

(
CF (j, s∗)

)
U ′ (CF (j, s∗))

+ qFEFs

[ˆ
m (j, s) ∂C

F (j, s)
∂δ

] dH (j) , (28)

where m (j, s) = U ′(CF (j,s))
U ′(CF (j,s∗)) denotes the stochastic discount factor of agent j in state s relative to the

marginal failure state s∗, EFs [·] denotes the conditional expectation over bank failure states, and qF
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denotes the unconditional probability of bank failure. If dW
dδ > (<) 0, it is optimal to locally increase

(decrease) the level of coverage.

By comparing Equations (22) and (28), we observe that the marginal change in welfare caused by
a change in the level of coverage can be expressed in identical form when R1 is predetermined and
when R1 is optimally chosen by the planner. Once again, information about depositors’ and taxpayers’
consumption and failure probabilities is sufficient to determine the welfare effect of changes in the level
of coverage. Intuitively, any impact on welfare induced by the change in deposit rates generated by a
change in δ must be 0 when R1 is optimally chosen by perfectly regulated banks.

If one were to solve for the optimal value of δ by setting dW
dδ = 0, the solutions when R1 is

predetermined and optimally chosen would differ, because the endogenous elements (consumption and
failure probabilities) vary with the level of R1. However, from the perspective of understanding the
welfare impact of changes in the level of coverage, the set of relevant sufficient statistics is the same.
This reasoning motivates the use of Equation (28) or, equivalently, Equation (22) for the purpose of
direct measurement exercises, as we do in Section 4.1.

3.2 Unregulated Deposit Rate

We now allow banks to freely choose the deposit rate that they offer to depositors. In environments with
a representative depositor, including Diamond and Dybvig (1983), the assumption of perfect competition
among banks translates into an objective function for banks that simply maximizes depositors’ welfare.
However, specifying the objective function of banks in an environment with heterogeneous depositors is
far from trivial.18

Here we proceed as follows. For a given level of coverage δ, we assume that banks set the single
deposit rate R1 ∈

[
1, R1

]
competitively at date 0 to maximize a money-metric sum of depositors’

utilities. Formally, we let R1 be pinned down by the solution to

∂V

∂R1
= λ

ˆ
∂Vm (i, e, δ, R1)

∂R1
dG (i) + (1− λ)

ˆ
∂Vm (i, `, δ, R1)

∂R1
dG (i) = 0, (29)

where ∂Vm(i,x,δ,R1)
∂R1

=
∂V (i,x,δ,R1)

∂R1
U ′(CF (j,s∗)) denotes the money-metric change in indirect utility for depositors with

types i and x induced by an increase in the deposit rate.19 Our definition of equilibrium needs to be
augmented to incorporate that R1 is optimally chosen by banks at date 0, for a given level of deposit
insurance δ.

As we show in the Online Appendix, the choice of R1 determines the optimal degree of risk sharing
between early and late types and across depositors, accounting for the level of aggregate uncertainty and

18Formally modeling how banks compete for depositors and how depositors end up grouped in different banks is outside
of the scope of the paper. This is an important question that has not received much attention. On the theoretical side,
Mitkov (2020) addresses this problem by assuming that each bank serves only depositors of the same wealth level, so the
objective of the bank is clearly defined. He then provides conditions under which the equilibrium outcome is unchanged if
depositors with different wealth levels are grouped together in the same bank. Quantitatively, Egan, Hortaçsu and Matvos
(2017) have structurally estimated a quantitative model for demand deposits.

19Our model can be augmented to allow banks to set different deposit rates R1 (i) for different types of depositors — see
Jacewitz and Pogach (2018) for evidence consistent with this possibility.
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incorporating the costs associated with bank failure. Overall, banks internalize that varying R1 not only
changes the consumption of depositors in both failure and no-failure states (intensive margin terms) but
also the likelihood of experiencing a bank failure (extensive margin terms). Importantly, banks do not
take into account how their choice of R1 affects the need to raise resources through taxation to pay for
deposit insurance.

In principle, the equilibrium deposit rate R1 can increase or decrease with the level of coverage δ,
due to conflicting income effects and direct effects on the size of the failure/no-failure regions. However,
in most cases, it is reasonable to expect R1 to increase with δ, that is, dR

?
1

dδ > 0.20 Intuitively, we expect
competitive banks to offer higher deposit rates when the level of coverage is higher, since they know
that the existence of deposit insurance partially shields depositors’ consumption. This result is a form
of increased moral hazard by banks. We can now characterize the directional test for how social welfare
varies with the level of coverage.

Proposition 4. (Directional test for δ without ex-ante regulation) The change in welfare induced
by a marginal change in the level of deposit insurance dW

dδ when R1 is determined by competitive banks
as described in Equation (A2) is given by

dW

dδ
= −∂q

F

∂δ

ˆ (
U
(
CN (j, s∗)

)
− U

(
CF (j, s∗)

)
U ′ (CF (j, s∗))

)
dH (j) + qFEFs

[ˆ
m (j, s) ∂C

F (j, s)
∂δ

dH (j)
]

(30)

+ ∂Vm (τ, δ, R1)
∂R1

dR1

dδ︸ ︷︷ ︸
Fiscal Externality

,

where EFs [·] stands for a conditional expectation over bank failure states, qF denotes the unconditional
probability of bank failure, and ∂Vm(τ)

∂R1
can be expressed, in terms of a risk-neutral approximation, as

∂Vm(τ,δ,R1)
∂R1

≈ −∂Es[T (s)+κ(T (s))]
∂R1

. If dW
dδ > (<) 0, it is optimal to locally increase (decrease) the level of

coverage.

It is clear that when banks choose their deposit rate freely, a new set of effects must be accounted
for to understand the welfare impact of changes in the level of coverage. The derivation of Equation
(30) repeatedly exploits the fact that banks choose the value of R1 to provide insurance across types
optimally, while taking into account how that may change the likelihood of bank failure. The third
term of Equation (30) corresponds to the impact of the distortions on banks’ behavior induced by the
change in the level of deposit insurance. As shown in the Appendix, the fiscal externality dimension
features both an intensive and extensive margin. At the intensive margin, an increase in R1 increases
the level of claims that must be satisfied in failure states. At the extensive margin, an increase in
R1 increases the set of states in which bank failures occur and fiscal costs must be incurred. Under
a risk-neutral approximation similar to the one used in Proposition 2, ∂Vm(τ,δ,R1)

∂R1
≈ −∂Es[T (s)+κ(T (s))]

∂R1
,

which corresponds to the direct impact on tax revenue and deadweight losses induced by a change in
the deposit rate.

We also show in the Appendix that the fiscal externality term is negative, so the third term in
20In a global games framework, Allen et al. (2018) explicitly find this result in a special case of our model.
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Equation (30) increases the marginal cost of increasing the deposit insurance limit. Because it directly
affects the funds that need to be raised by the government, we refer to it as a fiscal externality. It is
worth emphasizing how “moral hazard” considerations affect our results in the following remark.

Remark. Banks’ changes in behavior (often referred to as moral hazard) only affect social welfare directly
through the fiscal externality term. We indeed expect banks to quote higher deposit rates when the
level of deposit insurance is higher, since they know the presence of deposit insurance partially shields
depositors’ consumption. However, because banks are competitive and maximize depositors’ welfare,
only the fiscal consequences of their change in behavior, which materialize when the fiscal authority
actually has to pay for deposit insurance, matter. This result remains valid even when banks make
endogenous liquidity and investment choices — see Section 5. Therefore, accounting for banks’ moral
hazard simply augments the directional test for δ by including a fiscal externality component. Indirectly,
changes in bank behavior affect i) the level of gains from reducing bank failures (numerator of Equation
(27)), ii) the region in which deposit insurance is paid (denominator of Equation (27)), and iii) the value
attached to a dollar in the different states (captured by depositors’ and taxpayers’ marginal utilities),
but these effects are subsumed into the identified sufficient statistics.

3.3 Optimal Ex-Ante Regulation

By comparing the optimal deposit rate chosen by the regulator and by competitive banks, we can provide
insights into the form of the optimal ex-ante regulation of deposit rates.21

Proposition 5. (Optimal ex-ante deposit rate regulation) The optimal corrective policy modifies
banks’ optimal choice of deposit rates by introducing a wedge in their deposit rate decision given by

τR1 = −∂Vm (τ, δ, R1)
∂R1

≈ ∂Es [T (s) + κ (T (s))]
∂R1

,

which is set to counteract the fiscal externality term defined in Proposition 4.

Proposition 5 shows how to correct banks’ deposit rates so that they internalize the fiscal externality
that their choices generate. Importantly, the existing literature has not previously identified this fiscal
externality as the relevant object of interest that defines the optimal ex-ante regulation of banks.
Consistent with Equation (30), an increase in the deposit rate offered by banks varies overall welfare
according to ∂Vm(τ,δ,R1)

∂R1
. Proposition 5 shows that this object can be expressed as the marginal change in

the expected funding shortfall, augmented to include the cost of public funds. We show in the Appendix
that this derivative accounts for the increased resource loss faced by taxpayers in the case of bank failure
and the induced change in the unconditional probability of bank failure. Note that, even if there are no
fiscal costs, implying that κ (T (s)) = 0, there is a role for corrective regulation emerging from the fact

21Note that we consider two extreme scenarios. In one, there is no ex-ante regulation, so banks freely choose their deposit
rate. In the other one, regulation is perfectly targeted. In practice, the set of policy instruments available to policymakers
may be constrained. In that case, our results in this paper are key inputs for the optimal second-best policy (Dávila and
Walther, 2020).
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that banks do not internalize that taxpayers must pay for funding shortfalls.22

In general, the implementation of the optimal ex-ante corrective policy is not unique, although in this
particular case a single instrument affecting the choice of deposit rate is sufficient. Because the funds used
to pay for deposit insurance are raised through distortionary taxation, any Pigovian corrective policy
in which the deposit insurance authority raises revenue may generate a “double-dividend” (Goulder,
1995). That is, a policy that corrects the ex-ante behavior of banks and at the same time reduces
the need for raising revenue when required improves welfare along two different margins. The double-
dividend logic supports an implementation of the optimal corrective policy through a deposit insurance
fund financed with deposit insurance premia paid by participating banks. However, if the return of the
deposit insurance fund is less than the return earned by the banks themselves, it may be preferred to
set a different type of ex-ante corrective policy, like a deposit rate ceiling. We highlight the distinction
between the corrective role of ex-ante policies (optimal corrective deposit insurance premium) versus
their revenue-raising role (fairly-priced deposit insurance premium) in the following remark.

Remark. Optimal corrective regulation vs. fairly-priced deposit insurance. The existing literature has
emphasized the study of deposit insurance schemes that are fairly-priced or actuarially fair. A deposit
insurance fund is said to be actuarially fair if deposit insurance premia are such that the deposit insurance
fund breaks even in expectation. Our formulation shifts the emphasis from setting deposit insurance
premia that cover the expected fiscal cost to implementing regulations that distort banks’ choices at the
margin. This distinction is often blurred in existing discussions of deposit insurance premia. In Section
D of the Online Appendix, we show how to account for risk choices in a more general framework, allowing
for a form of risk-based premia.

4 Quantitative Application: Revisiting the 2008 Change in Coverage

On October 3, 2008, the level of coverage in the US changed from $100, 000 to $250, 000. In this section,
we apply our framework to that particular scenario. That is, we describe how a policymaker, armed
with our framework, would have set the optimal level of coverage in early 2008, sometime before the
moment in which the change in coverage took place. We study this specific scenario because it is the
one for which we can obtain the most credible measures of the relevant sufficient statistics.23

Initially, in Section 4.1, we describe how to measure the empirical counterparts of the sufficient
statistics identified in Proposition 2 and implement the appropriate directional test for whether to
increase or decrease the level of coverage.24 We explain why our test finds that an increase in the level
of coverage was desirable and discuss the associated welfare gains.

22The exact expression for ∂Vm(τ)
∂R1

, given in Equation (A2) in the Appendix, shows that the optimal corrective policy
must in general account for aggregate and systematic risk. In the context of optimally setting deposit insurance premia,
a similar argument has been emphasized by Pennacchi (2006), Acharya, Santos and Yorulmazer (2010), and Lucas (2019),
among others.

23All measures of the sufficient statistics are in principle state- and time-dependent. The advantage of focusing on a
specific scenario is that we can construct credible measures for that particular situation.

24Note that we abstract from changes in bank behavior associated with changes in the level of coverage. Given our results
in Section 3, we should interpret our results as the marginal welfare change associated with a change in coverage which is
implemented along with the optimal ex-ante regulation.
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Next, in Section 4.2, using these sufficient statistics — along with additional information — as
calibration targets for our structural model, we explore the quantitative results that the model generates.
We first provide a welfare decomposition in terms of the marginal benefits and costs identified in Section
2. Then, we conduct sensitivity analysis on the model parameters and describe how the optimal level
of coverage varies for alternative scenarios/sets of parameters. Finally, we describe the distributional
consequences of changing the level of coverage.

We draw four main conclusions. First, we find that the welfare gains from increasing the level of
coverage when starting from low levels of coverage are very large. This result implies that having some
form of deposit insurance is highly valuable. Second, given our assumptions, we find that the optimal
level of coverage in the scenario that we consider would have been $381, 000. This magnitude is larger
than the $250, 000 that was chosen, but is perhaps more aligned with the extended guarantees that were
implemented soon after. Third, we explain why a drop in confidence (modeled as an increase in the
probability of a sunspot) is associated with a higher optimal level of coverage. We also explain why an
increase in the riskiness of bank investments is associated with a lower optimal level of coverage. Finally,
we find that increasing the level of coverage increases the welfare of most depositors most of the time
but not always. In particular, there are situations in which large depositors may be worse off when the
level of coverage increases.

4.1 Direct Measurement of the Sufficient Statistics

Throughout the whole Section 4, we focus on measuring social welfare for a hypothetical representative
bank.25 In order to avoid relying on account- or depositor-level information, we make use of the test
characterized in Proposition 2, which expresses the change in social welfare induced by a change in the
level of coverage in terms of variables aggregated at the bank level. Moreover, to better map the model
to observables, we focus on the marginal welfare change (expressed in dollars) per deposit account, given
by dW

dδ /G, where G =
´
dG (i) denotes the mass of deposit accounts in our representative bank.

Formally, starting from Proposition 2, we can express dW
dδ /G as follows:

dW
dδ

G
≈ qF

−∂ log qF

∂δ

´ (
CN (j, s∗)− CF (j, s∗)

)
dH (j)

G
− qT+|FEFs

[
κ′ (·) |T > 0

] ´i∈PI dG (i)
G

 , (31)

where qF denotes the probability of bank failure, ∂ log qF
∂δ ≡ ∂qF/qF

∂δ denotes the semi-elasticity of bank

failure with respect to a change in the level of coverage,
´ (CN (j,s∗)−CF (j,s∗))dH(j)

G
corresponds to the

resource losses per account in case of failure, qT+|F corresponds to the probability of facing a funding
shortfall conditional on bank failure, EFs [κ′ (·) |T > 0] denotes the average marginal cost of public funds
whenever these have to be paid, and

´
i∈PI dG(i)

G
is the share of partially insured deposit accounts.

Consequently, once dW
dδ /G is measured, we can scale up or down the size of the welfare gains/losses

25Ideally, if more disaggregated data were available, one would first measure the relevant sufficient statistics for each bank
and then aggregate these measures to conduct system-wide assessments. Differences in bank-specific sufficient statistics
would account for differences in banks’ funding, e.g., wholesale vs. retail, and the composition of banks’ investments, among
other characteristics.
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Table 1: Direct Measurement: Sufficient Statistics
Description Variable Value
Probability of bank failure qF 2.5%

Mg. Benefit Sensitivity of log-failure probability to DI limit ∂ log qF
∂δ − 0.3

150,000
Resource losses per account after failure

´ (CN (j,s∗)−CF (j,s∗))dH(j)/G $13,810

Mg. Cost
Conditional probability of funding shortfall qT

+|F 1
Expected net marginal cost of public funds EFs [κ′ (·) |T > 0] 0.15
Share of partially insured deposit accounts

´
i∈PI dG(i)/G 0.064

Note: Table 1 includes the baseline measures of the relevant sufficient statistics. The probability of bank failure as well as
the sensitivity of the probability of bank failure to a change in the coverage limit are based on CDS data, as described in the
text. The measure of resource losses per account after failure combines information from Martin, Puri and Ufier (2017) with
estimates from Granja, Matvos and Seru (2017) and Bennett and Unal (2015). The choice of the conditional probability
of funding shortfall is based on the behavior of the Deposit Insurance Fund, as explained in the text. The marginal cost
of public funds is consistent with Kleven and Kreiner (2006) and Dahlby (2008). The share of partially insured depositors
comes from Martin, Puri and Ufier (2017).

associated with a change in the level of coverage according to the number of deposit accounts in a given
bank.

We interpret the horizon of the model as a one-year period in the data. We summarize our preferred
measures of the sufficient statistics required to compute Equation (31) in Table 1. Next, we describe the
data sources that support those choices. Note that we factor out the probability of failure qF in Equation
(31), which allows us to express the marginal benefit of increasing coverage in terms the semi-elasticity
∂ log qF
∂δ , instead of ∂qF

∂δ . Hence, for a given value of the semi-elasticity ∂ log qF
∂δ , the probability of failure

qF does not affect the sign of the dW
dδ /G, only its magnitude.

Probability of bank failure Measures of bank failure probabilities can be based on historical
occurrences of bank failures or extracted from the expectations of market participants who trade
CDS (Credit Default Swaps) on banks. A direct estimate of historical bank failure probabilities,
using the FDIC Historical Statistics on Banking between 1934 and 2017, yields estimates of yearly
failure probabilities of roughly 0.42%. This historical estimate is implausibly low to describe the actual
probability of failure in early 2008.

We also use CDS data (from Markit) to compute yearly implied default probabilities for the sample
of banks for which this instruments is traded — see Section F of the Online Appendix for a detailed
explanation of our calculations with CDS data. We find an average implied default probability across
banks and trading dates between January and June of 2008 of 1.23%.26 However, the average implied
default probability across banks on the date of the policy change, October 3, 2008, was 6.67%. Given
these estimates, we select 2.5% as our baseline measure for qF .

Marginal benefit Here we describe the measures of the sufficient statistics that determine the
marginal benefit of changing the level of coverage. First, by using the change in the implied probability
of failure around the change in the level of coverage from $100, 000 to $250, 000 we can provide a sense of

26For reference, the average implied default probability during the post-crisis period 2012-2014 was 1.58%, while the
average between 2004 and 2014 is 1.1%.
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how failure probabilities react to changes in the level of coverage. In the Online Appendix, we document
that the average proportional reduction in the implied probability of failure among the banks for whom
failure probabilities went down was roughly 13%, and that average failure probabilities moved from 6.67%
to 6.11%. Unfortunately, this approach is fraught with difficulties since the change in the level of coverage
is not random and is only one of the measures in the Emergency Economic Stabilization Act passed on
that date. We also document average proportional reductions in failure probabilities on October 14,
2008 of roughly 53%, in which the FDIC guaranteed in full noninterest-bearing transaction accounts.
Given these estimates, we suppose that a change in the level of coverage of $150, 000 is associated with
a proportional reduction of 30% in the probability of bank failure, that is, we set

∂ log qF

∂δ
= − 0.3

150, 000 = −2× 10−6. (32)

Next, we must compute the consumption difference at the bank level between failure and no-failure
equilibria. To do so, we leverage Lemma 1. First, to simplify the computation, we set κ(T (s∗))

ρ1(s∗)D0
≈ 0

and λR1 ≈ 0, which barely affects the final calculation. In that case, we can express the term´ (CN (j,s∗)−CF (j,s∗))dH(j)
G

as a function of three terms, as in Equation (33) below. First, we need the
net return on assets, ρ2 (s∗) − 1, which the FDIC reports to be roughly 1%. Second, we need the
deadweight losses of default, 1− χ (s∗), which we set to 0.28, consistent with the recovery rate on bank
assets after failure of 72% estimated in Granja, Matvos and Seru (2017) — see also Bennett and Unal
(2015). Finally, we need the ratio of bank assets to deposit accounts, ρ1(s∗)D0

G
, which we take from

Martin, Puri and Ufier (2017). They report that the bank they study has roughly 42, 000 accounts and
2 billion in assets, which implies an assets-to-accounts ratio of $2B

42,000 = $47, 619. Therefore, our best
measure of the resource losses per account after failure is

´ (
CN (j, s∗)− CF (j, s∗)

)
dH (j)

G
=

ρ2 (s∗)− 1︸ ︷︷ ︸
0.01

+ 1− χ (s∗)︸ ︷︷ ︸
0.28

 ρ1 (s∗)D0

G︸ ︷︷ ︸
$2B

42,000

= $13, 810. (33)

Marginal cost We now turn to the marginal cost estimates. First, we approach the measurement of
qT

+|F and EFs [κ′ (·) |T > 0] as a joint task. By setting qT+|F to 1 and EFs [κ′ (·) |T > 0] = 0.15, our choices
imply that every marginal dollar promised to partially insured depositors is associated with an average
deadweight loss of 15%. We set our measure for the net marginal cost of public funds to be somewhat
higher than the 13% estimate for the US from Kleven and Kreiner (2006).27 Our choice of qT+|F = 1 is
based on the evidence — included in the Online Appendix — that the Deposit Insurance Fund faced a
negative balance in 2009 and 2010, which we interpret as widespread funding shortfalls. Since managing a
deposit insurance fund in general may be costly, by setting qT+|F = 1 we can map the cost of transferring
resources to partially insured depositors in case of failure to the choice of EFs [κ′ (·) |T > 0].28 Finally,

27The estimate of 13% is within the lower end of estimates. Through alternative methods, Ballard, Shoven and Whalley
(1985) find a range of estimates between 0.17 and 0.56. See Dahlby (2008) for a comprehensive review of the literature.

