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a b s t r a c t

This paper studies the determinants of the equity premium as implied by producers’

first-order conditions. A simple closed form expression is presented for the Sharpe ratio

as a function of investment volatility and technology parameters. Calibrated to the US

postwar economy, the model can match the historical first and second moments of the

market return and the risk-free interest rate. The model also generates a very volatile

Sharpe ratio and market price of risk.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

Since the Mehra and Prescott (1985) paper on the
equity premium was published, many studies have
proposed and evaluated utility functions for their ability
to explain the most salient aggregate asset pricing facts.
Several specifications have demonstrated considerable
improvements over a basic time-separable constant rela-
tive risk aversion setup. Despite this progress, however, it
seems that no widely accepted replacement exists for the
standard time-separable utility specification.

In contrast to the consumption side, the production side
of asset pricing has received considerably less attention.
All rights reserved.
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Focusing on the production side shifts the burden toward
representing production technologies and interpreting
production data. While a number of asset pricing studies
have considered nontrivial production sectors, these have
generally been studied jointly with some specific preference
specification. Thus, the analysis could not escape the
constraints imposed by the preference side. A pure produc-
tion asset pricing literature has emerged from the Q theory
of investment. However, these studies typically consider a
limited set of implications for the links between investment
and stock returns, not including the equity premium.1

The more limited attention given to production-based
versus consumption-based models can seem surprising in
light of some views widely held by economists. For
instance, a reasonably strong case can be made for firms
behaving rationally. Friedman (1953) and others have
pointed out that competition among firms creates a strong
1 An incomplete list of contributions is, for successful utility

functions, Abel (1990), Campbell and Cochrane (1999), and Constanti-

nides (1990); for models with nontrivial production sectors, Jermann

(1998) and Rouwenhorst (1995); and for production asset pricing studies,

Cochrane (1988, 1991, 1993), Li, Vassalou, and Xing (2003), Gomes,

Yaron, and Zhang (2006), and Belo (2010). Other examples of related asset

pricing studies with rich production structures are Berk, Green, and Naik

(1999), Carlson, Fisher, and Giammarino (2004), Hugonnier, Morellec, and

Sundaresan (2005), Novy-Marx (2007), and Tuzel (2009).
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driving force for profit maximization lest they go out of
business. In contrast to that, the popularity of behavioral
finance and behavioral economics suggests a more pessi-
mistic and complex view about consumer rationality.

In this paper I am interested in studying the macro-
economic determinants of asset prices given by a multi-input
aggregate production technology. The focus is exclusively on
the producers’ first-order conditions that link production
variables and state prices, with investment in different
capital goods playing the key role. Two sets of questions
are considered. First, what properties of investment and
production technologies are important for the first and
second moments of risk-free rates and aggregate equity
returns? Second, does a model plausibly calibrated to the US
economy have the ability to replicate first and second
moments of risk-free rates and aggregate equity returns?

This paper does not offer another candidate solution for
the equity premium puzzle emphasized in the literature, in
the sense that the historic equity premium seems too high
given the low aggregate consumption volatility and the
priors about risk aversion coefficients. By focusing on
production, this paper is able to completely sidestep this
issue. It offers a different perspective about the funda-
mental determinants of the equity premium and the state
price process more generally.

The work most closely related to mine are the Cochrane
(1988, 1991) papers on production-based asset pricing.
One of the features that differentiates my analysis is that I
focus explicitly on the equity premium. In particular, one
of my main contributions is to characterize the equity
premium analytically as a simple function of investment
volatility and adjustment cost curvature. Also, to enhance
the model’s empirical realism, I use more general func-
tional forms for adjustment cost and base the quantitative
evaluation on the two main types of US fixed capital
investment, namely, equipment and structures.

The key quantitative findings are the following. For
unconditional moments, the model can match the histor-
ical first and second moments of the market return and the
risk-free interest rate with reasonable parameter values.
For conditional moments, the expected excess stock
return, the market’s Sharpe ratio, and the market price of
risk are very volatile.