28As we show in Section E.2 of the Online Appendix, the marginal cost of public funds ought to be linked to the deadweight
losses associated with keeping resources in a deposit insurance fund (commonly invested in low-maturity treasuries and other
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we use 6.4% as the percentage of partially insured deposit accounts, based on the description of the
bank studied in Martin, Puri and Ufier (2017), which is, somewhat surprisingly, the only source to our
knowledge that reports this information.

Test implementation/Welfare gains Combining the measures of the sufficient statistics that we
have just introduced, we can use Equation (31) to compute the marginal welfare gain of changing the
level of coverage. First, we find that the marginal welfare gain per deposit account associated with a
one-dollar increase in the level of coverage, measured using our framework as of early 2008, is given by

dW
dδ

G
= 0.025

( 0.3
150, 000 × 13, 810− 0.15× 0.064

)
= $4.5× 10−4, (34)

where each of the elements in Equation (34) come either directly from Table 1 or indirectly through
Equations (32) and (33). Since (34) has a positive sign, our approach implies that an increase in the
level of coverage would have been welfare improving.

To gauge the magnitude of the gains, it is natural to normalize the marginal welfare gains by the
level of assets of a bank instead of the number of accounts. Relying again on the information in Martin,
Puri and Ufier (2017), we can express

dW
dδ

assets for a representative bank as follows:

dW
dδ

assets =
dW
dδ

G︸︷︷︸
$4.5×10−4

× G

assets︸ ︷︷ ︸
42,000

$2B

= $9.46× 10−9, (35)

which implies that the marginal welfare gain per dollar of banks assets associated with a one-dollar
increase in the level of coverage is $9.46 × 10−9. Therefore, Equation (35) implies that an increase in
coverage of $100, 000 is associated with a welfare gain of 0.000946 (9.46bps) per dollar of bank assets.

Finally, we can use our estimate of the marginal welfare gain per level of assets in Equation (35) to
find an estimate for the whole banking sector. Given that the level of assets for the whole banking sector
in 2008 was of roughly $14 trillion, we can compute the welfare gain of a dollar increase in the level of
coverage for the whole banking sector as follows:

dW

dδ

∣∣∣∣
all banks

=
dW
dδ

assets︸ ︷︷ ︸
$9.46×10−9

× total bank assets︸ ︷︷ ︸
$14T

= $1.32× 105. (36)

Therefore, Equation (36) implies that an increase in coverage of $100, 000 is associated with a welfare gain
of $13.2 billion for the whole banking sector. We should note that the $13.2 billion estimate measures
yearly flow welfare gains, which makes it a non-negligible magnitude. However, we should also note
our measurement exercise is local, so extrapolating far away from the pre-existing level of coverage may
overestimate the potential gains from increasing coverage. For that reason, it may be useful to rely on
a fully specified model, as we do next.

low-yield securities) and transferring them to banks, relative to keeping these funds inside the banks. At the margin, one
would expect that the costs of raising funds through bank contributions and other forms of taxation are roughly equal,
which justifies our choices.
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Since one of our goals is to guide future measurement efforts, we conclude with the following remark.

Remark. Implications for future measurement. There are three objects that warrant additional
measurement efforts. First, the main challenge of the direct measurement approach is to find appropriate
values for the semi-elasticity ∂ log qF

∂δ . Changes in the level of coverage are often a response to banks’
distress, which obviously biases naive estimates of this semi-elasticity. Our approach suggests that
finding quasi-experimental variation in δ, perhaps exploiting a change in the level of coverage unrelated
to bank profitability and failure probabilities, can be highly informative for policymakers. Second, better
measures of bank assets relative to the number of deposit accounts can be highly informative. This ratio
is important since the marginal benefit of increasing the level of coverage is linked to the level of bank
assets while the marginal cost is linked to the number of (partially insured) accounts. Finally, having
more detailed information on the composition of fully insured and partially insured accounts is important.
While it is common to report measures of uninsured and insured deposits as a whole, our results show
that what is relevant at the margin is whether an account is partially insured or not, not as much the
amount of total insured and uninsured deposits. We hope that our results spur further effort to measure,
report, and monitor the relevant sufficient statistics that we have identified.

4.2 Model-Based Quantification

While the direct measurement approach has the advantage of sidestepping the need to fully specify model
primitives, it cannot be used, for instance, to think about the optimal level of coverage, at least given the
current sets of available measures.29 We now describe how our results can be used in the context of a fully
specified quantitative model. We first explain the calibration of the model, followed by a decomposition
of the welfare impact of policy changes. In both cases, we rely on our theoretical characterization of
sufficient statistics. By explicitly computing the sufficient statistics in a fully specified model, we provide
an intermediate step between primitives and welfare assessments.30 Finally, we conduct sensitivity
analysis on the model parameters and describe the distributional consequences of changing the level of
coverage.

Calibration Here we describe our choice of functional forms and parameter values, which we report in
Table 2. A period in the model coincides with a year. For the purpose of reporting the model parameters,
we choose $100, 000 as the unit of account. That is, for instance, δ = 1 corresponds to a level of coverage
of $100, 000.

We combine a mix of externally chosen parameters and internally calibrated targets. As in the
direct measurement exercise, we choose targets consistent with the early-2008 period, so the model is
calibrated for a level of coverage of δ = 1. Importantly, as shown in Table OA-1 in the Online Appendix,
our calibration is designed to match the measures of sufficient statistics reported in Table 1 that we used

29The direct measurement approach could be used to find the optimal level of coverage if one were able to construct
measures of the sufficient statistics for different levels of coverage.

30The results from this approach should be of interest to the growing quantitative structural literature on banking, since
our characterization allows us to provide further insights into how to interpret the normative implications of calibrated
structural models.
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Table 2: Parameter Values — Calibration

Parameter Value
Depositors Distribution of Deposits µD −3.8

σD 2.2
Endowment Early Depositors y1 (i, s) 3
Endowment Late Depositors y2 (i, s) 3.13
Early Depositor Share λ 0.05
Sunspot Probability π 0.3
Utility Curvature γ 1.5

Banks Return on Assets µs 0.08
σs 0.033
ϕ 0.25

Interest Rate R1 0.02
Default Recovery Rate χ1 1.051

χ2 0.147
χ3 1

Taxpayers Deadweight Loss κ1 0.13
κ2 5.5

Endowment Taxpayers Y (τ, s) 5.02

Note: The bounds on the distribution of deposits are
[
D,D

]
= [0.01, 15]. The bounds on the distribution of returns are

[s, s] = [1, 1.35].

for the direct measurement exercise.
First, we describe the parameters that relate to depositors. We assume that the distribution of deposit

accounts/balances is log-normally distributed, with parameters (µD, σD) and a truncated support
[
D,D

]
.

By following this approach, we are effectively normalizing G =
´
i∈I dG (i) = 1, so our welfare calculations

can be interpreted on a per-account basis.31 We choose µD = −3.8, σD = 2.2, and
[
D,D

]
= [0.01, 1.5] to

jointly match i) a share of partially insured accounts of 6.4% reported in Martin, Puri and Ufier (2017),
ii) a share of insured deposits of 62% reported by the FDIC, and iii) a median and mean deposit balance
of $6, 000 and $30, 000, on the larger end of values from the Survey of Consumer Finances, which only
includes households.

We further assume that depositors’ outside sources of wealth scale proportionally with the level
of their deposits, that is, Y1 (i, s) = y1 (s)D0 (i) and Y2 (i, s) = y2 (s)D0 (i). We set y1 (s) = 3 and
y2 (s) = 3.075, implying that deposits account for roughly 25% of a depositor’s endowment and that the
first-best equilibrium rate set by a utilitarian bank is 1.6%. Without direct evidence on withdrawals, we
choose a small share of early depositors, λ = 0.05, letting the other parameters modulate the likelihood
of bank failure.

When needed, we assume that depositors have isoelastic utility with an elasticity of intertemporal
substitution 1

γ , that is, U (c) = c1−γ

1−γ . In our baseline parametrization, we set γ = −cU
′′(c)
U ′(c) = 1.5, a

conventional choice. As discussed in Section F of the Online Appendix, the choice of γ does not affect
31The only source of heterogeneity among depositors in the quantitative model is the level of deposits, so there is a

one-to-one mapping between i and D0 (i).
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most of the conclusions in this section, since we measure welfare changes as described in Proposition 2.
Next, we describe how we jointly select the probability of a sunspot and the parameters that relate

to banks. We initially normalize the date 2 return to be ρ2 (s) = s and assume that the date 1 return
takes the form

ρ1 (s) = 1 + ϕ (s− 1) ,

which is consistent with the assumptions on ρ1 (s) made in Section 2. We assume that the state s is
log-normally distributed with a truncated support [s, s] = [1, 1.35]. While the choice of s barely affects
the results, the choice of s does matter to pin down the likelihood of fundamental failures. We jointly
choose µs = 0.08, σs = 0.033, ϕ = 0.25, s = 1, and π = 0.3 to target the following five moments:
i) a probability of failure without deposit insurance (δ = 0) of 15%, consistent with pre-FDIC failure
rates; ii) a probability of failure at the preexisting level of coverage (δ = 1) of 2.5%, as in our direct
measurement approach; iii) a probability of fundamental failure of 2%, consistent with the observed
failure rates in 2009/2010; iv) a sensitivity of the log-failure probability to the deposit insurance limit of
−0.2, targeting our measure in Section 4.1; and v) a level of resource losses per account after failure of
0.138, also targeting our measure in Section 4.1.

We parametrize the recovery rate/deadweight losses of bank failure according to

χ (s) = χ1 (s− χ3)χ2 ,

where we set χ1, χ2, and χ3 so that χ (s) = 0, χ (s) = 1, and so that the average deadweight loss is
equal to 28%, as measured by Granja, Matvos and Seru (2017). We set R1 = 1.02, consistent with rates
on savings accounts in early 2008.32

Finally, we consider a marginal cost of public funds κ (T ) of the exponential-affine form:

κ (T ) = κ1
κ2

(
eκ2T − 1

)
,

for which the parameter κ1 = κ′ (0) represents the marginal cost of public funds for a small intervention
and the parameter κ2 = κ′′(T )

κ′(T ) modulates how quickly the cost of public funds increase with T . We
set κ1 = 0.13, consistent with the estimate in Kleven and Kreiner (2006), and κ2 = 5.5, to match
an average marginal cost of public funds of 0.15. When needed, we assume that the endowment of
taxpayers Y (τ, s) is equivalent to the total endowment of early depositors in the 97.5th percentile of the
distribution, consistent with the fact that most taxes are paid by individuals in the top 5% of the income
distribution. As in the case of γ, the choice of Y (τ, s) does not impact the results of this section.

Optimal Level of Coverage/Welfare Decomposition Given our calibration, Figure 6 illustrates
how the marginal welfare change, dW

dδ , and its determinants vary with the level of coverage δ. In the
body of the paper, we report and describe at all times money-metric welfare gains/losses, as described
in Equation (21). There are three findings worth highlighting.

32While we focus on the case in which the deposit rate is predetermined, there is scope to further explore the quantitative
implications of the model under perfect and imperfect regulation.
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Figure 6: Social Welfare Decomposition
Note: The top left panel in Figure 6 shows the change in social welfare induced by a marginal change in the level of deposit
insurance coverage, dW

dδ
, as described in Equation (26). The top middle and right panels respectively show the welfare change

for depositors, λ dVm(i,e,δ,R1)
dδ

+(1− λ) dVm(i,`,δ,R1)
dδ

, and taxpayers, dVm(τ,δ,R1)
dδ

. The bottom left panel shows the probability
of failure, qF (δ,R1), and the probability of fundamental failure F (ŝ (R1)). The bottom middle and right panels show the
marginal benefit and marginal cost of increasing the level of coverage, given by − ∂q

F

∂δ

´ (
CN (j, s∗)− CF (j, s∗)

)
dH (j) and

qFEFs
[´ ∂CF (j,s)

∂δ
dH (j)

]
, respectively.

First, the marginal welfare gains from increasing the level of coverage are remarkably high for very
low levels of coverage, which implies that the welfare gains from having a deposit insurance system at
all are very large. Intuitively, when δ is low, the marginal impact of δ on reducing the probability of
failure ∂qF

∂δ is large, since the behavior of many small depositors is affected at the margin, which directly
increases the marginal benefit of increasing the level of coverage. Also, the funding shortfall is small
when the level of coverage is low, since banks’ resources are often enough to cover the claims of insured
depositors, which contributes to a low marginal cost of increasing the level of coverage. Put together,
both channels make the welfare gains from increasing δ when δ ≈ 0 very large. This should not be
surprising, given that arguably no other financial regulation has had a more significant impact than the
introduction of deposit insurance.

Second, the marginal welfare gains from decreasing the level of coverage are small for levels of coverage
higher than the optimum. This result implies that, in case of doubt, the losses from overshooting on the
level of coverage are smaller than the losses from setting a level that is too low.

Third, we find that the optimal level of coverage given our calibration is δ? = $381, 000, which is
a level of coverage larger than the actual level of coverage chosen by policymakers on October 2008,
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although it is roughly of the same order of magnitude. There are several observations that may explain
the discrepancy between our solution and the policy chosen. First of all, there is no reason to believe
that policymakers followed our framework or, even if they inadvertently considered the same tradeoffs,
reached the same conclusions we did on the measurement of the relevant inputs. Second, it is the case
that other guarantees were implemented around that time, which may explain why we find a higher value
for the optimal level of coverage when it is the single policy instrument. Third, our model abstracts
from joint accounts, for which coverage limits are higher. With adequate information on joint accounts,
it would be possible to re-calibrate our model and find optimal levels of coverage for single and joint
accounts.

In the remaining of this section, we explore the sensitivity of our quantitative results to changes
in the sunspot probability and the riskiness of bank returns. By exploring these scenarios, we can
explain how the optimal policy varies with financial conditions and business cycle conditions.33 As
shown in Figure OA-10 in the Online Appendix, the optimal level of coverage can vary significantly
when parameters change. Finally, we describe the distributional implications of changing the level of
coverage for depositors with different deposit balances.

Sensitivity Analysis: Sunspot Probability and Banks’ Riskiness Changes in the level of
confidence in the economy, captured by the sunspot probability π (a high value of π has the interpretation
of low confidence), do affect the desirability of changing the level of coverage. Given our calibration,
changes in π have a very strong impact on dW

dδ and, ultimately, on the optimal level of coverage. When π
is high, the likelihood of a run in the multiple equilibria region is large, which makes increasing the level
of coverage a very powerful tool, increasing the marginal benefit of higher coverage. While the marginal
cost of increasing δ also grows, because — all else equal — failure is more likely, the increase in the
marginal benefit is substantially larger, which implies that the optimal level of coverage is in increasing
in π.

By studying how the predictions of our framework change with the riskiness of banks’ investments σs
we aim to capture different business cycle conditions, in the form of a risk shock to banks’ investment.
A higher value of σs unambiguously reduces the welfare of taxpayers, since negative realizations of s,
in which bank failures are more prevalent and costly, are more likely to occur. However, a higher value
of σs has an ambiguous impact on depositors’ welfare, depending on the level of δ. When the level of
coverage is low, the increased volatility generates worse and more frequent failures, lowering depositors’
welfare. When the level of coverage is high, depositors benefit from the increase in volatility, since they
receive all the upside when bank returns are high, but are shielded from bank failure by the generous
level of coverage. Given our calibration, the net welfare effects on taxpayers’ and depositors’ imply that
high riskiness of banks’ investments is associated with lower levels of the optimal coverage limit.

Distributional Considerations Even though we have purposefully focused on reaching conclusions
based on aggregate outcomes at the bank level since those are appealing from a practical perspective,

33See Figures OA-8 and OA-7 in Section F of the Online Appendix. There we also also explore the sensitivity of our
results to the cost of public funds, which can be interpreted as fiscal shock. Note that we do not re-calibrate the model
when conducting the sensitivity analyses, so our results can be interpreted as comparative statics exercises.
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Figure 7: Distributional Considerations
Note: The top panels and the left and middle bottom panels in Figure 7 show the change in welfare induced by a
marginal change in the level of deposit insurance coverage, λ dVm(i,e,δ,R1)

dδ
+(1− λ) dVm(i,`,δ,R1)

dδ
, for different depositors with

deposit balances {0.02, 0.2, 0.62, 1.25, 14.59}, which correspond to percentiles {0.25, 0.75, 0.9, 0.95, 0.99} in the distribution
of deposits. The bottom right panel shows the change in welfare induced by a marginal change in the level of deposit
insurance coverage for taxpayers, dVm(τ,δ,R1)

dδ
.

varying the level of coverage has different distributional implications for different individuals. Before
concluding, we would like to illustrate some of the distributional considerations of our policy.

Figure 7 illustrates the money-metric marginal welfare change for depositors with different balances,
λdVm(i,e,δ,R1)

dδ + (1− λ) dVm(i,`,δ,R1)
dδ , and taxpayers, dVm(τ,δ,R1)

dδ . Several insights are worth highlighting.
First, the money-metric welfare change for depositors is strictly positive for most depositors most of the
time, but not always. While depositors as a whole are better off by increasing the level of coverage, since
they receive a net transfer from taxpayers, it is conceivable that some large depositors can be made worse
off by increasing the level of coverage at times. This may occur to the largest depositors in situations
in which an increase in δ substantially reduces the recovery rate on partially insured deposits αF (s).
For instance, Figure 7 shows that an increase in the level of coverage when δ is roughly 0.6 makes the
depositor in the middle bottom plot locally worse off.

Second, since dVm(τ,δ,R1)
dδ is weakly negative for taxpayers, a Pareto improvement could only be

potentially reached in a scenario in which for sufficiently low levels of coverage the funding shortfall
is zero across all states. In our model, taxpayers are worse off for any level of deposit insurance since the
funding shortfall is non-zero for some states when δ = 0, but quantitatively the funding shortfall is very
small for low levels of coverage, which implies that there should always be support for having a positive
level of coverage when welfare is reasonably aggregated.
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Finally, Figure 7 illustrates how depositors that become fully insured turn out to be effectively
inframarginal in determining dW

dδ and δ?.34 This is an important takeaway from modeling a rich cross-
section of depositors. In other words, changes in the level of coverage mostly affect at the margin
those deposit accounts that are partially insured, so information about these depositors is critical when
considering changes in the level of coverage.

5 Extensions

Before concluding, we explain how our framework accommodates additional features relevant for the
determination of deposit insurance.

5.1 Formal Extensions

First, we describe the conclusions from the three formal extensions executed in Section D of the Online
Appendix. There we show that Proposition 1 continues to be valid exactly or suitably modified once we
relax several of the model assumptions.

Banks’ Moral Hazard: General Portfolio and Investment Decisions In our baseline
formulation, neither depositors nor banks make portfolio decisions. Including both sets of decisions
is important to allow banks or depositors to adjust their risk-taking behavior in response to changes in
the level of coverage — these effects are also often referred to as moral hazard. We show that introducing
a consumption-savings decision and portfolio choices for depositors does not modify the set of sufficient
statistics already identified under perfect regulation. However, allowing unregulated banks to make
investment choices requires accounting for a new set of fiscal externality terms. The new set of fiscal
externalities, which capture the direct effects of banks’ changes in behavior on taxpayers’ welfare should
be targeted with asset-side and liability-side regulation.

Alternative Equilibrium Selection Mechanisms In the baseline model, we assume that depositors
coordinate following an exogenous sunspot. However, it is well-known that incorporating dispersed
information among depositors would yield a unique equilibrium — see Goldstein and Pauzner (2005).
Even though studying a global game model, as in Goldstein and Pauzner (2005) or Allen et al. (2018),
is appealing because the probability of failure is endogenously determined by fundamentals, we show
that the particular information structure considered and the equilibrium selection procedure only enter
in the expression of dWdδ through the sufficient statistics identified in this paper.

General Equilibrium Spillovers/Macroprudential Considerations In our baseline formulation,
bank decisions do not affect equilibrium prices or other aggregate variables. However, when the decisions
made by banks affect aggregate variables, for instance, asset prices, further exacerbating the possibility
of a bank failure, the optimal deposit insurance formula should incorporate a macroprudential correction.

34We say effectively because the marginal benefit of an increase in coverage is strictly positive even for fully insured
depositors. This occurs because an increase in coverage reduces the probability of failure and fully insured depositors are
better off when banks do not fail, as implied by Equation (17). This effect is quantitatively very small, as Figure 7 shows.
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In this extension, we model liquidation spillovers as a tractable way to capture equilibrium interactions in
interbank markets. Importantly, we show that ex-ante regulation can directly target the wedges caused
by aggregate spillovers, so the characterization of dWdδ remains valid under perfect ex-ante regulation.

5.2 Additional Channels

Here we discuss how incorporating additional features relevant for the determination of the optimal level
of coverage into our framework may affect our main characterization. Even though extending our model
along several of these dimensions may require additional information to account for the welfare impact
of deposit insurance policies, the channels identified in this paper do not vanish.

Lender of Last Resort/Bailout In our baseline formulation, we exclusively consider the level of
deposit insurance coverage as a single policy instrument. In practice, in addition to the level of coverage,
banks often receive alternative forms of government support through lender of last resort policies or
bailouts. Within our framework, we can interpret this form of intervention as a state-contingent policy
that increases the resources available to banks in certain states. Formally, we can consider the counterpart
to Equation (3):

Bank Failure, if ρ2 (s)
(
ρ1 (s)D0 − Ω (s)

)
+ Λ (s) < D1 (s)

No Bank Failure, if ρ2 (s)
(
ρ1 (s)D0 − Ω (s)

)
+ Λ (s) ≥ D1 (s) ,

where Λ (s) captures the size of the ex-post intervention in state s. Propositions 1 and 3, and the
associated sufficient statistics, remain valid in this case when Λ (s) is predetermined or when it can be
optimally designed. However, for our results to be meaningful, it must be the case that the lender of
last resort policy is imperfect and unable to fully eliminate the existence of coordination failures.

Multiple Deposit Accounts Our baseline model does not explicitly allow a given depositor to have
multiple accounts in different banks, although, in practice, deposit limits are defined at the account level
in most countries. However, as long as there is a cost of switching/opening deposit accounts, making
deposits partially inelastic, which is consistent with the evidence in Egan, Hortaçsu and Matvos (2017),
Proposition 1 remains valid once suitably reinterpreted. In this case, as we discuss in Section 2, the
relevant marginal cost of varying δ needs to account for the insured/partially insured status of a given
account, not the status of an individual depositor. See Shy, Stenbacka and Yankov (2016) for a model
in which depositors can explicitly open multiple deposit accounts.

Equityholders/Debtholders/Liquidity Benefits Since we build on the Diamond and Dybvig
(1983) framework, our baseline formulation does not incorporate a role for equityholders and debtholders,
and does not allow for demand deposits to have non-pecuniary benefits. Richer funding structures call
for extending Propositions 1 through 4 to include all stakeholders. Beyond that, on aggregate, the
sufficient statistics that we identify already capture differences in capital structure choices across banks.
For instance, one would expect banks with more fragile capital structures — perhaps more likely to face
debt rollover concerns — to be more likely to fail and potentially more sensitive to interventions.
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Departures from Bank Value Maximization: Imperfect Competition and Agency Frictions
Allowing for imperfect competition and agency frictions that depart from value maximization introduces
additional terms when extending Propositions 1 through 4, with an a priori indeterminate impact on the
optimal level of coverage. For instance, increasing the level of coverage when banks have market power
can encourage banks to make safer investments to preserve their franchise value but also to make less
careful investment and funding choices. Similarly, if non-competitive banks fund projects with negative
net present values, ex-ante regulation would be needed. In general, if there are specific regulatory tools
designed to ex-ante correct for the impact of imperfect competition or managerial distortions, it would
be optimal to make use of them, allowing us to rely again on our baseline characterization.

Unregulated Sector Throughout the paper, every bank is subject to deposit insurance and ex-ante
regulation. Our framework implies that all sectors subject to coordination failures benefit from deposit
insurance guarantees. In general, the optimal level of coverage must account for leakage from the
regulated deposit sector into unregulated sectors, and vice versa. In models with imperfect policy
instruments — see Plantin (2014) and Ordoñez (2018) in the context of shadow banking, or Dávila and
Walther (2020) more generally — the optimal policy absent an unregulated sector that we characterize
in this paper is a key input to the second-best optimal policy when some agents or activities cannot be
perfectly regulated.

6 Conclusion

We have developed a framework to study the tradeoffs associated with the optimal determination of
deposit insurance coverage. Our analysis identifies the set of variables that have a first-order effect on
welfare and become sufficient statistics for assessing changes in the level of deposit insurance coverage.
Our results provide a step forward towards building a microfounded theory of measurement for financial
regulation that can be applied to a wide variety of environments.

There are several avenues for further research that build on our results. From a theoretical
perspective, exploring alternative forms of asset- or liability-side competition among banks or introducing
dynamic considerations are non-trivial extensions worth exploring. However, the most promising
implications of this paper for future research come from the measurement perspective. Recovering robust
and credible estimates of the sufficient statistics that we have uncovered in this paper, in particular,
the sensitivity of bank failures to changes in the level of coverage and the relevant fiscal externalities
associated with such a policy change, has the potential to directly discipline future regulatory decisions.

42



References

Acharya, Viral, Joao Santos, and Tanju Yorulmazer. 2010. “Systemic Risk and Deposit Insurance
Premiums.” Economic Policy Review, 16(1): 89–99.

Allen, Franklin, and Douglas Gale. 1998. “Optimal Financial Crises.” The Journal of Finance, 53(4): 1245–
1284.

Allen, Franklin, Elena Carletti, Itay Goldstein, and Agnese Leonello. 2018. “Government Guarantees
and Financial Stability.” Journal of Economic Theory, 177: 518–557.

Ballard, Charles L, John B Shoven, and John Whalley. 1985. “General equilibrium computations of the
marginal welfare costs of taxes in the United States.” The American Economic Review, 75(1): 128–138.

Bennett, Rosalind L., and Haluk Unal. 2015. “Understanding the Components of Bank Failure Resolution
Costs.” Financial Markets, Institutions & Instruments, 24(5): 349–389.

Bonfim, Diana, and Joao Santos. 2020. “The Importance of Deposit Insurance Credibility.”
Boyd, John H., and Gianni De Nicolo. 2005. “The Theory of Bank Risk Taking and Competition Revisited.”

The Journal of Finance, 60(3): 1329–1343.
Brunnermeier, Markus, and Arvind Krishnamurthy. 2014. Risk Topography: Systemic Risk and Macro

Modeling. University of Chicago Press.
Chan, Yuk-Shee, Stuart I. Greenbaum, and Anjan V. Thakor. 1992. “Is Fairly Priced Deposit Insurance

Possible?” The Journal of Finance, 47(1): 227–245.
Chari, V. V. 1989. “Banking Without Deposit Insurance or Bank Panics: Lessons from a Model of the US

National Banking System.” Federal Reserve Bank of Minneapolis Quarterly Review, 13(3): 3–19.
Chari, V. V., and R. Jagannathan. 1988. “Banking Panics, Information, and Rational Expectations

Equilibrium.” Journal of Finance, 43(3): 749–761.
Chetty, Raj. 2009. “Sufficient Statistics for Welfare Analysis: A Bridge Between Structural and Reduced-Form

Methods.” Annual Review of Economics, 1: 451–488.
Cooper, Russell, and Hubert Kempf. 2016. “Deposit insurance and bank liquidation without commitment:

Can we sleep well?” Economic Theory, 61(2): 365–392.
Cooper, Russell, and Thomas Wayne Ross. 2002. “Bank Runs: Deposit Insurance and Capital

Requirements.” International Economic Review, 43(1): 55–72.
Dahlby, Bev. 2008. The Marginal Cost of Public Funds. The MIT Press.
Dávila, Eduardo. 2020. “Using Elasticities to Derive Optimal Bankruptcy Exemptions.” The Review of Economic

Studies, 87(2): 870–913.
Dávila, Eduardo, and Andreas Schaab. 2021. “Welfare Assessments with Heterogeneous Individuals.”
Dávila, Eduardo, and Ansgar Walther. 2020. “Corrective Regulation with Imperfect Instruments.”
Dávila, Eduardo, and Anton Korinek. 2018. “Pecuniary Externalities in Economies with Financial Frictions.”

The Review of Economic Studies, 85(1): 352–395.
Demirgüç-Kunt, Asli, and Enrica Detragiache. 2002. “Does Deposit Insurance Increase Banking System

Stability? An Empirical Investigation.” Journal of Monetary Economics, 49(7): 1373–1406.
Demirgüç-Kunt, Asli, Edward J. Kane, and Luc Laeven. 2014. “Deposit Insurance Database.”
Diamond, Douglas W., and Anil K. Kashyap. 2016. “Liquidity Requirements, Liquidity Choice, and

Financial Stability.” Handbook of Macroeconomics, 2: 2263–2303.
Diamond, Douglas W., and Philip H. Dybvig. 1983. “Bank Runs, Deposit Insurance, and Liquidity.” Journal

of Political Economy, 91(3): 401–419.
Dreyfus, Jean-Francois, Anthony Saunders, and Linda Allen. 1994. “Deposit Insurance and Regulatory

Forbearance: Are Caps on Insured Deposits Optimal?” Journal of Money, Credit and Banking, 26(3): 412–438.

43



Duffie, Darrell, Robert Jarrow, Amiyatosh Purnanandam, and Wei Yang. 2003. “Market Pricing of
Deposit Insurance.” Journal of Financial Services Research, 24(2–3): 93–119.

Egan, Mark, Ali Hortaçsu, and Gregor Matvos. 2017. “Deposit Competition and Financial Fragility:
Evidence from the US Banking Sector.” American Economic Review, 107(1): 169–216.

Ennis, Huberto M., and Todd Keister. 2009. “Bank Runs and Institutions: The Perils of Intervention.”
American Economic Review, 99(4): 1588–1607.

Ennis, Huberto M., and Todd Keister. 2010. “Banking Panics and Policy Responses.” Journal of Monetary
Economics, 57(4): 404–419.

Farhi, Emmanuel, and Iván Werning. 2016. “A Theory of Macroprudential Policies in the Presence of Nominal
Rigidities.” Econometrica, 84(5): 1645–1704.

Fernandez-Villaverde, Jesus, Daniel Sanches, Linda Schilling, and Harald Uhlig. 2021. “Central Bank
Digital Currency: Central Banking For All?” Review of Economic Dynamics, 41: 225–242.

Freixas, Xavier, and Emmanuelle Gabillon. 1999. “Optimal Regulation of a Fully Insured Deposit Banking
System.” Journal of Regulatory Economics, 16(2): 111–134.

Freixas, Xavier, and Jean Charles Rochet. 1998. “Fair Pricing of Deposit Insurance. Is it Possible? Yes. Is
it Desirable? No.” Research in Economics, 52(3): 217–232.

Freixas, Xavier, Antoine Martin, and David Skeie. 2011. “Bank Liquidity, Interbank Markets, and Monetary
Policy.” Review of Financial Studies, 24(8): 2656–2692.

Gertler, Mark, and Nobuhiro Kiyotaki. 2015. “Banking, Liquidity and Bank Runs in an Infinite-Horizon
Economy.” American Economic Review, 105(7): 2011–2043.

Goldsmith-Pinkham, Paul, and Tanju Yorulmazer. 2010. “Liquidity, Bank Runs, and Bailouts: Spillover
Effects during the Northern Rock Episode.” Journal of Financial Services Research, 37(2–3): 83–98.

Goldstein, Itay. 2012. “Empirical Literature on Financial Crises: Fundamentals vs. Panic.” In The Evidence and
Impact of Financial Globalization. Chapter 36, 523–534. Academic Press.

Goldstein, Itay, and Ady Pauzner. 2005. “Demand–Deposit Contracts and the Probability of Bank Runs.”
The Journal of Finance, 60(3): 1293–1327.

Gorton, Gary. 1988. “Banking Panics and Business Cycles.” Oxford Economic Papers, 40(4): 751–781.
Goulder, Lawrence H. 1995. “Environmental Taxation and the Double Dividend: A Reader’s Guide.”

International Tax and Public Finance, 2(2): 157–183.
Granja, Joao, Gregor Matvos, and Amit Seru. 2017. “Selling Failed Banks.” The Journal of Finance,

72(4): 1723–1784.
Green, Edward J., and Ping Lin. 2003. “Implementing Efficient Allocations in a Model of Financial

Intermediation.” Journal of Economic Theory, 109(1): 1–23.
Hachem, Kinda Cheryl, and Zheng Michael Song. 2017. “Liquidity Rules and Credit Booms.”
Haubrich, Joseph G., and Andrew W. Lo. 2013. Quantifying Systemic Risk. University of Chicago Press.
Hazlett, Denise. 1997. “Deposit Insurance and Regulation in a Diamond-Dybvig Banking Model with a Risky

Technology.” Economic Theory, 9(3): 453–470.
Hull, John C. 2013. Options Futures and Other Derivatives. Pearson.
Ioannidou, Vasso P., and María Fabiana Penas. 2010. “Deposit Insurance and Bank Risk-Taking: Evidence

from Internal Loan Ratings.” Journal of Financial Intermediation, 19(1): 95–115.
Iyer, Rajkamal, and Manju Puri. 2012. “Understanding Bank Runs: The Importance of Depositor-Bank

Relationships and Networks.” American Economic Review, 102(4): 1414–1445.
Jacewitz, Stefan, and Jonathan Pogach. 2018. “Deposit Rate Advantages at the Largest Banks.” Journal of

Financial Services Research, 53(1): 1–35.

44



Jacklin, C. J., and S. Bhattacharya. 1988. “Distinguishing Panics and Information-Based Bank Runs: Welfare
and Policy Implications.” The Journal of Political Economy, 96(3): 568–592.

Kareken, John H., and Neil Wallace. 1978. “Deposit Insurance and Bank Regulation: A Partial-Equilibrium
Exposition.” Journal of Business, 51(3): 413–438.

Kashyap, Anil K, Dimitrios P Tsomocos, and Alexandros Vardoulakis. 2019. “Optimal Bank Regulation
in the Presence of Credit and Run Risk.” NBER Working Paper.

Keister, Todd. 2016. “Bailouts and Financial Fragility.” Review of Economic Studies, 83(2): 704–736.
Kleven, Henrik Jacobsen, and Claus Thustrup Kreiner. 2006. “The marginal cost of public funds: Hours

of work versus labor force participation.” Journal of Public Economics, 90(10): 1955–1973.
Lucas, Deborah. 2019. “Measuring the Cost of Bailouts.” Annual Review of Economics, 11: 85–108.
Manz, Michael. 2009. “The Optimal Level of Deposit Insurance Coverage.” Working Paper.
Martin, Christopher, Manju Puri, and Alexander Ufier. 2017. “On Deposit Stability in Failing Banks.”
Martinez-Miera, David, and Rafael Repullo. 2010. “Does Competition Reduce the Risk of Bank Failure?”

Review of Financial Studies, 23(10): 3638–3664.
Matutes, Carmen, and Xavier Vives. 1996. “Competition for Deposits, Fragility, and Insurance.” Journal of

Financial Intermediation, 5(2): 184–216.
Matvos, Gregor. 2013. “Estimating the Benefits of Contractual Completeness.” Review of Financial Studies,

26(11): 2798–2844.
Merton, Robert C. 1977. “An Analytic Derivation of the Cost of Deposit Insurance and Loan Guarantees an

Application of Modern Option Pricing Theory.” Journal of Banking & Finance, 1(1): 3–11.
Mitkov, Yuliyan. 2020. “Inequality and Financial Fragility.” Journal of Monetary Economics, 115: 233–248.
Ordoñez, Guillermo. 2018. “Sustainable Shadow Banking.” American Economic Journal: Macroeconomics,

10(1): 33–56.
Peck, James, and Karl Shell. 2003. “Equilibrium Bank Runs.” Journal of Political Economy, 111(1): 103–123.
Pennacchi, George G. 1987. “A Reexamination of the Over-(or Under-) Pricing of Deposit Insurance.” Journal

of Money, Credit and Banking, 19(3): 340–360.
Pennacchi, George G. 2006. “Deposit Insurance, Bank Regulation, and Financial System Risks.” Journal of

Monetary Economics, 53(1): 1–30.
Plantin, Guillaume. 2014. “Shadow Banking and Bank Capital Regulation.” The Review of Financial Studies,

28(1): 146–175.
Rochet, Jean Charles, and Xavier Vives. 2004. “Coordination Failures and the Lender of Last Resort: Was

Bagehot Right After All?” Journal of the European Economic Association, 2(6): 1116–1147.
Saez, Emmanuel, and Stefanie Stantcheva. 2016. “Generalized social marginal welfare weights for optimal

tax theory.” American Economic Review, 106(1): 24–45.
Schilling, Linda. 2018. “Optimal Forbearance of Bank Resolution.” Becker Friedman Institute Working Paper.
Shy, Oz, Rune Stenbacka, and Vladimir Yankov. 2016. “Limited deposit insurance coverage and bank

competition.” Journal of Banking and Finance, 71: 95–108.
Sraer, David, and David Thesmar. 2018. “A Sufficient Statistics Approach for Aggregating Firm-Level

Experiments.”
Uhlig, Harald. 2010. “A Model of a Systemic Bank Run.” Journal of Monetary Economics, 57(1): 78–96.
Wallace, Neil. 1988. “Another Attempt to Explain an Illiquid Banking System: The Diamond and Dybvig Model

with Sequential Service Taken Seriously.” Federal Reserve Bank of Minneapolis Quarterly Review, 12(4): 3–16.
Wallace, Neil. 1990. “A Banking Model in which Partial Suspension is Best.” Federal Reserve Bank of Minneapolis

Quarterly Review, 14(4): 11–23.

45



Online Appendix
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Sections A and B of this Online Appendix include proofs and derivations of the results in Sections 2
and 3 in the text. Section C of this Online Appendix includes extended analytical derivations. Section
D describes the three formal extensions discussed in Section 5 in the body of the paper, along with
the associated proofs. Section E presents additional results, including the introduction of a deposit
insurance fund, a comparison between traditional and generalized social welfare weights, and a more
general directional test. Finally, Section F includes additional material supporting the quantitative
application in Section 4 of the paper.

A Proofs and Derivations: Section 2

Proof of Proposition 1. (Exact directional test) Exploiting the envelope theorem and the fact
that ∂C

N (j,s)
∂δ = 0, we can express the the marginal impact of varying δ on early depositors, late depositors,

or taxpayers’ welfare as follows:

dV (j, δ, R1)
dδ

=

=qFEFs
[
U ′(CF (j,s)) ∂CF∂δ (j,s)

]
︷ ︸︸ ︷ˆ ŝ
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)] ∂qF
∂δ

,

where qF is defined in Equation (12) and ∂qF

∂δ = πf (s∗) ∂s∗∂δ . Therefore, we can express dVm(j,δ,R1)
dδ as

follows:

dVm (j, δ, R1)
dδ

= −∂q
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(
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∂CF (j, s)
∂δ

 .
Given these, Equation (22) in Proposition 1 follows immediately.

Proof of Lemma 1. (Aggregate consumption difference between failure and no-failure
equilibria) Equation (23) follows from Equations (16) and (17), as well as from the definitions of
αF (s) and αN (s). See Section C for a step-by-step derivation.

Proof of Lemma 2. (Aggregate consumption change induced by a change in coverage in
failure states) Note that

λ

ˆ
i∈I

∂CF1 (i, e, s)
∂δ

dG (i) + (1− λ)
ˆ
i∈I

∂CF2 (i, `, s)
∂δ

dG (i) =
ˆ
i∈PI

dG (i) ,
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whenever T (s) > 0; it is 0 otherwise. Note also that ∂CF (τ,s)
∂δ = − (1 + κ′ (T (s)))

´
i∈PI dG (i) whenever

T (s) > 0; it is 0 otherwise. Equation (24) follows immediately from these two observations. See Section
C for a step-by-step derivation. Note also that Equation (25) follows from Equation (24) after defining

qT
+|F =

´ ŝ
s I [T (s) > 0] dF (s) + π

´ s∗
ŝ I [T (s) > 0] dF (s)´ ŝ

s dF (s) + π
´ s∗
ŝ dF (s)

,

where I [·] denotes the indicator function.