The paper is organized as follows. We start with a
preview of the main results in Section 2. Section 3 presents
the model, and Section 4, some general asset pricing
implications. Section 5 introduces functional forms. Sec-
tion 6 characterizes the theoretical links between asset
prices and investment. Section 7 describes the calibration,
and Section 8, the quantitative analysis.
2. Preview and intuition of the main results

Cochrane (1991) shows that, under constant returns to
scale in production, the unlevered market return of a firm
equals the return of investing a marginal unit into the firm’s
production technology. This key result is a version of the Q
theory of investment, according to which the investment to
capital ratio is tightly linked to the market to book value
(Q). At an aggregate level, this theory has been successful
empirically, because aggregate investment is reasonably
strongly related to the aggregate stock market. In this paper,
I go one step further and explicitly derive the equity
premium as implied by producers’ first-order conditions.

A first step of my analysis is to show under what
conditions the equity premium from the production-based
model is positive and large. In my setting with two types of
capital, a positive equity premium requires a production
technology in which the capital stock with the relatively
higher expected return is also the one whose return is
more volatile. While this is a priori intuitive, my analysis
shows which features of the production technology can
contribute to this. For instance, the capital adjustment cost
functions have to be convex enough. I show that the equity
premium increases as the spread between the two
expected returns increases relative to the spread between
the standard deviations. A higher curvature in the adjust-
ment cost functions contributes to this.

One way to generate a high equity premium, therefore,
would be to use capital adjustment cost functions with high
curvature. This is in some sense related to the use of a high
risk aversion coefficient in consumption-based models.
However, this strategy is only partially successful, because
higher curvature also strongly contributes to a higher
volatility of returns. As is known from the Q theory of
investment, with quadratic adjustment costs, the investment
to capital ratio is proportional to Q. This is because the
derivative of the adjustment cost function (the marginal cost)
is linear in investment. With an adjustment cost function that
has a higher curvature than the quadratic one, Q moves more
than proportionally with the investment to capital ratio. Thus,
for a given investment process, the higher the curvature, the
more volatile the return to the aggregate stock market.
Because investment series on structures and equipment both
display substantial volatility, relatively low adjustment cost
curvatures can match the historical stock return volatility. So
to fully match the historical equity premium, without
excessively volatile returns, an additional channel is needed.
In particular, the marginal product has to be higher for the
capital stock that has the more volatile return.

The behavior of the conditional equity premium in the
model is driven by expected stock returns that are more
volatile than risk-free rates, another feature of the model
that seems consistent with available empirical evidence.
The previous literature, for instance, Cochrane (1991), has
focused on the drivers of production-based expected stock
returns. What is new in my paper is that I also derive and
characterize a risk-free rate that is consistent with these
risky returns. I can therefore explicitly characterize the
conditional equity premium. In the model, one of the main
drivers of expected stock returns are the current invest-
ment to capital ratios. In particular, if the investment to
capital ratio is currently high, then Tobin’s Q is high, and
expected returns are low. Empirically, investment to
capital ratios display important low frequency movements,
and the model can therefore generate large movements in
expected returns that are countercyclical with respect to
investment to capital ratios. Because the model can match
the relatively low volatility of the risk-free rate, the
conditional equity premium is then primarily driven by
expected stock returns.



2 Strict concavity is assumed below, so that first-order and transvers-

ality conditions are sufficient for a maximum.
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One way to look at the derivation of the equity premium
in my model is as the derivation of the risk-free return that is
consistent with the risky investment opportunities offered by
the production technology. From this perspective, if two
risky investment opportunities are perfectly positively
correlated, then going long the less volatile return and
shorting a smaller amount of the more volatile return is a
way to synthetically engineer a risk-free return. If capital
stocks display some heterogeneity in the volatility of their
expected returns, then the risk-free rate typically is less
volatile than the expected return of the aggregate market.
That is because the less volatile return has a bigger weight in
the construction of the risk-free rate. My production model
that allows for different adjustment cost parameters across
capital stocks can generate this outcome. Given that the two
capital stocks in my model, structures and equipment, are
very different in nature, heterogeneity in the adjustment cost
parameters seems a reasonable property. Moreover, empiri-
cal evidence on aggregate investment behavior, as well as on
firm returns, suggests that structures require larger adjust-
ment costs than equipment. As shown in the paper, empirical
investment growth rates for structures display a higher
positive serial correlation than for equipment. This can be
interpreted as a reflection of firms’ objective to smooth
investment over time due to the relatively higher adjustment
costs. Concerning firms’ returns, a recent study by Tuzel
(2009) suggests that the firms in the Compustat Industrial
Annual database with relatively larger fractions of structures
in their capital stocks have relatively higher expected
returns. My model with higher adjustment costs for
structures than for equipment is consistent with this.