Proof of Proposition 2. (Approximate directional test for a change in the level of coverage)
Note that we can linearly approximate U

(
CN (j, s∗)

)
around CF (j, s∗) as follows:

U
(
CN (j, s∗)

)
− U

(
CF (j, s∗)

)
≈ U ′

(
CF (j, s∗)

) (
CN (j, s∗)− CF (j, s∗)

)
. (A1)

Hence, Equation (26) follows immediately from Equation (22) after substituting Equation (A1), setting
ω (j) = 1, ∀j, and m (j, s) = 1, ∀j, ∀s.
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B Proofs and Derivations: Section 3

Proof of Proposition 3. (Directional test for δ under perfect ex-ante regulation)
For a planner that aggregates welfare using uniform generalized social welfare weights, dW

dδ =´ dVm(j,δ,R1)
dδ dH (j), where dVm(j,δ,R1)

dδ =
dV (j,δ,R1)

dδ

U ′(CF (j,s∗)) and where dV (j,δ,R1)
dδ is given by

dV (j, δ, R1)
dδ

=
ˆ ŝ

s

U ′
(
CF (j, s)

) dCF (j, s)
dδ

dF (s) + π

ˆ s∗

ŝ

U ′
(
CF (j, s)

) dCF (j, s)
dδ

dF (s)

+ (1− π)
ˆ s∗

ŝ

U ′
(
CN (j, s)

) dCN (j, s)
dδ

dF (s) +
ˆ s

s∗
U ′
(
CN (j, s)

) dCN (j, s)
dδ

dF (s)

+
[
U
(
CF (j, ŝ)

)
− U

(
CN (j, ŝ)

)]
(1− π) f (ŝ) dŝ

dδ
+
[
U
(
CF (j, s∗)

)
− U

(
CN (j, s∗)

)]
πf (s∗) ds

∗

dδ
,

and the impact on consumption can be decomposed as dCF (j,s)
dδ = ∂CF (j,s)

∂δ + ∂CF (j,s)
∂R1

dR1
dδ and dCN (j,s)

dδ =
∂CN (j,s)
∂R1

dR1
dδ , while the impact on the thresholds ŝ and s∗ satisfies dŝ

dδ = ∂ŝ
∂R1

dR1
dδ , and ds∗

dδ = ∂s∗

∂δ + ∂s∗

∂R1
dR1
dδ .

In the particular case of taxpayers, note that we can express dV (τ,δ,R1)
dδ as follows:

dV (τ, δ, R1)
dδ

=
ˆ ŝ

s

U ′
(
CF (τ, s)

) dCF (τ, s)
dδ

dF (s) + π

ˆ s∗

ŝ

U ′
(
CF (τ, s)

) dCF (τ, s)
dδ

dF (s)

+
[
U
(
CF (τ, ŝ)

)
− U

(
CN (τ, ŝ)

)]
(1− π) f (ŝ) dŝ

dδ
+
[
U
(
CF (τ, s∗)

)
− U

(
CN (τ, s∗)

)]
πf (s∗) ds

∗

dδ
,

where it is the case that dC
F (τ,s)
dδ = ∂CF (τ,s)

∂δ + ∂CF (τ,s)
∂R1

dR1
dδ . Note that we rely on the fact that dC

N (τ,s)
dδ = 0.

Under the optimal regulation, R1 must satisfy ∂W
∂R1

=
´ ∂Vm(j,δ,R1)

∂R1
dH (j), where ∂Vm(j,δ,R1)

∂R1
=

∂V (j,δ,R1)
∂R1

U ′(CF (j,s∗)) and ∂V (j,δ,R1)
∂R1

= 0, and where

∂V (j, δ, R1)
∂R1

=
ˆ ŝ

s

U ′
(
CF (j, s)

) ∂CF (j, s)
∂R1

dF (s) + π

ˆ s∗

ŝ

U ′
(
CF (j, s)

) ∂CF (j, s)
∂R1

dF (s)

+ (1− π)
ˆ s∗

ŝ

U ′
(
CN (j, s)

) ∂CN (j, s)
∂R1

dF (s) +
ˆ s

s∗
U ′
(
CN (j, s)

) ∂CN (j, s)
∂R1

dF (s)

+
[
U
(
CF (i, s∗)

)
− U

(
CN (i, s∗)

)]
πf (s∗) ∂s

∗

∂R1
+
[
U
(
CF (i, ŝ)

)
− U

(
CN (i, ŝ)

)]
(1− π) ∂ŝ

∂R1
f (ŝ) .

In the particular case of taxpayers:

∂V (τ, δ, R1)
∂R1

=
ˆ ŝ

s

U ′
(
CF (τ, s)

) ∂CF (τ, s)
∂R1

dF (s) + π

ˆ s∗

ŝ

U ′
(
CF (τ, s)

) ∂CF (τ, s)
∂R1

dF (s)

+
[
U
(
CF (τ, s∗)

)
− U

(
CN (τ, s∗)

)]
πf (s∗) ∂s

∗

∂R1
+
[
U
(
CF (τ, ŝ)

)
− U

(
CN (τ, ŝ)

)]
(1− π) ∂ŝ

∂R1
f (ŝ) ,

where we use the fact that ∂CN (τ,s)
∂R1

= 0. Therefore, given the optimal ex-ante regulation, we can express
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dW
dδ as follows:

dW

dδ
=
ˆ ˆ ŝ

s

U ′
(
CF (j, s)

)
U ′ (CF (j, s∗))

∂CF (j, s)
∂δ

dF (s) + π

ˆ s∗

ŝ

U ′
(
CF (j, s)

)
U ′ (CF (j, s∗))

∂CF (j, s)
∂δ

dF (s)


︸ ︷︷ ︸

=qFEFs
[
U′(CF (j,s))
U′(CF (j,s∗))

∂CF (j,s)
∂δ

]
dH (j)

+ πf (s∗) ∂s
∗

∂δ

ˆ U
(
CF (j, s∗)

)
− U

(
CN (j, s∗)

)
U ′ (CF (j, s∗))

 dH (j) ,

which corresponds exactly to Equation (28) in the text.

Optimal Deposit Rate Determination Formally, note that ∂V (i,x,δ,R1)
∂R1

, which is the key input of
Equation (29) is given by

∂V (i, x, δ, R1)
∂R1

= qFEFs

[
U ′
(
CFt (i, x, s)

) ∂CFt (i, x, s)
∂R1

]
+
(
1− qF

)
ENs

[
U ′
(
CNt (i, x, s)

) ∂CNt (i, x, s)
∂R1

]

+ (1− π)
(
U
(
CFt (i, x, ŝ)

)
− U

(
CNt (i, x, ŝ)

)) ∂ŝ

∂R1
f (ŝ)

+ π
(
U
(
CFt (i, x, s∗)

)
− U

(
CNt (i, x, s∗)

)) ∂s∗
∂R1

f (s∗) ,

where EFs [·] and ENs [·] respectively denote conditional expectations over failure and no-failure states.
The intensive margin effects are captured by ∂CNt (i,x,s)

∂R1
and ∂CFt (i,x,s)

∂R1
. We show in Section C of the

Online Appendix that the term ∂CNt (i,x,s)
∂R1

takes on positive values for early depositors and negative
values for late depositors. These effects capture the ex-ante risk sharing gains between early and late
types generated by a higher deposit rate.35 ∂CFt (i,x,s)

∂R1
is positive for fully insured depositors, but can

turn negative for partially insured depositors. We show that
´ ∂CFt (i,x,s)

∂R1
dG (i) is weakly positive, which

can be interpreted as a form of moral hazard, at least on aggregate. Intuitively, banks internalize that
an increase in the deposit rate increases the consumption of insured depositors in failure states, at the
expense of taxpayers. On the extensive margin, banks take into account that offering a high deposit rate
makes bank failures more likely. This is captured by the positive sign of ∂ŝ

∂R1
and ∂s∗

∂R1
, which, combined

with the sign of U
(
CFt (i, x, s)

)
− U

(
CNt (i, x, s)

)
, which we show to be negative, makes increasing R1

less desirable.

Proof of Proposition 4. (Directional test for δ without ex-ante regulation) Without ex-ante
regulation, R1 is given by the solution to

λ

ˆ
i∈I

∂Vm (i, e, δ, R1)
∂R1

dG (i) + (1− λ)
ˆ
i∈I

∂Vm (i, `, δ, R1)
∂R1

dG (i) = 0,

where ∂Vm(i,e,δ,R1)
∂R1

and ∂Vm(i,`,δ,R1)
∂R1

follow from the characterization of ∂Vm(i,x,δ,R1)
∂R1

above.
35When s∗ → s and ŝ→ s, there are no bank failures in equilibrium, and Equation (??) defines the optimal arrangement

that equalizes marginal rates of substitution across types with the expected marginal rate of transformation, determined
by ρ2 (s). In that case, banks set R1 exclusively to provide insurance between early and late types across deposit levels.
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Therefore, we can express dW
dδ as follows:

dW

dδ
=
ˆ
dVm (j, δ, R1)

dδ
dH (j)

= λ

ˆ
i∈I

∂Vm (i, e, δ, R1)
∂δ

dG (i) + (1− λ)
ˆ
i∈I

∂Vm (i, e, δ, R1)
∂δ

dG (i) + ∂Vm (τ, δ, R1)
∂δ

+
(
λ

ˆ
i∈I

∂Vm (i, e, δ, R1)
∂R1

dG (i) + (1− λ)
ˆ
i∈I

∂Vm (i, `, δ, R1)
∂R1

dG (i) + ∂Vm (τ, δ, R1)
∂R1

)
dR1
dδ

= λ

ˆ
i∈I

∂Vm (i, e, δ, R1)
∂δ

dG (i) + (1− λ)
ˆ
i∈I

∂Vm (i, `, δ, R1)
∂δ

dG (i) + ∂Vm (τ, δ, R1)
∂δ

+ ∂Vm (τ, δ, R1)
∂R1

dR1
dδ

,

where ∂Vm(τ,δ,R1)
∂R1

is given by

∂Vm (τ, δ, R1)
∂R1

= qFEFs

U ′
(
CF (τ, s)

)
U ′ (CF (τ, s∗))

∂CF (τ, s)
∂R1

+

U
(
CF (τ, s∗)

)
− U

(
CN (τ, s∗)

)
U ′ (CF (τ, s∗))

πf (s∗) ∂s
∗

∂R1

(A2)

+

U
(
CF (τ, ŝ)

)
− U

(
CN (τ, ŝ)

)
U ′ (CF (τ, s∗))

 (1− π) ∂ŝ

∂R1
f (ŝ) .

Under the same conditions used in the approximation in Proposition 2, we can express ∂Vm(τ,δ,R1)
∂R1

as

∂Vm (τ, δ, R1)
∂R1

≈ −∂Es [T (s) + κ (T (s))]
∂R1

.

Note that Equation (A9) guarantees that this fiscal externality term is negative, as described in the
body of the paper.

Proof of Proposition 5. (Optimal ex-ante deposit rate regulation) The choice of R1 under
perfect ex-ante regulation is given by

λ

ˆ
i∈I

∂Vm (i, e, δ, R1)
∂R1

dG (i) + (1− λ)
ˆ
i∈I

∂Vm (i, `, δ, R1)
∂R1

dG (i) + ∂Vm (τ, δ, R1)
∂R1

= 0.

The choice of R1 subject to a cost τR1 per unit of R1 offered (−τR1R1) corresponds to

λ

ˆ
i∈I

∂Vm (i, e, δ, R1)
∂R1

dG (i) + (1− λ)
ˆ
i∈I

∂Vm (i, `, δ, R1)
∂R1

dG (i)− τR1 = 0.

Therefore, the optimal regulation is associated with a wedge τR1 = −∂Vm(τ,δ,R1)
∂R1

, which, as shown above,
can be approximated as ∂Vm(τ,δ,R1)

∂R1
≈ −∂Es[T (s)+κ(T (s))]

∂R1
.
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C Extended Analytical Results

In this section, to facilitate the understanding of the results, we provide detailed analytical
characterizations of several outcomes of the model.

C.1 Thresholds ŝ (R1) and s∗ (δ, R1)

The threshold ŝ (R1) is given by the minimum among the value of s that satisfies

R1 − ρ1 (s)
1− 1

ρ2(s)
= (1− λ)R1, (A3)

and s. Note that this threshold is not a function of δ. Similarly, the value of s∗ (δ,R1) is given by the
minimum among the value of s that satisfies

R1 − ρ1 (s)
1− 1

ρ2(s)
= (1− λ)R1ζ (δ,R1) , (A4)

and s, where ζ (δ,R1) ≡
´
i∈I min{D0(i)R1,δ}dG(i)

D0R1
denotes the share of insured deposits.36 Note that

ζ (δ,R1) ∈ [0, 1], ∂ζ∂δ ≥ 0, and ∂ζ
∂R1
≤ 0.

The left-hand side of both equations, z (s,R1) ≡ R1−ρ1(s)
1− 1

ρ2(s)
, is a decreasing function of s, since both

ρ1 (s) and ρ2 (s) are monotonically increasing in s and ρ2 (s) strictly so. Since we have assumed that
ρ2 (s) < 1, it is always guaranteed that ŝ (R1) > s. Note that

lim
ρ2(s)→1+

z (s,R1) =∞ and lim
ρ1(s),ρ2(s)→∞

z (s,R1) < 0,

which is sufficient to establish that both Equation (A3) and Equation (A4) have a unique solution strictly
higher than ŝ (R1). Since ζ (δ,R1) ∈ [0, 1], we can also conclude that ŝ (R1) ≤ s∗ (δ,R1), with equality
only when all deposits are insured, δ → DR1, since lim

δ→DR1
ζ (δ,R1) = 1.

In order for s∗ (δ,R1) < s, as in Figure 3 in the text, it must be that ρ1 (s) > R1. In that case, there
are three regions (unique failure equilibrium, multiple equilibria, and unique no-failure equilibrium) for
any value of δ, including δ = 0. If ρ1 (s) < R1, then there are only two regions (unique failure equilibrium
and multiple equilibria) for small values of δ.

The relevant comparative statics for ŝ (R1) and s∗ (δ,R1) are the following. First, it follows directly
from Equation (A4) that

∂s∗

∂δ
≤ 0,

since its right-hand side is increasing in δ. The effect of δ on s∗ (δ,R1) is modulated by the behavior of
36When ρ1 (s) = 1 and ρ2 (s) = s, the thresholds ŝ (R1) and s∗ (δ,R1) can be explicitly computed as

ŝ (R1) = (1− λ)R1

1− λR1
and s∗ (δ,R1) = min

{
ρ−1

2

(
(1− λ)R1

(1− λ)R1 − R1−1
ζ

)
, s

}
.
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ζ (δ,R1). Second, similar arguments imply that

∂ŝ

∂R1
≥ 0 and ∂s∗

∂R1
≥ 0. (A5)

Finally, it also follows immediately from Equations (A3) and (A4) that

∂ŝ

∂λ
≥ 0 and ∂s∗

∂λ
≥ 0,

since the right-hand side of both equations is decreasing in λ. Intuitively, all else constant, an increase
in the mass of early depositors, who withdraw their deposits inelastically, increases the probability of
failure.

C.1.1 Parametric assumptions

Under the following parametric assumptions: ρ2 (s) = s and ρ1 (s) = 1 + ϕ (s− 1), we can express the
thresholds ŝ (R1) and s∗ (δ,R1) implied by Equations (A3) and (A4) as follows:

ŝ (R1) =
{
s| 0 = ϕs2 − (λR1 + ϕ− 1) s− (1− λ)R1

}
s∗ (δ,R1) =

{
s| 0 = ϕs2 − ((1− (1− λ) ζ)R1 + ϕ− 1) s− (1− λ)R1ζ

}
,

where

ŝ (R1) =
λR1 + ϕ− 1±

√
(λR1 + ϕ− 1)2 + 4ϕ (1− λ)R1

2ϕ (A6)

s∗ (δ,R1) =
(1− (1− λ) ζ)R1 + ϕ− 1±

√
((1− (1− λ) ζ)R1 + ϕ− 1)2 + 4ϕ (1− λ)R1ζ

2ϕ . (A7)

Both quadratic equations have a unique positive root. Note that by setting ζ = 1, Equation (A7)
collapses to Equation (A6). Note also that ŝ (R1) is exclusively a function of ϕ, λ, and R1. The
threshold s∗ (δ,R1) is a function of ϕ, λ, R1, and ζ, which in turn depends on R1, δ, and the distribution
of deposits G (i). Explicitly characterizing ŝ (R1) and s∗ (δ,R1) simplifies the numerical solution of the
model.

C.2 Probability of bank failure

Starting from Equation (12), we can express ∂qF

∂δ and ∂qF

∂R1
as follows:

∂qF

∂δ
= πf (s∗ (δ,R1)) ∂s

∗

∂δ
≤ 0

∂qF

∂R1
= (1− π) f (ŝ (R1)) ∂ŝ

∂R1
+ πf (s∗ (δ,R1)) ∂s

∗

∂R1
≥ 0,
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where the sign results follow from Equation (A5). As explained in the text, higher levels of coverage
reduce the probability of failure, holding R1 constant, while higher deposit rates increase the probability
of failure, holding δ constant.

C.3 Insured/uninsured deposits

A fraction of a depositor’s claims at date 1 is insured, while the remaining is potentially uninsured.
Formally,

D0 (i)R1 = min {D0 (i)R1, δ}︸ ︷︷ ︸
Insured

+ max {D0 (i)R1 − δ, 0}︸ ︷︷ ︸
Uninsured

. (A8)

We can express aggregate insured and uninsured deposits at date 1 as follows:
ˆ
i∈I

min {D0 (i)R1, δ} dG (i) =
ˆ
i∈FI

D0 (i)R1dG (i) + δ

ˆ
i∈PI

dG (i) (Insured Deposits)
ˆ
i∈I

max {D0 (i)R1 − δ, 0} dG (i) =
ˆ
i∈PI

(D0 (i)R1 − δ) dG (i) , (Uninsured Deposits),

where we formally define the sets of fully insured (FI) and partially insured depositors (PI) as

FI = { i|D0 (i)R1 ≤ δ}

PI = { i|D0 (i)R1 > δ} .

The counterpart of Equation (A8) in the aggregate is given by

D0R1 =
ˆ
i∈I

min {D0 (i)R1, δ} dG (i)︸ ︷︷ ︸
Insured Deposits

+
ˆ
i∈I

max {D0 (i)R1 − δ, 0} dG (i)︸ ︷︷ ︸
Uninsured Deposits

.

We repeatedly use the fact that

d
(´

i∈I min {D0 (i)R1, δ} dG (i)
)

dR1
=
ˆ
i∈FI

D0 (i) dG (i)

d
(´

i∈I max {D0 (i)R1 − δ, 0} dG (i)
)

dR1
=
ˆ
i∈PI

D0 (i) dG (i) ,

as well as

d
(´

i∈I min {D0 (i)R1, δ} dG (i)
)

dδ
=
ˆ
i∈PI

dG (i)

d
(´

i∈I max {D0 (i)R1 − δ, 0} dG (i)
)

dδ
= −

ˆ
i∈PI

dG (i) .

Note that while ŝ (R1) only depends on R1 and λ, s∗ (δ,R1) also depends on those two objects in addition
to the whole distribution of deposits, through its impact on the share of insured deposits.
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C.4 Properties of depositors’ and taxpayers’ consumption

C.4.1 Individual consumption levels

For reference, we reproduce here the expressions for depositors’ equilibrium consumption in the cases of
failure and no-failure:

CFt (i, x, δ, R1) = min {D0 (i)R1, δ}+ αF (s) max {D0 (i)R1 − δ, 0}+ Yt (i, s)

CN1 (i, e, R1) = D0 (i)R1 + Y1 (i, s)

CN2 (i, `, R1) = αN (s)D0 (i)R1 + Y2 (i, s) .

The equilibrium objects αF (s) and αN (s) are given by

αF (s) =
max

{
χ (s) ρ1 (s)D0 −

´
i∈I min {D0 (i)R1, δ} dG (i) , 0

}
´
i∈I max {D0 (i)R1 − δ, 0} dG (i)

= max
{

1− (R1 − χ (s) ρ1 (s))D0´
i∈I max {D0 (i)R1 − δ, 0} dG (i)

, 0
}

αN (s) = ρ2 (s) ρ1 (s)− λR1

(1− λ)R1
.

The rate αN (s) captures the additional gross return obtained by late depositors at date 2 when there is
no bank failure.37 The rate αF (s) corresponds to the individual recovery rate on uninsured deposits in
the case of bank failure. Note that αF (s) is a function of s only through χ (s) ρ1 (s) and that αN (s) is
a function of s through ρ2 (s) and ρ1 (s). Note that αN (s)D0 (i)R1 = ρ2 (s) ρ1(s)−λR1

1−λ D0 (i). The fact
ρ1 (s) > R1 is incompatible with the existence of a failure equilibrium, which implies that αF (s) < 1.
Given our assumptions on χ (s), ρ1 (s), and ρ2 (s), it follows that ∂αF (s)

∂s ≥ 0 and ∂αN (s)
∂s > 0. It also

follows that ∂T (s)
∂s ≤ 0.

Note that we can also express αF (s) as

αF (s) =
max

{
χ (s) ρ1 (s)D0 −

´
i∈I min {D0 (i)R1, δ} dG (i) , 0

}
´
i∈I max {D0 (i)R1 − δ, 0} dG (i) ,

which implies that when αF (s) > 0, T (s) = 0, and when αF (s) = 0, T (s) > 0 (the funding shortfall is
introduced in Equation (18)). Note also that, whenever αF (s) > 0, we can express 1− αF (s) as

1− αF (s) = (R1 − χ (s) ρ1 (s))D0´
i∈I max {D0 (i)R1 − δ, 0} dG (i) .

Finally, note that we can express consumption ratios of the form CF (i,x,s)
CF (i,x,s∗) as

CF (i, x, s)
CF (i, x, s∗) =


D0(i)R1+Yt(i,x,s)
D0(i)R1+Yt(i,x,s∗) , if D0 (i)R1 < δ

δ+αF (s) max{D0(i)R1−δ,0}+Yt(i,x,s)
δ+αF (s∗) max{D0(i)R1−δ,0}+Yt(i,x,s∗) , if D0 (i)R1 ≥ δ

37Note that ŝ can also be defined as the value of s such that αN (ŝ) = 1.
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for depositors and
CF (τ, s)
CF (τ, s∗) = Y (τ, s)− T (s)− κ (T (s))

Y (τ, s∗)− T (s∗)− κ (T (s∗))

for taxpayers. In order to understand whether CF (j,s)
CF (j,s∗) takes values above or below 1 across failure

states, it is necessary to understand how αF (s), T (s), Yt (i, s), and Y (τ, s) vary with s. Under the
assumption that Yt (i, s) and Y (τ, s) are increasing in s, and, given that αF (s) is increasing in s and
T (s) is decreasing in s, it follows that CF (j,s)

CF (j,s∗) ≤ 1 for both depositors and taxpayers. Note that if

Yt (i, s) is independent of s, CF (i,s)
CF (i,s∗) = 1 for fully insured depositors.

C.4.2 Comparative statics

We can show that αF (s) is decreasing in both R1 and δ, as follows:

∂αF (s)
∂R1

=

−
´
i∈FI D0(i)dG(i)(´i∈I max{D0(i)R1−δ,0}dG(i))+(χ(s)ρ1(s)D0−

´
i∈I min{D0(i)R1,δ}dG(i)) ´i∈PI D0(i)dG(i)

(´i∈I max{D0(i)R1−δ,0}dG(i))2 ≤ 0, if T (s) = 0

0, if T (s) > 0

∂αF (s)
∂δ

=

−
(R1−χ(s)ρ1(s))D0

´
i∈PI dG(i)

(´i∈I max{D0(i)R1−δ,0}dG(i))2 = − (1− αF (s))
´
i∈PI dG(i)´

i∈I max{D0(i)R1−δ,0}dG(i) ≤ 0, if T (s) = 0

0, if T (s) > 0,

since R1 − χ (s) ρ1 (s) ≥ 0 in any failure equilibrium. Note that
´
i∈PI dG(i)´

i∈I max{D0(i)R1−δ,0}dG(i) is the ratio of
partially insured accounts to uninsured deposits.

In no-failure states, depositors’ consumption levels vary with R1 as follows:

∂CN1 (i, e, s)
∂R1

= D0 (i) ≥ 0

∂CN2 (i, `, s)
∂R1

= −ρ2 (s) λ

1− λD0 (i) ≤ 0.

In no-failure states, depositors’ consumption is not directly affected by δ, so ∂CNt (i,s)
∂δ = 0.

In failure states, we can derive the following comparative statics, which are relevant inputs for the
characterization of the optimal deposit insurance policy:

∂CFt (i, x, s)
∂R1

=

D0 (i) ≥ 0, if D0 (i)R1 < δ

αF (s)D0 (i) + ∂αF (s)
∂R1

(D0 (i)R1 − δ) R 0, if D0 (i)R1 ≥ δ

∂CFt (i, x, s)
∂δ

=


0, if D0 (i)R1 < δ

1− αF (s) + ∂αF (s)
∂δ (D0 (i)R1 − δ)

= (1− αF (s))
(

1−
´
i∈PI dG(i)´

i∈I max{D0(i)R1−δ,0}dG(i) (D0 (i)R1 − δ)
)
R 0

, if D0 (i)R1 ≥ δ.

Hence, when T (s) > 0, αF (s) = 0 and ∂αF (s)
∂δ = 0, so ∂CFt

∂δ (i, x, s) = 1 for all uninsured depositors —
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those for which D0 (i)R1 ≥ δ. Note that when aggregated among depositors

ˆ
i∈I

∂CFt (i, x, s)
∂δ

dG (i) =

0, if T (s) = 0
´
i∈PI dG (i) , if T (s) > 0.

Therefore, we can express
´ ´

i∈I
∂CFt (i,x,s)

∂δ dG (i) dF (s) =
´
i∈PI dG (i)

´
I [T (s) > 0] dF (s), where I [·]

denotes the indicator function. Although for some individual depositors ∂CFt (i,x,s)
∂R1

and ∂CFt (i,x,s)
∂δ can

take negative values (this is more likely to occur to depositors with large uninsured balances) since, as
shown above, ∂αF (s)

∂δ ≤ 0, we show below that the aggregate consumption response among depositors to
δ and R1 is positive.

We can derive similar comparative statics for taxpayers’ consumption as follows:

∂CF (τ, s)
∂R1

= −
(
1 + κ′ (·)

) ∂T (s)
∂R1

=

0, if T (s) = 0

− (1 + κ′ (·))
´
i∈FI D0 (i) dG (i) ≤ 0, if T (s) > 0

(A9)

∂CF (τ, s)
∂δ

= −
(
1 + κ′ (·)

) ∂T (s)
∂δ

=

0, if T (s) = 0

− (1 + κ′ (·))
´
i∈PI dG (i) ≤ 0, if T (s) > 0.

C.4.3 Individual consumption differences

We can express CN1 (i, e, s)− CF1 (i, e, s) for early depositors as

CN1 (i, e, s)− CF1 (i, e, s) = D0 (i)R1 −min {D0 (i)R1, δ} − αF (s) max {D0 (i)R1 − δ, 0}

= (1− αF (s)) max {D0 (i)R1 − δ, 0}︸ ︷︷ ︸
Partially Recovered Uninsured Deposits

,

and similarly CN2 (i, `, s)− CF2 (i, `, s) for late depositors as

CN2 (i, `, s)− CF2 (i, `, s) = αN (s)D0 (i)R1 −min {D0 (i)R1, δ} − αF (s) max {D0 (i)R1 − δ, 0}

= (αN (s)− 1)D0 (i)R1︸ ︷︷ ︸
Net Return

+ (1− αF (s)) max {D0 (i)R1 − δ, 0}︸ ︷︷ ︸
Partially Recovered Uninsured Deposits

.

C.5 Properties of aggregate consumption

C.5.1 Aggregate consumption differences

The aggregate change in consumption among early depositors is given by
ˆ
i∈I

(
CN1 (i, e, s)− CF1 (i, e, s)

)
dG (i) = (1− αF (s))

ˆ
i∈I

max {D0 (i)R1 − δ, 0} dG (i)

=
ˆ
i∈I

max {D0 (i)R1 − δ, 0} dG (i)−max
{
χ (s) ρ1 (s)D0 −

ˆ
i∈I

min {D0 (i)R1, δ} dG (i) , 0
}

=

(R1 − χ (s) ρ1 (s))D0, if T (s) = 0´
i∈I max {D0 (i)R1 − δ, 0} dG (i) , if T (s) > 0.
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The aggregate change in consumption among late depositors is given by
ˆ
i∈I

(
CN2 (i, `, s)− CF2 (i, `, s)

)
dG (i) = (αN (s)− 1)D0R1 + (1− αF (s))

ˆ
i∈I

max {D0 (i)R1 − δ, 0} dG (i)

= (αN (s)− 1)D0R1 +
ˆ
i∈I

max {D0 (i)R1 − δ, 0} dG (i)

−max
{
χ (s) ρ1 (s)D0 −

ˆ
i∈I

min {D0 (i)R1, δ} dG (i) , 0
}

=

(αN (s)R1 − χ (s) ρ1 (s))D0, if T (s) = 0

(αN (s)− 1)D0R1 +
´
i∈I max {D0 (i)R1 − δ, 0} dG (i) , if T (s) > 0.

The aggregate change in consumption among depositors and taxpayers is given by
ˆ (

CN (j, s)− CF (j, s)
)
dH (j) = λ

ˆ
i∈I

(
CN1 (i, s)− CF1 (i, s)

)
dG (i) + (1− λ)

ˆ
i∈I

(
CN2 (i, s)− CF2i (i, s)

)
dG (i) + CN (τ, s)− CF (τ, s)

=

λ (R1 − χ (s) ρ1 (s))D0 + (1− λ) (αN (s)R1 − χ (s) ρ1 (s))D0, if T (s) = 0

(1− λ) (αN (s)− 1)D0R1 +
´
i∈I max {D0 (i)R1 − δ, 0} dG (i) + T (s) + κ (T (s)) , if T (s) > 0

= [(ρ2 (s)− 1) (ρ1 (s)− λR1) + (1− χ (s)) ρ1 (s)]D0 + κ (T (s)) .

Therefore, we can express
´ (

CN (j, s)− CF (j, s)
)
dH (j) in Equation (23) as follows:

ˆ (
CN (j, s)− CF (j, s)

)
dH (j) = [(ρ2 (s)− 1) (ρ1 (s)− λR1) + (1− χ (s)) ρ1 (s)]D0 + κ (T (s)) ,

where T (s) = max
{´

i∈I min {D0 (i)R1, δ} dG (i)− χ (s) ρ1 (s)D0, 0
}
.

C.5.2 Aggregate consumption levels

Aggregate consumption among depositors in the case of bank failure is given by

Cdep = λ

ˆ
i∈I

CFt (i, e, δ, R1) dG (i) + (1− λ)
ˆ
i∈I

CFt (i, `, δ, R1) dG (i) ,

where

Cdep =
ˆ
i∈I

min {D0 (i)R1, δ} dG (i) + max
{
χ (s) ρ1 (s)D0 −

ˆ
i∈I

min {D0 (i)R1, δ} dG (i) , 0
}

+ Y (s)

=

χ (s) ρ1 (s)D0 + Y (s) , if T (s) = 0´
i∈I min {D0 (i)R1, δ} dG (i) + Y (s) , if T (s) > 0

= max
{
χ (s) ρ1 (s)D0,

ˆ
i∈I

min {D0 (i)R1, δ} dG (i)
}

+ Y (s) ,

where we define Y (s) = λ
´
i∈I Yt (i, e, s) dG (i) + (1− λ)

´
i∈I Yt (i, `, s) dG (i) .
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Aggregate consumption among depositors and taxpayers in the case of bank failure is given by

Cdep + CF (τ) = max
{
χ (s) ρ1 (s)D0,

ˆ
i∈I

min {D0 (i)R1, δ} dG (i)
}

−max
{ˆ

i∈I
min {D0 (i)R1, δ} dG (i)− χ (s) ρ1 (s)D0, 0

}
− κ (T (s)) + Y j (s)

= χ (s) ρ1 (s)D0 − κ (T (s)) + Y j (s) ,

where we define Y j (s) = λ
´
i∈I Yt (i, e, s) dG (i) + (1− λ)

´
i∈I Yt (i, e, s) dG (i) + Y (τ, s) .

Therefore we can easily calculate
´ ∂CF (j,s)

∂δ dH (j), which is a relevant input to set the optimal level
of coverage, as well as

´ ∂CF (j,s)
∂R1

dH (j), as follows:

ˆ
∂CF (j, s)

∂δ
dH (j) =

0, if T (s) = 0

−κ′ (T (s))
´
i∈PI dG (i) , if T (s) > 0

ˆ
∂CF (j, s)
∂R1

dH (j) =

0, if T (s) = 0

−κ′ (T (s))
´
i∈FI D0 (i) dG (i) , if T (s) > 0.

Finally, aggregate consumption among depositors if there is no bank failure is given by

λ

ˆ
i∈I

CNt (i, e, δ, R1) dG (i) + (1− λ)
ˆ
i∈I

CNt (i, `, δ, R1) dG (i) = λD0R1 + (1− λ)αN (s)D0R1 + Y (s)

= λD0R1 + ρ2 (s) (ρ1 (s)− λR1)D0 + Y (s) .

C.6 Regularity conditions and limits

Continuity and differentiability of the problems faced by banks and regulators are guaranteed whenever
distributions and parameters that vary with the realization of the state s are sufficiently smooth. The
one potential source of non-differentiability that emerges in the model is related to the form of the fiscal
costs. To guarantee that social welfare is differentiable, it must be that dW

dδ is continuous. For this to be
the case, it must be that either mins {χ (s) ρ1 (s)} = 0 or limT→0 κ

′ (T ) = 0. Otherwise, for sufficiently
low values of δ it is the case that there is no need to raise fiscal resources for any realization of s, so
the second term in Equation (22) changes from 0 to a positive value at a point, making the planner’s
objective non-differentiable.

As usual in normative exercises, it is hard to guarantee the convexity of the planning problem
(quasi-concavity of the planner’s objective) in general: there are no simple conditions on primitives
that guarantee that the planner’s problem is well-behaved. In practice, for natural parametrizations
of the model, W (δ) is well-behaved and features a single interior optimum. Similarly, it is not easy
to establish the convexity of the problem solved by competitive banks (quasi-concavity of the bank’s
objective) to choose R1, although the problem solved by banks is also well-behaved in practice for
standard parametrizations, utility, and distributional choices.

In Remark 3 on page 23, we make a statement about the behavior of dW
dδ in the limit when δ → 0.
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Formally, we can write limδ→0+
dW
dδ as

lim
δ→0+

−∂q
F

∂δ

ˆ [
U
(
CN (j, s∗)

)
− U

(
CF (j, s∗)

)]
dH (j)+ lim

δ→0+
qFEFs

[ˆ
U ′
(
CF (j, s)

) ∂CF (j, s)
∂δ

dH (j)
]
.

Since U
(
CN (j, s∗)

)
− U

(
CF (j, s∗)

)
is non-negative for both depositors and taxpayers, the sign of the

first element is given by limδ→0+

(
−∂qF

∂δ

)
. Similarly, since qF is strictly positive for any δ, including

δ = 0, the sign of the second term depends on whether the average marginal cost of funds across states
is zero or positive when δ → 0. In a previous version of this paper, we explored a scenario in which
limδ→0+

(
−∂qF

∂δ

)
= 0 and qFEFs

[´ ∂CF (j,s)
∂δ dH (j)

]∣∣∣
δ=0

< 0. In that case, as long as there is a fiscal cost
of paying for deposit insurance, increasing coverage around δ = 0 may decrease welfare locally, since
very small coverage levels are costly in equilibrium but are not enough to reduce the probability of bank
failure. This is likely to be a very local result.
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D Extensions

For simplicity, we study every extension separately, and focus on the characterization of marginal changes
in the level of deposit insurance under perfect regulation of the deposit rate, although the analysis can be
extended to other scenarios along the lines of Section 3. When appropriate, we discuss the implications
for the optimal design of ex-ante regulation.38

D.1 Banks’ Moral Hazard: General Portfolio and Investment Decisions

In our baseline formulation, neither depositors nor banks make portfolio decisions.39 Allowing for
both sets of decisions is important to allow banks or depositors to adjust their risk-taking behavior
in response to changes in the level of coverage — these effects are also often referred to as moral
hazard. Depositors now have a consumption-savings decision at date 0 and a portfolio decision among
K securities. In particular, depositors have access to k = 1, 2, . . . ,K assets, with returns θ1k (s) at
date 1 in state s for early depositors and returns θ2k (s) at date 2 in state s for late depositors. Hence,
the resources of early and late depositors are respectively given by Y1 (i, e, s) =

∑
k θ1k (s) yk (i) and

Y2 (i, `, s) =
∑
k θ2k (s) yk (i). We preserve the structure of the distribution of deposits. Therefore, the

budget constraint of depositors at date 0 is given by

∑
k

yk (i) +D0 (i) + C0 (i) = Y0 (i) , (A10)

where Y0 (i), which denotes the initial endowment of depositor i, and D0 (i) are primitives of the model.
Subject to Equation (A10), the ex-ante utility of depositors now corresponds to

U (C0 (i)) + λEs [U (C1 (i, e, s))] + (1− λ)Es [U (C2 (i, `, s))] , (A11)

where C1 (i, e, s) and C2 (i, `, s) respectively denote the consumption of early and late depositors with
initial deposits D0 (i) for a given realization of the state s. Depositors optimally choose their holdings
of the different assets yk (i) to maximize their expected utility.

Additionally, banks have access to h = 1, 2, . . . ,H investment opportunities, which offer a gross
return ρ1h (s) at date 1 and a return ρ2h (s) between dates 1 and 2 in state s. Hence, at date 0,
banks must choose shares ψh for every investment opportunity such that

∑
h ψh = 1. We assume that

banks liquidate an equal share of every type of investment at date 1. This is a particularly tractable
formulation to introduce multiple investment opportunities. Our results could be extended to the case
in which different investments have different liquidation rates at date 1 and banks have the choice of
liquidating different investments in different proportions.

Given our assumptions, we can show that the counterpart to the failure threshold D̃1 (s) in Equation
38In this section, for simplicity, we do not make explicit some of the additional arguments of V (i) and V (τ).
39The endowments at dates 1 and 2 in the baseline model can be interpreted as the net payoffs on the rest of a depositor’s

portfolio.
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(7) is given by

D̃1 (s) = (R1 −
∑
h ρ1h (s)ψh)D0

1− 1∑
h
ρ2h(s)ρ1(s)ψh∑
h
ρ1h(s)ψh

, (A12)

allowing us to characterize the equilibrium thresholds ŝ and s∗ as in the baseline model. It is equally
straightforward to generalize the values taken by αF (s), αN (s), and T (s). We characterize below the
optimal choices of yk (i) and ψh by depositors and banks and focus again on the directional test for how
welfare varies with the level of coverage.

Proposition 6. (Directional test for δ under general investment opportunities) The change
in welfare induced by a marginal change in the level of deposit insurance dW

dδ under perfect regulation is
given by

dW

dδ
=
ˆ
ω (j)

−∂qF
∂δ

U
(
CN (j, s∗)

)
− U

(
CF (j, s∗)

)
U ′ (CF (j, s∗))

+ qFEFs

ˆ U ′
(
CF (j, s)

)
U ′ (CF (j, s∗))

∂CF (j, s)
∂δ

 dH (j) ,

where EFs [·] stands for a conditional expectation over bank failure states and qF denotes the unconditional
probability of bank failure. If dWdδ > (<) 0, it is optimal to locally increase (decrease) the level of coverage.

Proposition 6 extends the results of the baseline model by showing that introducing a consumption-
savings and portfolio choices for depositors does not modify the set of sufficient statistics already identified
under perfect regulation. However, allowing unregulated banks to make investment choices requires
accounting for a new set of fiscal externality terms. The new set of fiscal externalities, which capture
the direct effects of banks’ changes in behavior on taxpayers welfare, is now given by

∂Vm (τ)
∂R1

dR1
dδ︸ ︷︷ ︸

Liability-side regulation

+
∑
h

∂Vm (τ)
∂ψh

dψh
dδ

.︸ ︷︷ ︸
Asset-side regulation

(A13)

As in Section 3.2, we expect more generous levels of coverage to increase the deposit rate, so ∂Vm(τ)
∂R1

dR1
dδ <

0, making it socially costlier to increase δ, since banks do not internalize the fiscal consequences of offering
higher deposit rates. In principle, it is impossible to individually sign each of the H terms ∂Vm(τ)

∂ψh

dψh
dδ that

determine the regulation of banks’ asset allocations. However, in most cases, it is reasonable to expect
that the sum of all these terms takes negative values, since competitive banks have incentives to increase
their risk-taking when the level of coverage is higher. Previous research has nonetheless shown that the
risk-taking behavior of banks is sensitive to the details of the market environment; see, for instance, Boyd
and De Nicolo (2005) and Martinez-Miera and Repullo (2010). In imperfectly competitive environments,
it should not be surprising for the asset-side regulation term in Equation (A13) to take positive values.

However, regardless of their sign, our results robustly point out that both liability-side regulations,
controlling the deposit rate offered by banks, and asset-side regulations, controlling the investment
portfolio of banks, are in general needed to maximize social welfare when ex-ante policies are feasible.40

40In practice, capital requirements and net stable funding ratios are forms of liability-side regulations, while liquidity
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The optimal corrective policy introduces wedges on banks’ choices that can be approximated as follows:

τR1 = −∂Vm (τ)
∂R1

≈ ∂Es [T (s) + κ (T (s))]
∂R1

and τψh = −∂Vm (τ)
∂ψh

≈ ∂Es [T (s) + κ (T (s))]
∂ψh

. (A14)

As discussed above, restrictions on the set of ex-ante instruments available to the planner deliver
intermediate outcomes between the two extremes analyzed here. Equation (A14) provides direct guidance
on how to set ex-ante policies to correct the ex-ante distortions on banks’ behavior caused by deposit
insurance.

D.2 Alternative Equilibrium Selection Mechanisms

In the baseline model, depositors coordinate following an exogenous sunspot. We now show that varying
the information structure and the equilibrium selection procedure does not change the sufficient statistics
we identify. We consider a global game structure in which late depositors observe at date 1 an arbitrarily
precise private signal about the date 2 return on banks’ investments before deciding D1 (i, s). With that
information structure, Goldstein and Pauzner (2005) show, in a model which can be mapped to our
baseline model with no deposit insurance, that there exists a unique equilibrium in threshold strategies
in which depositors withdraw their deposits when they receive a sufficiently low signal but leave their
deposits in the bank otherwise.