The properties described here are first presented
analytically in a continuous-time version of the model in
Section 6. Section 8 then illustrates these properties
quantitatively for a model calibrated to data on investment
and capital stocks.

3. Model

The model represents the producer’s choice of capital
inputs for a given state price process. Key ingredients are
capital adjustment costs and stochastic productivity.

Assume an environment in which uncertainty is
modeled as the realization of s, one out of a finite set
S¼ ðs1,s2, . . . ,sNÞ, with st the current period realization and
st ¼ ðs0,s1, . . . ,stÞ the history up to and including t. Assume
an aggregate revenue function

FðfKjðs
t�1Þgj2J ,s

tÞ, ð1Þ

where the presence of st allows for a technology shock.
Kj(s

t�1) is the j-th capital stock, which, in the standard
way, is chosen one period before it becomes productive.
F(�) represents the resources available after the firm has
optimally chosen and paid factors of production that are
selected within the period, for instance, labor. Capital of
type j accumulates through

Kjðs
tÞ ¼ Kjðs

t�1Þð1�djÞþZjðs
tÞIjðs

tÞ, ð2Þ

where dj is the depreciation rate and Zj(st) represents the
technology for producing capital goods out of investment
expenditure Ij(s
t) (which is in units of the final good).

Assume Zjðs
tÞ ¼ Zjðs

t�1Þ � lZj ðstÞ, with lZj ðstÞ following a
N-state Markov process. The total cost of investing in
capital good of type j is given by

HjðKjðs
t�1Þ,Ijðs

tÞ,Zjðs
tÞÞ: ð3Þ

This specification is further specialized below.
Taking as given state prices P(st), the representative

firm solves the following problem:

max
fI,K 0g

X1
t ¼ 0

X
st

PðstÞ FðfKjðs
t�1Þgj2J ,s

tÞ�
X

j

HjðKjðs
t�1Þ,Ijðs

tÞ,Zjðs
tÞÞ

2
4

3
5

s:t: Kjðs
t�1Þð1�djÞþZjðs

tÞIjðs
tÞ�Kjðs

tÞ ¼ 0, 8st ,j ð4Þ

with s0 and Kj(s�1) given, and P(s0) =1 without loss of
generality.

Labeling the multiplier on the capital accumulation
equations by P(st) qj(st), q represents the marginal value
of one unit of installed capital in terms of the numeraire of
the same period. In equilibrium, it is also the cost of
installing one unit of capital including adjustment cost.
Given the homogeneity assumptions made below, qZ is
the ratio of the market value over the book value of capital,
that is, Tobin’s Q. 1/Z is equal to the price of a unit
of capital in terms of the final good. The book value
(or replacement cost) of the capital stock is then K/Z. The
introduction of the investment specific technology Z

allows the model to capture the historical downward
trend observed in US equipment prices. However, as
shown in the quantitative analysis, Z does not end up
playing an important role. My main quantitative results
hold even with Zj(st) = 1.

First-order conditions, for each j, are summarized by

qjðs
tÞ ¼Hj,2ðKjðs

t�1Þ,Ijðs
tÞ,Zjðs

tÞÞ=Zjðs
tÞ, ð5Þ

and

qjðs
tÞ ¼

X
stþ 1

Pðst ,stþ1Þ

PðstÞ

FKj
ðfKiðs

tÞgi2J ,s
t ,stþ1Þ

�Hj,1ðKjðs
tÞ,Ijðs

t ,stþ1Þ,Zjðs
t ,stþ1ÞÞ

þð1�djÞqjðs
t ,stþ1Þ

0
BB@

1
CCA:
ð6Þ

Slightly rearranging and in a more compact notation, this
becomes

1¼
X
stþ 1

Pðstþ1js
tÞ

FKj
ðst ,stþ1Þ�Hj,1ðs

t ,stþ1Þþð1�djÞqjðs
t ,stþ1Þ

qjðstÞ

 !