Since our goal in this paper is to show the robustness of our optimal policy characterization and
to directly use the set of sufficient statistics that we identify, we take the outcome of a global game
as a primitive. In particular, we take as a prediction of the global game that there exists a threshold
sG (δ,R1) such that when s ≤ sG (δ,R1) there is a bank failure with certainty but when s > sG (δ,R1)
no-failure occurs, with the following properties:

∂sG

∂R1
≥ 0 and ∂sG

∂δ
≤ 0.

Goldstein and Pauzner (2005) formally show that ∂sG

∂R1
≥ 0, while Allen et al. (2018) formally show that

∂sG

∂δ ≤ 0 in a special case of our framework. In fact, any model of behavior which generates a threshold
with these properties, not necessarily a global game, is consistent with our results.

Therefore, given the behavior of depositors at date 1, the ex-ante welfare of depositors is now given
by

λ

ˆ
i∈I

V (i, e, δ, R1) dG (i) + (1− λ)
ˆ
i∈I

V (i, `, δ, R1) dG (i) ,

where

V (i, x, δ, R1) =
ˆ sG(δ,R1)

s
U
(
CFt (i, x, s)

)
dF (s) +

ˆ s

sG(δ,R1)
U
(
CNt (i, x, s)

)
dF (s) , (A15)

coverage ratios are an example of asset-side regulations. See Diamond and Kashyap (2016) for a recent assessment of these
policy measures in a model of runs and Hachem and Song (2017) for a study of its ex-ante consequences in an environment
with strategic banks.
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and where early and late depositors’ consumption is defined by Equations (4) and (5). We can then
show that the characterization of dWdδ remains valid in this context.

Proposition 7. (Directional test for δ under an alternative equilibrium selection) The change
in welfare induced by a marginal change in the level of deposit insurance dW

dδ under perfect regulation is
given by

dW

dδ
=
ˆ
ω (j)

−∂qF
∂δ

U
(
CN (j, s∗)

)
− U

(
CF (j, s∗)

)
U ′ (CF (j, s∗))

+ qFEFs

ˆ U ′
(
CF (j, s)

)
U ′ (CF (j, s∗))

∂CF (j, s)
∂δ

 dH (j) ,

(A16)
where EFs [·] stands for a conditional expectation over bank failure states and qF denotes the unconditional
probability of bank failure. If dWdδ > (<) 0, it is optimal to locally increase (decrease) the level of coverage.

The particular information structure considered and the equilibrium selection procedure only enter
in the expression of dW

dδ through the sufficient statistics identified in this paper. In particular, this is
true even though the sensitivity of the probability of bank failure to changes in the level of coverage
∂qF

∂δ will depend on the assumptions on the informational structure of the economy. Studying a global
game model, as in Allen et al. (2018), is appealing because it makes it possible to understand how the
probability of failure is endogenously determined. However, Proposition 7 shows that it is enough to
measure the sufficient statistics identified in this paper.

D.3 General Equilibrium Spillovers/Macroprudential Considerations

In our baseline formulation, as in Diamond and Dybvig (1983), bank decisions do not affect aggregate
variables, so our analysis so far can be defined as microprudential. When the decisions made by banks
affect aggregate variables, for instance, asset prices, further exacerbating the possibility of a bank
failure, the optimal deposit insurance formula may incorporate a macroprudential correction. These
general equilibrium effects arise in models in which economy-wide outcomes determined by decentralized
choices directly interact with coordination failures. Our extension captures in a simple form the macro
implications of banks’ choices, which may operate through pecuniary externalities or aggregate demand
externalities (Dávila and Korinek, 2018; Farhi and Werning, 2016).

Formally, we now assume that, given a level of aggregate withdrawals Ω (s) = D0R1 −D1 (s), banks
must liquidate θ

(
Ω (s)

)
of their investments, where θ (·) ≥ 1 is a well-behaved increasing function. By

assuming that banks have to liquidate more than one-for-one their investments at a rate that increases
with the aggregate level of liquidations, we capture the possibility of illiquidity in financial markets
when many banks unwind existing investments. This is a parsimonious way of incorporating aggregate
linkages, but there is scope for richer modeling of interbank markets as in, for instance, Freixas, Martin
and Skeie (2011). Under this assumption, the level of resources available to banks with withdrawals
Ω (s), when the level of total withdrawals is Ω (s), is given by

ρ2 (s)
(
ρ1 (s)D0 − θ

(
Ω (s)

)
Ω (s)

)
. (A17)
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Equation (A17) generalizes the left-hand side of Equation (3). When θ (·) > 1, it captures that the
unit price of liquidating investments is increasing in the aggregate level of withdrawals. Following the
same logic used to solve the baseline model, we can define thresholds ŝ and s∗, which now have Ω (s) as
a new argument. When the regulator sets δ optimally, she takes into account the effects of individual
banks’ choices on the aggregate level of withdrawals Ω (s). Under these assumptions, we show that dW

dδ

satisfies the same equation as in our baseline model when ex-ante regulation is available, although it
must incorporate a macroprudential correction when ex-ante regulation is not available.

Proposition 8. (Directional test for δ incorporating aggregate spillovers) The change in welfare
induced by a marginal change in the level of deposit insurance dW

dδ under perfect regulation is given by

dW

dδ
=
ˆ
ω (j)

−∂qF
∂δ

U
(
CN

(
j, sG

))
− U

(
CF

(
j, sG

))
U ′ (CF (j, sG))

+ qFEFs

 U ′
(
CF (j, s)

)
U ′ (CF (j, sG))

∂CF (j, s)
∂δ

 dH (j) ,

(A18)
where EFs [·] stands for a conditional expectation over bank failure states and qF denotes the unconditional
probability of bank failure. If dWdδ > (<) 0, it is optimal to locally increase (decrease) the level of coverage.

In this case, ex-ante regulation can directly target the wedges caused by aggregate spillovers. In
this case, the ex-ante regulation faced by banks partly addresses both the fiscal externality that emerges
from the presence of deposit insurance and the externality induced by the aggregate spillovers caused
by competitive deposit rate setting. Similar formulas would apply when banks have general portfolio
decisions, as in our analysis earlier in this section.

As in the case of moral hazard, it is possible to correct the welfare impact of aggregate spillovers
with ex-ante regulation. The optimal corrective policy can be expressed in this case as

τR1 = − ∂V P
m (τ)
∂R1︸ ︷︷ ︸

Fiscal. Ext.

−
(
λ

ˆ
i∈I

(
∂V P

m (i, e)
∂R1

− ∂Vm (i, e)
∂R1

)
dG (i) + (1− λ)

ˆ
i∈I

(
∂V P

m (i, `)
∂R1

− ∂Vm (i, `)
∂R1

)
dG (i)

)
︸ ︷︷ ︸

Spillovers

,

where the superscript P corresponds to the welfare assessment from the planner’s perspective, as
described below. The first term accounts for banks’ fiscal externalities, as studied above. The second
term, which accounts for the general equilibrium spillovers of banks decisions, is a function of the terms
∂s∗P
∂R1
− ∂s∗

∂R1
and ∂ŝP

∂R1
− ∂ŝ

∂R1
, which account for the fact that the planner acknowledges that when banks

offer higher rates, withdrawals are higher and bank failures more likely.

D.4 Proofs and Derivations

Proof of Proposition 6. (Directional test for δ under general investment opportunities)
First, we establish the new failure threshold, which corresponds to Equation (A12) in the text. For a
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given common liquidation rate ϕ, the resources at date 2 for a bank are now given by

∑
h

ρ2h (s)
(
ρ1h (s)ψhD0 − ϕρ1h (s)ψhD0

)
=
∑
h

ρ2h (s)
(
ρ1h (s)ψhD0 −

ρ1h (s)ψhD0∑
h ρ1h (s)ψhD0

Ω (s)
)

=
∑
h

ρ2h (s)
(
ρ1h (s)ψhD0 −

ρ1h (s)ψh∑
h ρ1h (s)ψh

(
D0R1 −D1 (s)

))
,

where we use the fact that the level of withdrawals Ω (s) pins down the liquidation rate ϕ = Ω(s)∑
h
ρ1h(s)ψhD0

.
It is therefore easy to show that the threshold for the level of deposits that delimits the probability of
failure is

D̃1 (s) = (R1 −
∑
h ρ1h (s)ψh)D0

1− 1∑
h
ρ2h(s)ρ1h(s)ψh∑
h
ρ1h(s)ψh

,

which depends on R1 and ψh. It is straightforward to compute consumption for early and late depositors,
as in Equations (4) and (5). In this case

T (s) = max
{ˆ

i∈I
min {D0 (i)R1, δ} dG (i)−

∑
h

χh (s) ρ1h (s)ψhD0, 0
}
.

We can express dW
dδ as follows:

dW

dδ
= λ

ˆ
i∈I

∂V (i,e)
∂δ

U ′ (CF (i, e, s∗))dG (i) + (1− λ)
ˆ
i∈I

∂V (i,`)
∂δ

U ′ (CF (i, `, s∗))dG (i) +
∂V (τ)
∂δ

U ′ (CF (τ, s∗))

+

λ ˆ
i∈I

∂V (i,e)
∂R1

U ′ (CF (i, e, s∗))dG (i) + (1− λ)
ˆ
i∈I

∂V (i,`)
∂R1

U ′ (CF (i, `, s∗))dG (i) +
∂V (τ)
∂R1

U ′ (CF (τ, s∗))

 dR1
dδ

+
∑
h

λ ˆ
i∈I

∂V (i,e)
∂ψh

U ′ (CF (i, e, s∗))dG (i) + (1− λ)
ˆ
i∈I

∂V (i,`)
∂ψh

U ′ (CF (i, `, s∗))dG (i) +
∂V (τ)
∂ψh

U ′ (CF (τ, s∗))

 dψh
dδ

+

λ ˆ
i∈I

∑
k

∂V (i,e)
∂yk(i)

U ′ (CF (i, e, s∗))dG (i) + (1− λ)
ˆ
i∈I

∑
k

∂V (i,`)
∂yk(i)

U ′ (CF (i, `, s∗))dG (i) +
∂V (τ)
∂yk

U ′ (CF (τ, s∗))

 dyk
dδ

,

where

λ

ˆ
i∈I

∂V (i,e)
∂δ

U ′ (CF (i, e, s∗))dG (i) + (1− λ)
ˆ
i∈I

∂V (i,`)
∂δ

U ′ (CF (i, `, s∗))dG (i) +
∂V (τ)
∂δ

U ′ (CF (τ, s∗)) =

−
ˆ
∂qF

∂δ

U
(
CN (j, s∗)

)
− U

(
CF (j, s∗)

)
U ′ (CF (i, s∗))

 dH (j) +
ˆ
qFEFs

 U ′
(
CF (j, s)

)
U ′ (CF (τ, s∗))

∂CF (j, s)
∂δ

 dH (j) ,

which corresponds to dW
dδ under perfect regulation. The definition of V (i) now corresponds to the

updated utility specification (A11), and it is subject to Equations (A10) and
∑
h ψh = 1.
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Unregulated banks and depositors optimally set

λ

ˆ
i∈I

∂V (i,e)
∂R1

U ′ (CF (i, e, s∗))dG (i) + (1− λ)
ˆ
i∈I

∂V (i,`)
∂R1

U ′ (CF (i, `, s∗))dG (i) = 0

λ

ˆ
i∈I

∂V (i,e)
∂ψh

U ′ (CF (i, e, s∗))dG (i) + (1− λ)
ˆ
i∈I

∂V (i,`)
∂ψh

U ′ (CF (i, `, s∗))dG (i) = 0,∀h

λ

ˆ
i∈I

∂V (i,e)
∂yk(i)

U ′ (CF (i, e, s∗))dG (i) + (1− λ)
ˆ
i∈I

∂V (i,`)
∂yk(i)

U ′ (CF (i, `, s∗))dG (i) = 0,∀i,∀k.

Since T (s) is independent of yk (i), it is always the case that ∂Vm(τ)
∂yk(i) = 0. Therefore, in that case, dW

dδ

corresponds to

dW

dδ
= λ

ˆ
i∈I

∂V (i,e)
∂δ

U ′ (CF (i, e, s∗))dG (i) + (1− λ)
ˆ
i∈I

∂V (i,`)
∂δ

U ′ (CF (i, `, s∗))dG (i)

+
∂V (τ)
∂R1

U ′ (CF (τ, s∗))
dR1
dδ

+
∑
h

∂V (τ)
∂ψh

U ′ (CF (τ, s∗))
dψh
dδ

.

We can express ∂V (τ)
∂R1

exactly as in Equation (A2), and ∂V (τ)
∂ψh

as follows:

∂V (τ)
∂ψh

= qFEFs

[
U ′
(
CF (τ, s)

) ∂CF (τ, s)
∂ψh

]
+
[
U
(
CF (τ, s∗)

)
− U

(
CN (τ, s∗)

)]
πf (s∗) ∂s

∗

∂ψh

+
(
U
(
CF (τ, ŝ)

)
− U

(
CN (τ, ŝ)

))
(1− π) ∂ŝ

∂ψh
f (ŝ) ,

where

qFEFs

[
U ′
(
CF (τ, s)

) ∂CF (τ)
∂ψh

]
=
ˆ ŝ

s
U ′
(
CF (τ, s)

) ∂CF (τ, s)
∂ψh

dF (s)+π
ˆ s∗

ŝ
U ′
(
CF (τ, s)

) ∂CF (τ, s)
∂ψh

dF (s) .

Using an approximation as in Proposition 2, we can write

∂Vm (τ)
∂R1

≈ −∂Es [T (s) + κ (T (s))]
∂R1

and ∂Vm (τ)
∂ψh

≈ −∂Es [T (s) + κ (T (s))]
∂ψh

.

Proof of Proposition 7. (Directional test for δ under an alternative equilibrium selection)
Under the new equilibrium selection assumption, V (i, x, δ, R1) is defined in Equation (A15) and
V (τ, δ, R1) is defined as

V (τ, δ, R1) =
ˆ sG(δ,R1)

s
U
(
CF (τ, s)

)
dF (s) +

ˆ s

sG(δ,R1)
U
(
CN (τ, s)

)
dF (s) .

Therefore, under perfect regulation, we can express dW
dδ as follows:

dW

dδ
= λ

ˆ
i∈I

∂V (i,e,δ,R1)
∂δ

U ′ (CF (i, e, sG))dG (i) + (1− λ)
ˆ
i∈I

∂V (i,`,δ,R1)
∂δ

U ′ (CF (i, `, sG))dG (i) +
∂V (τ,δ,R1)

∂δ

U ′ (CF (τ, sG)) ,

OA-21



where

∂V (i, x, δ, R1)
∂δ

=
(
U
(
CFt

(
i, x, sG

))
− U

(
CNt

(
i, x, sG

)))
f
(
sG
) ∂sG
∂δ︸ ︷︷ ︸

= ∂qF

∂δ

+
ˆ sG

s
U ′
(
CFt (i, x, s)

) ∂CFt (i, x, s)
∂δ

dF (s)︸ ︷︷ ︸
=qFEFs

[
U ′(CFt (i,x,s)) ∂C

F
t

(i,x,s)
∂δ

]
,

since ∂CNt (i,x,s)
∂δ = 0, and where we can write

∂V (τ, δ, R1)
∂δ

=
(
U
(
CF

(
τ, sG

))
− U

(
CN

(
τ, sG

)))
f
(
sG
) ∂sG
∂δ︸ ︷︷ ︸

= ∂qF

∂δ

+
ˆ sG

s
U ′
(
CF (τ, s)

) ∂CF (τ, s)
∂δ

dF (s)︸ ︷︷ ︸
=qFEFs

[
U ′(CF (τ,s)) ∂C

F (τ,s)
∂δ

]
.

Equation (A16) follows immediately.

Proof of Proposition 8. (Directional test for δ incorporating aggregate spillovers) First,
we establish the new failure threshold, which corresponds to Equation (A17) in the text. That is, the
total resources available to a given bank at date 2, given aggregate withdrawals Ω (s), corresponds to
ρ2 (s)

(
ρ1 (s)D0 − θ

(
Ω (s)

)
Ω (s)

)
, which can be expressed as

ρ2 (s)
(
θ
(
Ω (s)

)
D1 (s) +

(
ρ1 (s)− θ

(
Ω (s)

)
R1
)
D0
)
.

As in the baseline model, we can implicitly define a threshold level of deposits, denoted by D̃1 (s) and
given by

D̃1 (s) =
θ
(
Ω (s)

)
R1 − ρ1 (s)

θ
(
Ω (s)

)
− 1

ρ2(s)

D0,

which delimits the failure regions. When banks choose R1 unregulated, they do not internalize that
deposit rates affect θ (·). In that case, we can define two types of thresholds. We denote the thresholds
used by banks ex-ante to choose R1 by ŝ (R1) and s∗ (δ,R1). Those perceived by the deposit insurance
authority, incorporating the effects on aggregate withdrawals Ω (s) = D0R1 − D1 (s), are denoted by
ŝP (R1) and s∗P (δ,R1). In equilibrium, ŝ (R1) = ŝP (R1) and s∗ (δ,R1) = s∗P (δ,R1), even though,
crucially, the partial derivatives of each set of thresholds with respect to R1 are different.
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As above, we can express dW
dδ as follows:

dW

dδ
= λ

ˆ
i∈I

dV P (i,e)
dδ

U ′ (CF (i, e, s∗))dG (i) + (1− λ)
ˆ
i∈I

dV P (i,`)
dδ

U ′ (CF (i, `, s∗))dG (i) +
dV P (τ)
dδ

U ′ (CF (τ, s∗))

= λ

ˆ
i∈I

∂V P (i,e)
∂δ

U ′ (CF (i, e, s∗))dG (i) + (1− λ)
ˆ
i∈I

∂V P (i,`)
∂δ

U ′ (CF (i, `, s∗))dG (i) +
∂V P (τ)
∂δ

U ′ (CF (τ, s∗))

+

λ ˆ
i∈I

∂V P (i,e)
∂R1

U ′ (CF (i, e, s∗))dG (i) + (1− λ)
ˆ
i∈I

∂V P (i,`)
∂R1

U ′ (CF (i, `, s∗))dG (i) +
∂V P (τ)
∂R1

U ′ (CF (τ, s∗))

 dR1
dδ

,

where we use the P notation to emphasize that V P (i, x) and V P (τ) are calculated from the perspective
of a planner who uses thresholds ŝP (R1) and s∗P (δ,R1), which account for equilibrium spillovers. Note
that the first two terms are given by

λ

ˆ
i∈I

∂V P (i,e)
∂δ

U ′ (CF (i, e, s∗))dG (i) + (1− λ)
ˆ
i∈I

∂V P (i,`)
∂δ

U ′ (CF (i, `, s∗))dG (i) +
∂V P (τ)
∂δ

U ′ (CF (τ, s∗)) =

ˆ
qFEFs

U ′
(
CF (j, s)

)
U ′ (CF (j, s∗))

∂CF (j, s)
∂δ

 dH (j) + πf (s∗) ∂s
∗

∂δ︸ ︷︷ ︸
= ∂qF

∂δ

ˆ U
(
CF (j, s∗)

)
− U

(
CN (j, s∗)

)
U ′ (CF (j, s∗))

 dH (j) .

We can express

λ

ˆ
i∈I

∂V P (i,e)
∂R1

U ′ (CF (i, e, s∗))dG (i) + (1− λ)
ˆ
i∈I

∂V P (i,`)
∂R1

U ′ (CF (i, `, s∗))dG (i) =

Eλ

ˆ
i∈I

 ∂V P (i,x)
∂R1

U ′ (CF (i, x, s∗)) −
∂V (i,x)
∂R1

U ′ (CF (i, x, s∗))

 dG (i)


as follows:41

λ

ˆ
i∈I

∂V P (i,e)
∂R1

U ′ (CF (i, e, s∗))dG (i) + (1− λ)
ˆ
i∈I

∂V P (i,`)
∂R1

U ′ (CF (i, `, s∗))dG (i) =

Eλ

ˆ
i∈I

U
(
CFt (i, x, s∗)

)
− U

(
CNt (i, x, s∗)

)
U ′ (CF (i, x, s∗))

πf (s∗)
(
∂s∗P
∂R1

− ∂s∗

∂R1

)
dG (i)


+
ˆ
i∈I

U
(
CFt (i, x, ŝ)

)
− U

(
CNt (i, x, ŝ)

)
U ′ (CF (i, x, s∗))

 (1− π) f (ŝP )
(
∂ŝP
∂R1

− ∂ŝ

∂R1

)
dG (i)

where we use the fact that for depositors Eλ

[´
i∈I

∂Es[U(Ct(i,s))]
∂R1

U ′(CF (i,s∗)) dG (i)
]

= 0. Similarly, we can express

41Here we slightly abuse notation using Eλ [·] = λ
´
. . . dG (i) + (1− λ)

´
. . . dG (i).
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∂V P (τ)
∂R1

as follows:

∂V P (τ)
∂R1

= qFEFs

[
U ′
(
CF (τ, s)

) ∂CF (τ, s)
∂R1

]
+
(
U
(
CF (τ, s∗)

)
− U

(
CN (τ, s∗)

))
πf (s∗) ∂s

∗
P

∂R1

+
[
U
(
CF (τ, ŝ)

)
− U

(
CN (τ, ŝ)

)]
(1− π) ∂ŝP

∂R1
f (ŝ) ,

where
qFEFs

[
U ′
(
CF (τ, s)

)
∂CF (τ,s)
∂R1

]
=
´ ŝ
s U

′
(
CF (τ, s)

)
∂CF (τ,s)
∂R1

dF (s) + π
´ s∗
ŝ U ′

(
CF (τ, s)

)
∂CF (τ,s)
∂R1

dF (s) .
Using an approximation as in Proposition 2, we can write ∂Vm(τ,s)

∂R1
≈ −∂Es[T (s)+κ(T (s))]

∂R1
.

Therefore, under perfect regulation, dWdδ =
´
i∈I

∂V P (i)
∂δ

U ′(CF (i,s∗))dG (i) +
∂V P (τ)
∂δ

U ′(CF (τ,s∗)) , which corresponds to
Equation (A18). The optimal regulation of banks, set so that

λ

ˆ
i∈I

∂V P (i,e)
∂R1

U ′ (CF (i, e, s∗))dG (i) + (1− λ)
ˆ
i∈I

∂V P (i,`)
∂R1

U ′ (CF (i, `, s∗))dG (i) +
∂V P (τ)
∂R1

U ′ (CF (τ, s∗)) = 0,

now incorporates a correction that accounts for aggregate spillovers. The optimal regulation is set so
that banks internalize their fiscal externality and their aggregate spillovers.
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E Additional Results

E.1 Idiosyncratic Risk: Mutual Insurance

In this subsection, we describe one tractable way to introduce idiosyncratic risk in our model. We begin
by considering an environment in which there is a continuum of banks of the form described in Section 2
of the paper. We index an individual bank by n. The state s continues to denote aggregate uncertainty,
as in the baseline model. We assume that these banks are ex-identical, but we assume that at date 1 a
share π of banks will fail whenever the state s is in multiple equilibria region, [ŝ, s∗].

Hence, in this extension of the model, whenever s ∈ [s, ŝ], all banks fail, and when s ∈ [ŝ, s∗], a share
π of banks fail. Formally, we can express the change in social welfare for a given depositor/taxpayer
associated with bank n induced by a marginal change in coverage for bank, dV (j,δ,R1;n)

dδ , as follows:

dV (j, δ, R1;n)
dδ

=

=qFEFs
[
U ′(CF (j,s)) ∂CF∂δ (j,s)

]
︷ ︸︸ ︷ˆ ŝ

s
U ′
(
CF (j, s)

) ∂CF (j, s)
∂δ

dF (s) + IF (n)
ˆ s∗

ŝ
U ′
(
CF (j, s)

) ∂CF (j, s)
∂δ

dF (s)

+
[
U
(
CF (j, s∗)

)
− U

(
CN (j, s∗)

)]
IF (n) f (s∗) ∂s

∗

∂δ
,

where IF (n) corresponds to a failure indicator for bank n. When aggregating across all banks, we can
express the change in social welfare induced by a marginal change in the level of deposit insurance
coverage by

dW

dδ
=
ˆ
dW

dδ
(n) dM (n) ,

where dW
dδ (n) =

´
ω (j) dVm(j,δ,R1;n)

dδ dH (j), which takes the exact same form as in Proposition 1, after
defining qF as

qF =
ˆ ŝ

s
dF (s)︸ ︷︷ ︸
F (ŝ)

+
ˆ

IF (n) dM (n)︸ ︷︷ ︸
π

ˆ s∗

ŝ
dF (s)︸ ︷︷ ︸

F (s∗)−F (ŝ)

,

where now π =
´
IF (n) dM (n). Given our assumptions, the thresholds ŝ and s∗ are identical for

all banks, while qF still corresponds to the probability of bank failure. In the augmented model, the
probability of failure has a systemic component, captured by F (ŝ), and one that purely arises from
fragility, π, in the region of multiple equilibria, F (s∗)− F (ŝ).

The key difference between this extension with idiosyncratic run risk and the baseline model emerges
when characterizing the funding shortfall, since now there is the possibility of raising funds from non-
failed banks to cover such shortfall. We define a new variable ϑ (s), which corresponds to the share of
failed banks for a given realization of s, given by

ϑ (s) =

1, if s ≤ s < ŝ (R1)

π, if ŝ (R1) ≤ s < s∗ (R1) .
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In this case, we can then express the funding shortfall as

T (s) = max
{
ϑ (s)

(ˆ
i∈I

min {D0 (i)R1, δ} dG (i)− χ (s) ρ1 (s)D0

)
− (1− ϑ (s)) τ e, 0

}
,

where τ e corresponds to the funds levied from non-failed banks at date 1, which we take for now as a
primitive, but whose determination we discuss below.

In this new environment, it will be the case that the failure thresholds ŝ and s∗ are functions of τ e.
Formally, now the failure regions are

Bank Failure, if ρ2 (s)
(
ρ1 (s)

(
1− τ f

)
D0 − Ω (s)− τ e

)
< D1 (s)

No Bank Failure, if ρ2 (s)
(
ρ1 (s)

(
1− τ f

)
D0 − Ω (s)− τ e

)
≥ D1 (s) .

Under the assumption that τ e is uniform across, it follows immediately that the thresholds ŝ and s∗

are identical for all banks. For instance, we could solve for the value of τ e that eliminates the funding
shortfall, given by

τ e = ϑ (s)
1− ϑ (s)

(
max

{ˆ
i∈I

min {D0 (i)R1, δ} dG (i)− χ (s) ρ1 (s)D0

}
, 0
)
. (A19)

Equation (A19) highlights that funding shortfalls are easier to cover when the share of failed banks
is smaller. In particular, when ϑ (s) → 1

2 , half the banks fail, so τ e simply equals the funding shortfall
for an individual banks.42 When ϑ (s)→ 0, a small τ e is enough to eliminate the funding shortfall, while
when ϑ (s) → 1, τ e becomes increasingly large. At this point, one could go back and solve for ŝ and s∗

as a function of τ e. Importantly, for a given τ e, our characterization of dWdδ remains unchanged, and the
only effect of allowing for mutual insurance across banks ex-post is captured by the funding shortfall,
T (s), in particular via qT+|F .

E.2 Aggregate Risk: Deposit Insurance Fund

In this subsection, we describe a tractable way to explicitly introduce a deposit insurance fund in our
environment. We assume that banks must set aside a fraction τ f of their initial deposits to be invested
in a fund. Therefore, the date 0 investment of a bank becomes

(
1− τ f

)
D0. Consequently, bank failure

is determined in this case by

Bank Failure, if ρ2 (s)
(
ρ1 (s)

(
1− τ f

)
D0 − Ω (s)

)
< D1 (s)

No Bank Failure, if ρ2 (s)
(
ρ1 (s)

(
1− τ f

)
D0 − Ω (s)

)
≥ D1 (s) ,

42See Fernandez-Villaverde et al. (2021) for a related argument in which mutual insurance is sufficient to eliminate runs
when risk is idiosyncratic.
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which is the counterpart of Equation (3) in the text. Following the same steps as in the baseline model,
the new deposit failure threshold is now given by

D̃1 (s) =


(R1−ρ1(s)(1−τf))D0

1− 1
ρ2(s)

, if ρ2 (s) > 1

∞, if ρ2 (s) ≤ 1,

which is the counterpart of Equation (7) in the text. It follows immediately that the thresholds ŝ and
s∗ are now increasing functions of τ f . That is, the higher the amount contributed to the deposit fund,
the higher the probability of failure.

We assume that the return on the resources held in the fund is ρF1 (s). In this case, the funding
shortfall T (s) takes the form:

T (s) = max
{ˆ

i∈I
min {D0 (i)R1, δ} dG (i)− χ (s) ρ1 (s)

(
1− τ f

)
D0 − ρf1 (s) τ fD0, 0

}
. (A20)

Compared to its counterpart in the text in Equation (18), now the funds available after liquidation are
only χ (s) ρ1 (s)

(
1− τ f

)
D0, but there are ρf1 (s) τ fD0 funds available through the fund.43 A similar

adjustment applies to αF (s) and αN (s).
It is evident from Equation (A20) that whenever

χ (s) ρ1 (s) = ρf1 (s) ,

the funding shortfall would be equivalent with or without a deposit insurance fund. In that case, for a
given τ f , our characterization of dWdδ remains unchanged, after accounting for the allegedly small impact
of τ f on ŝ and s∗.

If the return on the deposit insurance fund is too low (χ (s) ρ1 (s) > ρf1 (s)), and supposing that an
increase in level of coverage is associated with a higher τ f , there would be an additional cost to increasing
the level of coverage. In any case, there is scope to explore further any issues related to the financing of
deposit insurance obligations.

For reference, Figure OA-1 shows the evolution between 2000 and 2020 of i) the balance of the
deposit insurance fund (in nominal terms) in the US and ii) the reserve ratio, which corresponds to
the ratio between the balance of the deposit insurance fund and the total estimated insured deposits of
the industry. In 2009 and 2010, the fund had a negative balance, although part of this fact was due
to provisions to cover expected future losses. However, note that the ultimate backstop of the deposit
insurance fund is a line of credit from the Treasury.44 The Dodd-Frank Act of 2010 sets a minimum
reserve ratio of 1.35%. Whenever the reserve ratio falls (or is expected to fall) below this threshold, the
FDIC must adopt a restoration plan to return to this level within 8 years.45

43This formulation is valid for a representative bank. With multiple banks, it is necessary to model carefully the correlation
of shocks across banks and understand whether bank failures are isolated events or systemic.

44See https://www.nytimes.com/2009/11/25/business/economy/25fdic.html for a discussion of the 2009 episode.
45See https://www.fdic.gov/deposit/insurance/fund.html for more information on the management of the deposit

insurance fund.
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Note: Figure OA-1 shows the evolution between 2000 and 2020 of i) the balance of the deposit insurance fund (in nominal
terms) in the US and ii) the reserve ratio, which corresponds to the ratio between the balance of the deposit insurance fund
and the total estimated insured deposits of the industry. Data are from the FDIC.

Figure OA-1: Evolution of Deposit Insurance Fund

E.3 Equivalence of Traditional and Generalized Social Welfare Weights

In this subsection, we show that there is a one-to-one mapping between traditional welfare weights and
generalized social welfare weights. First, for completeness, we reproduce here Equation (21) in the text

after substituting dVm(j,δ,R1)
dδ =

dV (j,δ,R1)
dδ

U ′(CF (j,s∗)) :

dW

dδ
=
ˆ
ω (j)

dV (j,δ,R1)
dδ

U ′ (CF (j, s∗))dH (j) . (A21)

Alternatively, we can identify social welfare with a weighted sum of depositors’ and taxpayers’ ex-
ante expected utility. We denote traditional welfare weights by θ (j) = {θ (i) , θ (τ)}. In this case, social
welfare W (δ) formally corresponds to

W (δ) =
ˆ
θ (j)V (j, δ, R1) dH (j)

= λ

ˆ
i∈I

θ (i)V (i, e, δ, R1) dG (i) + (1− λ)
ˆ
i∈I

θ (i)V (i, `, δ, R1) dG (i)︸ ︷︷ ︸
Depositors

+ θ (τ)V (τ, δ, R1)︸ ︷︷ ︸
Taxpayers

.

In this case, we can express dW
dδ as follows:

dW

dδ
=
ˆ
θ (j) dV (j, δ, R1)

dδ
dH (j) . (A22)

Figure OA-12 on page OA-43 illustrates the magnitudes taken by the traditional welfare weights in the
context of our quantitative model.
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Remark. (Equivalence of traditional and generalized social welfare weights) A direct comparison of
Equations (A21) and (A22) concludes that the value of dWdδ under both approaches is identical when

θ (j) = ω (j)
U ′ (CF (j, s∗)) . (A23)

Equation (A23) implies that using traditional utilitarian weights (θ (j) = 1) is equivalent to choosing
generalized welfare weights ω (j) = U ′

(
CF (j, s∗)

)
. Similarly, it also implies that using uniform

generalized weights (ω (j) = 1) is equivalent to using traditional weights of the form θ (j) = 1
U ′(CF (j,s∗)) .

In that sense, using generalized welfare weights is equivalent to working with a set of endogenous
traditional welfare weights that possible depend on the early/late status of a depositor. Note that
once we select a set of generalized weights and find the optimal level of coverage and the equilibrium
allocation associated with those weights, it is possible to use Equation (A23) to find the set of θ (j) that
would deliver the same allocation.

Finally, note that we could have chosen a state other than s∗ to compute the money-metric
normalization. In that case, denoting the arbitrary state by š, the normalized welfare change is given
by dVm(j,δ,R1)

dδ =
dV (j,δ,R1)

dδ

U ′(CF (j,š)) , and the counterpart of Equation (22) becomes

dW

dδ
=
ˆ
ω (j)

−
∂qF

∂δ
m (j, s∗)

U
(
CN (j, s∗)

)
− U

(
CF (j, s∗)

)
U ′ (CF (j, s∗))


︸ ︷︷ ︸

Marginal Benefit

+ qFEFs

[
m (j, s) ∂C

F (j, s)
∂δ

]
︸ ︷︷ ︸

Marginal Cost

 dH (j) ,

where m (j, s) = U ′(CF (j,s))
U ′(CF (j,š)) . In this case, we simply have to normalize m (j, s) by the reference state. It

is evident that Proposition 2 remains valid in this case.

E.4 Dynamic Stochastic Generalized Welfare Weights

In this subsection, we provide an alternative approach that leads to the exact same characterization
of Equation (26) in Proposition 2. This derivation relies on a welfare assessment based on dynamic
stochastic generalized social marginal social welfare weights, introduced in Dávila and Schaab (2021).

Proposition 9. (Alternative directional test based on bank-level aggregates) a) Using dynamic stochastic
generalized social marginal social welfare weights, it is possible to decompose the change in social welfare
induced by a marginal change in the level of deposit insurance coverage δ, dW

dδ , as follows:

dW

dδ
= ΞAE + ΞRS + ΞRD,

where the terms ΞAE, ΞRS, and ΞRD are respectively defined in Equations (A26), (A27), and (A25)
below, capture aggregate efficiency, risk-sharing, and redistribution.
b) When i) the individual component of the dynamic-stochastic weights is uniform across agents, i.e.,
ω̃ (j) = 1, ii) the stochastic components of the dynamic-stochastic weights is invariant across agents and
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set to 1, i.e., ω̃Nt (j, s∗) = ω̃Ft (j, s∗) = ω̃t (j, s) = 1, then

dW

dδ
= −∂q

F

∂δ

ˆ (
CN (j, s∗)− CF (j, s∗)

)
dH (j) + qFEFs

[ˆ
∂CF (j, s)

∂δ
dH (j)

]
, (A24)

which is the exact counterpart of Equation (26) in Proposition 2.

The main difference between Proposition 2 and Proposition 9 is that Proposition 2 describes an
approximation for a planner with generalized welfare weights — see Saez and Stantcheva (2016) —
while the characterization of dW

dδ in Proposition 9 is exact for a particular set of dynamic stochastic
generalized welfare weights — see Dávila and Schaab (2021). Hence, the results in Section 4.1 can be
equally interpreted through both approaches.

Proof of Proposition 9. (Alternative directional test based on bank-level aggregates) a)
We can start from an instantaneous social welfare functions, so ISWF =

´
V (j, δ, R1) dH (j), where

V (τ, δ, R1) =
ˆ ŝ(R1)

s
ζ (j, s)U

(
CF (τ, s)

)
dF (s)

+
ˆ s∗(δ,R1)

ŝ(R1)

(
πζ (j, s)U

(
CF (τ, s)

)
+ (1− π) ζ (j, s)U

(
CN (τ, s)

))
dF (s)

+
ˆ s

s∗(δ,R1)
ζ (j, s)U

(
CN (τ, s)

)
dF (s) ,

where ζ (j, s) denotes instantaneous Pareto weights. Given this ISWF, we can express dV (j,δ,R1)
dδ =

dEs[ζ(j,s)U(Ct(j,s))]
dδ as

dV (j, δ, R1)
dδ

=

=qFEFs
[
ζ(j,s)U ′(CFt (j,s)) ∂C

F
t (j,s)
∂δ

]
︷ ︸︸ ︷ˆ ŝ

s
ζ (j, s)U ′

(
CFt (j, s)

) ∂CFt (j, s)
∂δ

dF (s) + π

ˆ s∗

ŝ
ζ (j, s)U ′

(
CFt (j, s)

) ∂CFt (j, s)
∂δ

dF (s)

+
[
ζ− (j, s∗)U

(
CFt (j, s∗)

)
− ζ+ (j, s∗)U

(
CNt (j, s∗)

)]
πf (s∗) ∂s

∗

∂δ
,

Now, transforming instantaneous Pareto weights (defined over utilities) into dynamic-stochastic weights
(defined over consumption) we can express dV (j,δ,R1)

dδ as

dṼ (j, δ, R1)
dδ

= qFEFs

[
ωt (j, s) ∂C

F
t (j, s)
∂δ

]
+
[
ωFt (j, s∗)CFt (j, s∗)− ωNt (j, s∗)CNt (j, s∗)

] ∂qF
∂δ

,

where we define ∂qF

∂δ = πf (s∗) ∂s∗∂δ , ωt (j, s) = ζ (j, s)U ′
(
CFt (j, s)

)
, ωFt (j, s∗) = ζ− (j, s∗) U(CFt (j,s∗))

CFt (j,s∗) , and

ωNt (j, s∗) = ζ+ (j, s∗) U(CNt (j,s∗))
CNt (j,s∗) . Without loss of generality — see Lemma 1 of Dávila and Schaab (2021)

— we can decompose the dynamic stochastic weights into an individual component and a stochastic
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component, as follows:

ωNt (j, s∗) = ω̃ (j) ω̃Nt (j, s∗) , ωFt (j, s∗) = ω̃ (j) ω̃Ft (j, s∗) , ωt (j, s) = ω̃ (j) ω̃t (j, s) .

Hence, under the assumption that
´
dH(j) = 1, which may require a normalization, we can now express

a welfare assessment dW
dδ as follows:

dW

dδ
=
ˆ
ω̃ (j) dṼ (j, δ, R1)

dδ
dH (j) = Ej

[
ω̃ (j) dṼ (j, δ, R1)

dδ

]
=
ˆ
dṼ (j, δ, R1)

dδ
dH (j) + ΞRD,

where we use the fact that
´
dH (j) = 1 and where

ΞRD = Covj

[
ω̃ (j) , dṼ (j, δ, R1)

dδ

]
. (A25)

Note that we can write
´ dṼ (j,δ,R1)

dδ dH (j) = Ej
[
dṼ (j,δ,R1)

dδ

]
as

ˆ
dṼ (j, δ, R1)

dδ
dH (j) = −∂q

F

∂δ

(
Ej
[
ω̃Nt (j, s∗)CNt (j, s∗)

]
− Ej

[
ω̃Ft (j, s∗)CFt (j, s∗)

])
+ qFEj

[
EFs

[
ω̃t (j, s) ∂C

F
t (j, s)
∂δ

]]
= ΞAE + ΞRS ,

where

ΞAE = −∂q
F

∂δ

(
Ej
[
ω̃Nt (j, s∗)

]
Ej
[
CNt (j, s∗)

]
− Ej

[
ω̃Ft (j, s∗)

]
Ej
[
CFt (j, s∗)

])
+ qFEFs

[
Ej [ω̃t (j, s)]Ej

[
∂CFt (j, s)

∂δ

]]
(A26)

ΞRS = −∂q
F

∂δ

(
Covj

[
ω̃Nt (j, s∗) , CNt (j, s∗)

]
− Cov

[
ω̃Ft (j, s∗) , CFt (j, s∗)

])
+ qFEFs

[
Covj

[
ω̃t (j, s) , ∂C

F
t (j, s)
∂δ

]]
. (A27)

b) The results follow immediately using the definitions of ΞAE , ΞRS , and ΞRD. When ω̃ (j) = 1, ΞRD = 0.
And when ω̃Nt (j, s∗) = ω̃Ft (j, s∗) and ω̃t (j, s) = 1, ΞRS = 0 and ΞAE is exactly given by Equation (A24).

E.5 Directional Test: General Case

In this subsection, we provide a directional test for the level of coverage under minimal assumptions.
While using the Diamond and Dybvig (1983) framework allows us to completely characterize a fully
specified model, here we show that our insights extend more generally. As in the text, we focus on
characterizing the welfare impact of a marginal change in the level of coverage under perfect regulation
or when banks do not respond to the level of coverage. When banks are unregulated, our characterization
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needs to be augmented by the fiscal externality component(s).
Consider an economy in which V (j) denotes the utility of (early or late) depositors or taxpayers.

We can then write

V (j) = Es [Uj (C (j, δ, s) ; s)] =
ˆ
F
Uj
(
CF (j, δ, s) ; s

)
dF (s) +

ˆ
N
Uj
(
CN (j, δ, s) ; s

)
dF (s) ,

where F and N denote the set of failure and no-failure states, respectively. The value of C (j, δ, s)
incorporates the final consumption by agent j in state s. By making utility state-dependent, we can
implicitly account for early and late types.