¼
X
stþ 1

Pðstþ1js
tÞRI

jðs
t ,stþ1Þ ð7Þ

for each j, where the notation Pðstþ1js
tÞ shows the price of

the numeraire in st+1 conditional on st and in units of the
numeraire at st. This expression implicitly defines the
investment return RI

jðs
t ,stþ1Þ. RI

jðs
t ,stþ1Þ is the rate of return

realized in st+1 from adding a marginal amount of capital of
type j in state st. The first-order conditions show that at the
optimum investing one unit in a given type of capital
produces a change in the profit plan that is worth one unit.2



3 In open economy real business cycle models, similar adjustment

cost functions that allow for a general curvature or elasticity parameter

are common. They are important to generate realistic investment

volatilities. See, for instance, Baxter and Crucini (1993).
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4. From investment returns to state prices and asset
returns

To recover state prices uniquely from the producers
first-order conditions it is necessary to have as many types
of capital inputs as there are states of nature. This
‘‘complete technologies’’ requirement represents the pro-
ducers’ ability to move resources across all states of nature.
Representing the first-order conditions in matrix form
yields for the case with two states of nature and two
capital inputs

RI
1ðs

t ,s1Þ RI
1ðs

t ,s2Þ

RI
2ðs

t ,s1Þ RI
2ðs

t ,s2Þ

" #
Pðs1js

tÞ

Pðs2js
tÞ

" #
¼ 1, ð8Þ

or more compactly RIðstÞ � pðstÞ ¼ 1. The state price vector is
obtained by the matrix inversion

pðstÞ ¼ ðRIðstÞÞ
�11: ð9Þ

Clearly, it is not necessarily the case that this matrix
inversion is feasible or that state prices are necessarily
positive for any chosen set of returns. As further discussed
below, the requirement for positive state prices constrains
my empirical implementation.

In this environment, the risk-free return is given by

1=Rf ðstÞ ¼ 1pðstÞ ¼ Pðs1js
tÞþPðs2js

tÞ: ð10Þ

Consider aggregate capital returns

Rðst ,stþ1Þ �
Dðst ,stþ1ÞþVðst ,stþ1Þ

VðstÞ
, ð11Þ

where Dðst ,stþ1Þ ¼ FðfKjðs
t�1Þg,stÞ�

P
jHjðKjðs

t�1Þ,Ijðs
tÞ,Zjðs

tÞÞ

represents the dividends paid by the firm, and V(st,st+ 1)
is the ex-dividend value of the firm. Assuming constant
returns to scale in F(�) and Hj(�), a version of the Hayashi
(1982) result applies, and this return is equal to a weighted
average of the investment returns:

Rðst ,stþ1Þ ¼
X

j

qjðs
tÞKjðs

tÞP
iqiðstÞKiðstÞ

� RI
jðs

t ,stþ1Þ: ð12Þ

The market price of risk, aka the highest Sharpe ratio,
also has a simple expression. The stochastic discount factor
mðstþ1js

tÞ can be introduced by dividing and multiplying
through by the probabilities pðstþ1js

tÞ, so that

Pðstþ1js
tÞ ¼

Pðstþ1js
tÞ

pðstþ1jstÞ

� �
pðstþ1js

tÞ ¼mðstþ1js
tÞpðstþ1js

tÞ:

ð13Þ

Ruling out arbitrage implies Etðmðstþ1js
tÞReðst ,stþ1ÞÞ ¼ 0, for

8Reðst ,stþ1Þ defined as an excess return. It is then easy to
see that

max
E½Reðst ,stþ1Þjs

t�

Std½Reðst ,stþ1Þjst�
¼

Std½mðst ,stþ1Þjs
t�

E½mðst ,stþ1Þjst�

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
stþ 1

Pðstþ1jstÞ
2=pðstþ1jstÞ

½
P

stþ 1
Pðstþ1jstÞ�2

�1:

vuut
ð14Þ
5. Functional forms

This section presents the functional forms and the
simulation strategies.

5.1. Investment cost function

The investment cost function plays a crucial role in the
analysis. Its form is chosen to satisfy two criteria. First, I
require investment returns to be stationary. This is
achieved through a particular type of homogeneity.
Second, I want the curvature of the cost function to be
slightly more general than the standard quadratic speci-
fication.