Once we define the probability of bank failure as q (δ) =
´
F dF (s), we can express the change in

individual welfare as

dV (j)
dδ

= −∂q
F

∂δ

(
Uj
(
CN (j, δ, s∗) ; s∗

)
− Uj

(
CF (j, δ, s∗) ; s∗

))
+ qFEF

[
U ′j

(
CF (j, δ, s) ; s

) ∂CF (j, δ, s)
∂δ

]

+
(
1− qF

)
EN

[
U ′j

(
CN (j, δ, s) ; s

) ∂CN (j, δ, s)
∂δ

]
.

In money-metric form, dVm(j,δ,R1)
dδ =

dV (j)
dδ

U ′j(CF (j,δ,s∗);s∗) is given by

dVm (j, δ, R1)
dδ

= −∂q
F

∂δ

Uj
(
CN (j, δ, s∗) ; s∗

)
− Uj

(
CF (j, δ, s∗) ; s∗

)
U ′j (CF (j, δ, s∗) ; s∗)


+ qFEF

 U ′j

(
CF (j, δ, s) ; s

)
U ′j (CF (j, δ, s∗) ; s∗)

∂CF (j, δ, s)
∂δ


+
(
1− qF

)
EN

 U ′j
(
CN (j, δ, s) ; s

)
U ′j (CF (j, δ, s∗) ; s∗)

∂CN (j, δ, s)
∂δ

 .
Since CN (·) does not depend on δ directly, we can express dW

dδ as follows:

dW

dδ
=
ˆ
−∂q

F

∂δ

Uj
(
CN (j, δ, s∗) ; s∗

)
− Uj

(
CF (j, δ, s∗) ; s∗

)
U ′j (CF (j, δ, s∗) ; s∗)

 dH (j)

+
ˆ
qFEF

 U ′j

(
CF (j, δ, s) ; s

)
U ′j (CF (j, δ, s∗) ; s∗)

∂CF (j, δ, s)
∂δ

 dH (j) . (A28)

Equation (A28) is a direct generalization of Equation (22) in the text.
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F Quantitative Application: Additional Material

F.1 Measurement with CDS data

Data Description For our calculations, we use Markit CDS data, as distributed by Wharton Research
Data Services (WRDS). Our full sample includes daily data from January 2006 until December 2014. We
focus on five-year CDS spreads (these are the most liquid) on the following banks (ticker in parentheses):
Bank of America Corp (BACORP), Bank of NY Mellon (BK), Citigroup Inc (C), Goldman Sachs (GS),
JP Morgan Chase (JPM), Merrill Lynch & Co Inc (MER), Morgan Stanley (MWD), State Street Corp
(STT), Wachovia Corp (WB), and Wells Fargo & Co (WFC). We exclusively consider CDS contracts
with CR (Complete Restructuring) as a restructuring clause, so any restructuring event counts as a
bank failure for our purposes. Similar results arise when using restructuring clauses MR (Modified
Restructuring), MM (Modified Modified Restructuring), or XR (No Restructuring). We only consider
CDS contracts on Senior Unsecured Debt and use the recovery rate provided by Markit.

Measurement The implied probability of failure can be read from spreads and recovery rates provided
one is willing to make some assumptions. We use a simple constant hazard rate model (Hull, 2013), to
calculate implied yearly default probabilities as follows:

Implied Default Probability = 5 Year Spread
1− Recovery Rate .

On October 3, 2008, President George W. Bush signed the Emergency Economic Stabilization Act
of 2008, raising the limit on federal deposit insurance coverage from $100,000 to $250,000 per depositor.
Initially, this change was temporary through the end of 2010, but it was made permanent by the Dodd-
Frank Act in July 2010. Our discussion in the text is based on the jumps in the default probability
caused by changes in the level of deposit insurance on October 3, 2008. We also gauge our measures by
the impact of the Temporary Liquidity Guarantee Program (TLGP), announced on October 14, 2008,
in which the FDIC guaranteed in full noninterest-bearing transaction accounts.46

F.2 Model-Based Quantification: Matching Sufficient Statistics

Table OA-1 compares the sufficient statistics used in the direct measurement approach in Section 4.1
with the sufficient statistics implied by our calibration of the structural model in Section 4.2. The value
of

dW
dδ

G
implied by Table 1 using the direct measurement approach is

dW
dδ

G
= $4.5×10−4. The value of

dW
dδ

G

implied by Table OA-1 using the model-based quantification is
dW
dδ

G
= $3.9 × 10−4. We have made sure

that the calibration errs on the side of displaying somewhat lower marginal benefits than in the direct
measurement approach to be able to robustly argue that the model implies a large level of coverage.

46See https://www.fdic.gov/regulations/resources/TLGP/index.html for a description of the TLGP.
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Table OA-1: Sufficient Statistics as Calibration Targets

Variable Direct Measurement Calibrated Model
qF 0.025 0.0249

Mg. Benefit
∂ log qF
∂δ −2× 10−6 −1.96× 10−6

´ (CN (j,s∗)−CF (j,s∗))dH(j)/G $13,809 $12,700

Mg. Cost
qT

+|F 1 1
EFs [κ′ (·) |T > 0] 0.15 0.15´

i∈PI dG(i)/G 0.064 0.064

Note: To compare with Table 1, note that − 0.3
150,000 = −2 × 10−6. The value of

dW
dδ

G
implied by Table 1 using the direct

measurement approach is
dW
dδ

G
= $4.5×10−4. The value of

dW
dδ

G
implied by Table OA-1 using the model-based quantification

is
dW
dδ

G
= $3.9× 10−4.

F.3 Model-Based Quantification: Additional Material

The left panel in Figure OA-2 shows the share of insured and uninsured deposits, respectively given by
´

min {D0 (i)R1, δ} dG (i)
D0R1

and
´

max {D0 (i)R1 − δ, 0} dG (i)
D0R1

.

The right panel in Figure OA-2 shows the share of fully insured accounts/depositors and partially insured
accounts/depositors, respectively given by

ˆ
i∈FI

dG (i) and
ˆ
i∈PI

dG (i) ,

where FI = { i|D0 (i)R1 > δ} and PI = { i|D0 (i)R1 > δ}. The fact that the distribution of depositors
is heavily right-skewed is necessary to be able to match at the same time (when δ = 1) a share of partially
insured accounts of 6.4% and share of insured deposits of 62%.

Figures OA-3 and OA-4 are the counterparts in the calibrated model of Figures 4 and 5 in the text.
Figure OA-3 shows how s∗ (δ,R1) and ŝ (R1) vary as a function of the level of deposit insurance coverage
δ. The left panel in Figure OA-4 shows the recovery rate on uninsured deposits in case of failure, αF (s),
as well as the funding shortfall, T (s), for different values of the realizations of the state s when δ = 1.
The right panel in Figure OA-4 shows the additional gross return earned by the deposits that stay within
the bank until date 2, αN (s).

The left panel in Figure OA-5 shows the average marginal cost of public funds in failure states,
EFs [κ′ (T (s))], and in failure states in which the funding shortfall is positive, EFs [κ′ (T (s)) |T (s) > 0],
as a function of the level of deposit insurance coverage δ. The right panel in Figure OA-5 shows the
unconditional probability of a positive funding shortfall, qT+ , and the probability of a positive funding
shortfall condition on a bank failure taking place, as a function of the level of deposit insurance coverage
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Figure OA-2: Share of Insured/Uninsured Deposits and Fully/Partially Insured Accounts
Note: The left panel in Figure OA-2 shows the share of insured deposits and its complement, the share of uninsured
deposits, as a function of the level of deposit insurance coverage δ. The right panel in Figure OA-2 shows the share of fully
insured accounts/depositors and its complement, the share of partially insured accounts/depositors, as a function of the
level of deposit insurance coverage δ.

δ. Formally,

qT+ =
ˆ ŝ

s
I [T (s) > 0] dF (s) + π

ˆ s∗

ŝ
I [T (s) > 0] dF (s)

qT+|F =
´ ŝ
s I [T (s) > 0] dF (s) + π

´ s∗
ŝ I [T (s) > 0] dF (s)´ ŝ

s dF (s) + π
´ s∗
ŝ dF (s)

,

where I [·] denotes the indicator function. Figure OA-6 integrates over dW
dδ , as defined in Equation (26),

to build a measure of social welfare. Figure OA-6 uses the normalization W (0) = 0.

F.4 Sensitivity Analysis: Sunspot Probability

Figure OA-8 illustrates how changes in the level of confidence in the economy, captured by the sunspot
probability π (a high value of π has the interpretation of low confidence), affect the desirability of
changing the level of coverage. Given our calibration, changes in π have a very strong impact on dW

dδ

and, ultimately, on the optimal level of coverage. When π is high, the likelihood of a run in the multiple
equilibria region is large, which makes increasing the level of coverage a very powerful tool, increasing
the marginal benefit of higher coverage. While the marginal cost of increasing δ also grows, because —
all else equal — failure is more likely, the increase in the marginal benefit is substantially larger, which
implies that the optimal level of coverage is in increasing in π.

F.5 Sensitivity Analysis: Banks’ Riskiness

By studying how the predictions of our framework change with the riskiness of banks’ investments we aim
to capture different business cycle conditions, in the form of a risk shock to banks’ investment. Figure
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Figure OA-3: Regions Defined by s∗ (δ,R1) and ŝ (R1)
Note: Figure OA-3 shows the thresholds s∗ (δ,R1) and ŝ (R1) as a function of the level of deposit insurance coverage δ.
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Figure OA-4: Depositors’ Equilibrium Consumption Determinants and Funding Shortfall
Note: The left panel in Figure OA-4 shows the recovery rate on uninsured deposits in case of failure, αF (s), as well as
the funding shortfall, T (s), as a function of the realizations of the state s when δ = 1. The right panel in Figure OA-4
shows the additional gross return earned by the deposits that stay within the bank until date 2, αN (s), as a function of
the realizations of the state s when δ = 1.
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Figure OA-5: Marginal Cost of Public Funds/Probability of Funding Shortfall
Note: The left panel in Figure OA-5 shows the average marginal cost of public funds in failure states, EFs [κ′ (T (s))], and
in failure states in which the funding shortfall is positive, EFs [κ′ (T (s)) |T (s) > 0], as a function of the level of deposit
insurance coverage δ. The right panel in Figure OA-5 shows the unconditional probability of a positive funding shortfall,
qT+ , and the probability of a positive funding shortfall condition on a bank failure taking place, as a function of the level
of deposit insurance coverage δ.
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Figure OA-6: Social Welfare W (δ)
Note: Figure OA-6 integrates over dW

dδ
, as defined in Equation (26), to build a measure of social welfare. This figure uses

the normalization: W (0) = 0.
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Figure OA-7: Sensitivity Analysis: Banks’ Riskiness (σs)
Note: The top left panel in Figure OA-9 shows the change in social welfare induced by a marginal change in the level
of deposit insurance coverage, dW

dδ
, as described in Equation (26), for σs ∈ {0.028, 0.033, 0.038}. The top middle and

right panels respectively show the welfare change for depositors, λ
´ dVm(i,e,δ,R1)

dδ
dG (i) + (1− λ)

´ dVm(i,`,δ,R1)
dδ

dG (i), and
taxpayers, dVm(τ,δ,R1)

dδ
. The bottom left panel shows the probability of failure, qF (δ,R1), and the probability of fundamental

failure F (ŝ (R1)). The bottom middle and right panels show the marginal benefit and marginal cost of increasing the level
of coverage, given by − ∂q

F

∂δ

´ (
CN (j, s∗)− CF (j, s∗)

)
dH (j) and qFEFs

[´ ∂CF (j,s)
∂δ

dH (j)
]
, respectively. The optimal levels

of coverage are δ? = 5.62, δ? = 3.81, and δ? = 2.97 for σs = 0.028, σs = 0.033, and σs = 0.038, respectively.
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Figure OA-8: Sensitivity Analysis: Sunspot Probability (π)
Note: The top left panel in Figure OA-8 shows the change in social welfare induced by a marginal change in the level of
deposit insurance coverage, dW

dδ
, as described in Equation (26), for π ∈ {0.2, 0.3, 0.4}. The top middle and right panels

respectively show the welfare change for depositors, λ
´ dVm(i,e,δ,R1)

dδ
dG (i) + (1− λ)

´ dVm(i,e,δ,R1)
dδ

dG (i), and taxpayers,
dVm(τ,δ,R1)

dδ
. The bottom left panel shows the probability of failure, qF (δ,R1), and the probability of fundamental failure

F (ŝ (R1)). The bottom middle and right panels show the marginal benefit and marginal cost of increasing the level of
coverage, given by − ∂q

F

∂δ

´ (
CN (j, s∗)− CF (j, s∗)

)
dH (j) and qFEFs

[´ ∂CF (j,s)
∂δ

dH (j)
]
, respectively. The optimal levels

of coverage are δ? = 2.1, δ? = 3.81, and δ? = 7.24 for π = 0.2, π = 0.3, and π = 0.4, respectively.

OA-7 illustrates how changes in the level of σs affect the desirability of changing the level of coverage.
A higher value of σs unambiguously reduces the welfare of taxpayers, since negative realizations of s,
in which bank failures are more prevalent and costly, are more likely to occur. However, a higher value
of σs has an ambiguous impact on depositors’ welfare, depending on the level of δ. When the level of
coverage is low, the increased volatility generates worse and more frequent failures, lowering depositors’
welfare (for scaling reasons, this region is not visible in Figure OA-7). When the level of coverage is high,
depositors benefit from the increase in volatility, since they receive all the upside when bank returns are
high, but are shielded from bank failure by the generous level of coverage. Given our calibration, the net
welfare effects on taxpayers’ and depositors’ imply that high riskiness of banks’ investments is associated
with lower levels of the optimal coverage limit.

F.6 Sensitivity Analysis: Cost of Public Funds

Figure OA-9 illustrates how changes in the fiscal capacity of the economy, captured by the marginal cost
of public funds κ1, affect the desirability of changing the level of coverage. Changes in the marginal cost
of public funds can be interpreted as a shock to the fiscal condition of the economy. Consistent with
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Figure OA-9: Sensitivity Analysis: Cost of Public Funds (κ1)
Note: The top left panel in Figure OA-9 shows the change in social welfare induced by a marginal change in the level of
deposit insurance coverage, dW

dδ
, as described in Equation (26), for κ1 ∈ {0.13, 0.2, 0.27}. The top middle and right panels

respectively show the welfare change for depositors, λ
´ dVm(i,e,δ,R1)

dδ
dG (i) + (1− λ)

´ dVm(i,e,δ,R1)
dδ

dG (i), and taxpayers,
dVm(τ,δ,R1)

dδ
. The bottom left panel shows the probability of failure, qF (δ,R1), and the probability of fundamental failure

F (ŝ (R1)). The bottom middle and right panels show the marginal benefit and marginal of increasing the level of coverage,
as defined in Equation (26). The optimal levels of coverage are δ? = 3.81, δ? = 2.02, and δ? = 1.35 for κ1 = 0.13, κ1 = 0.2,
and κ1 = 0.27, respectively.

our analytical results, changes in the level of κ1 exclusively affect taxpayers’ welfare, leaving unchanged
depositors’ welfare. The main effect of an increase in the cost of public funds is that the marginal
cost of paying for coverage becomes higher. Given our calibration, as one would expect, a higher κ1 is
associated with a lower optimal level of coverage δ?, since the deadweight loss associated with covering
funding shortfalls becomes higher.

F.7 Model-Based Quantification: Optimal Coverage Isoquants

Figure OA-10 describes the set of parameters that yield the same optimal level of coverage δ? for
combinations of π and σs and combinations π and κ1, respectively. The left panel in Figure OA-10 shows
that higher values of the sunspot probability π and lower values of the riskiness of bank’s investments
are associated with a higher optimal level of coverage. The right panel in Figure OA-10 shows that
higher values of the sunspot probability π and lower values of the marginal cost of public funds κ1 are
associated with a higher optimal level of coverage.
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Figure OA-10: Optimal Deposit Insurance Coverage Isoquants
Note: The left panel in Figure OA-10 shows combinations of π and σs that yield the same optimal level of coverage δ?.
The right panel in Figure OA-10 shows combinations of π and κ1 that yield the same optimal level of coverage δ?. The red
solid bullet point in each of the figures represents the baseline combination used in Section 4.2: (π, σs) = (0.3, 0.033) and
(π, κ1) = (0.3, 0.13), respectively.

F.8 Robustness of Approximation

In our model-based quantitative analysis in Section 4.2 we have used the characterization of the marginal
welfare change from Proposition 2. The main advantage of working with the result in Proposition 2 is
that we can characterize dW

dδ exclusively as a function of bank-level aggregates.
Here we explore the robustness of our results to the conditions necessary for Proposition 2 to hold.

To simplify the exposition, we reproduce here Equation (22) in the text:

dW

dδ
=
ˆ
ω (j)

−∂qF
∂δ

U
(
CN (j, s∗)

)
− U

(
CF (j, s∗)

)
U ′ (CF (j, s∗))

+ qFEFs

[
m (j, s) ∂C

F (j, s)
∂δ

] dH (j) .

In Figure OA-11, we compute dW
dδ under three different sets of assumptions. First, we use uniform

generalized social welfare weights, ω (j) = 1, and use the approximation assumptions required for
Proposition 2 to hold, that is, U(CN (j,s∗))−U(CF (j,s∗))

U ′(CF (j,s∗)) ≈ CN (j, s∗) − CF (j, s∗), and m (j, s) = 1. This
is the approach we have followed in the body of the paper. Second, we use uniform generalized social
welfare weights, ω (j) = 1, but do not make any approximations. By comparing these two approaches,
we can obtain a sense of the validity of the approximation. Finally, we compute dW

dδ using utilitarian
traditional social welfare weights. As shown in Section E.3 of this Online Appendix, this corresponds to
setting ω (j) = U ′

(
CF (j, s∗)

)
. By comparing the second and third approaches, we can understand the

differences between using generalized and traditional welfare weights.
There are two main takeaways from this exploration. First, Figure OA-11 clearly shows that the

choice of uniform generalized welfare weights versus utilitarian traditional welfare weights does matter
for the welfare calculations. A planner using utilitarian traditional welfare weights finds a lower optimal
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level of coverage because the gains from insuring the consumption depositors with medium to high levels
of deposits have barely any weight in the planner’s computations. This is illustrated in Figure OA-12
below, in which we compare the implied welfare weights ω (j) for depositors with different deposit levels
and taxpayers under different assumptions. The solid line shows the implied generalized social welfare
weights of depositors when using a traditional utilitarian objective. The dashed line shows the implied
generalize social welfare weight for taxpayers also when using a traditional utilitarian objective. The
dotted line shows for reference uniform generalized social weights.

Second, we find that the planner who uses the approximate results tends to overestimate the welfare
gains from increasing the level of coverage, but the approximate are results reasonably accurate for our
baseline calibration. The optimal level of coverage changes from δ? = 3.81 when using the approximation
to δ? = 3.42 in the exact case. Whether the approximation results are closer to the exact ones does depend
on the value of γ. Intuitively, the quality of the approximate results is a function of the curvature of the
utility functions of the agents in the economy, since the two approximations are exact when agents are
risk-neutral. With isoelastic utility, m (j, s) = U ′(CF (j,s))

U ′(CF (j,s∗)) =
(
CF (j,s)
CF (j,s∗)

)−γ
, and we show in Section C of

this Online Appendix that CF (j,s)
CF (j,s∗) ≤ 1 for both depositors and taxpayers. Therefore, increasing γ makes

the value of m (j, s) move away from 1, worsening the approximation. When using the approximation,
the welfare losses suffered by taxpayers in states with very low s carry a lower weight than when using
the exact solution (since m (τ, s) = 1), which underestimates the marginal cost of increasing δ, making
a higher level of coverage more desirable. Finally, note that these effects are also modulated by the
value of Y (τ, s), since the marginal utility of taxpayers becomes more sensitive to all these effects when
Y (τ, s) is lower.
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Figure OA-11: Robustness of Approximation
Note: Figure OA-11 shows the change in social welfare induced by a marginal change in the level of deposit insurance
coverage, dW

dδ
, under different assumptions on how to aggregate and compute social welfare. First, the solid line computes

dW
dδ

as in Equation (26), that is, using uniform generalized social welfare weights and under the approximation required for
Proposition 2 to hold. Second, the dashed line computes dW

dδ
as in Equation (22) when setting ω (j) = 1. Third, the dotted

line computes dW
dδ

as in Equation (22) when using utilitarian traditional social welfare weights, so ω (j) = U ′
(
CF (j, s∗)

)
.

The optimal levels of coverage in each case are δ? = 1.64, δ? = 3.41, and δ? = 3.81, respectively.
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Figure OA-12: Generalized vs. Traditional Welfare Weighs
Note: Figure OA-12 shows the implied welfare weights ω (j) for depositors with different deposit levels and taxpayers under
different assumptions. The solid dark blue line shows the implied generalized social welfare weights of depositors when using
a traditional utilitarian objective. The dashed light blue line shows the implied generalize social welfare weight for taxpayers
also when using a traditional utilitarian objective. The dotted orange line shows for reference uniform generalized social
weights.
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