A simple functional form that satisfies these criteria is

HðK ,I,ZÞ ¼
b

n ðZI=KÞnþc

� �
ðK=ZÞ, ð15Þ

with b,c40, n41. For each capital stock, different
parameter values are allowed. For compactness, the
notation does not express that. As can easily be seen, this
function is convex in I for n41. Adjustment cost and the
direct cost for additional capital goods are separable,
trivially so because HðK ,I,ZÞ ¼ ½Hð1,ZI=KÞ�ZI=KþZI=K� �

ðK=ZÞ ¼ ½H ð1,ZI=KÞ�ZI=K� � ðK=ZÞþ I� Cð1,ZI=KÞ � ðK=ZÞþ I.
I impose restrictions on the parameters of H(�) so that
Cð1,ZI=KÞZ0, that is, the pure adjustment cost is non-
negative.

The cost function is homogenous of degree 1 in I and K/Z.
This is required for balanced growth. Given the capital
accumulation equation, IZ and K are cointegrated, and so are
I and K/Z. With this homogeneity assumption, the investment
cost H(�) shares the same trend as I and K/Z. As further
described below, additional balanced growth requirements
contribute to making investment returns stationary.

For a given investment process, the curvature para-
meter n determines the volatility of the market price of
capital. This parameter is a crucial contributor to return
volatility and risk premiums. From the first-order condi-
tions, the following relation between the investment rate,
IZ/K, and Tobin’s Q, qZ, is obtained:

qZ ¼ bðIZ=KÞn�1: ð16Þ

Clearly, if I limit myself to a quadratic adjustment cost
functions with n¼ 2, then the variance of the logarithm of
Tobin’s Q is constrained to be equal to the variance of the
logarithm of the investment rate. As shown below, with
n¼ 2, in the continuous-time limit, the variance of the
return to a given capital is constrained to be equal to the
variance of the investment growth rate. Allowing a more
general choice for the curvature parameters n avoids such
an empirically unappealing restriction.3

The parameters b and c are less important for asset
pricing implications. They provide the flexibility to center
the adjustment cost function and to minimize the amount
of resources lost due to adjustment cost. It is easy to see
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that by setting n¼ b¼ 1 and c=0, the case without
adjustment cost is obtained

HðK ,I,ZÞ ¼ I: ð17Þ

5.2. Revenue function

I choose a revenue function that is consistent with
stationary investment returns and that is easily tractable.
Specifically, the revenue function is linearly separable in
the capital stocks

FðfKjðs
tÞgj2J ,s

t ,stþ1Þ ¼
X

j

Ajðs
tþ1Þ

Zjðstþ1Þ
Kjðs

tÞ: ð18Þ

Marginal products of capital are then

FKj
ðfKjðs

tÞgj2J ,s
t ,stþ1Þ ¼

Ajðs
tþ1Þ

Zjðstþ1Þ
: ð19Þ

The term Zj is introduced to guarantee stationary
returns. It implies, for instance, that as a given type of
capital gets cheaper to produce, that is as Z increases, it
also becomes less productive. This is related to one of the
properties implied by the Greenwood, Hercowitz, and
Krusell (1997) balanced growth path. Aj(s

t +1) can be
thought of as a productivity shock.4

5.3. Simulation strategy and stationarity of returns

For the quantitative analysis, the optimal investment
process is taken as given. The implied investment returns
and state prices can then easily be derived. I require
returns to be stationary, which imposes additional restric-
tions on the investment process.

I assume a stochastic process for investment growth
rates lIj ðstþ1Þ, implicitly defined by Ijðs

t ,stþ1Þ ¼

Ijðs
tÞlIj ðstþ1Þ. Under the assumed functional forms, invest-

ment returns can then be written as

RI
jðs

t ,stþ1Þ ¼ ð1=l
Zj

tþ1Þ �
Aj,tþ1

bðZjtIj,t=Kj,tÞ
n�1

þð1=lZj

tþ1Þ �
b 1�1

n
� �

ðZjþ1tIjtþ1=Kjtþ1Þ
n
�c

bðZjtIj,t=Kj,tÞ
n�1

þð1=lZj

tþ1Þ � ð1�djÞ �
bðZjtþ1Ij,tþ1=Kj,tþ1Þ

n�1

bðZjtIj,t=Kj,tÞ
n�1

,

ð20Þ

where for compactness the state-dependence is not explicit.
The dynamic structure of the variables of interest can

be summarized in the following expressions. Realized
investment returns displayed in Eq. (20) can be written as
a function of four elements:

RI
jðs

t ,stþ1Þ ¼ RI
j

Zjðs
tÞIjðs

tÞ

Kjðst�1Þ
; lIj ðstþ1Þ,lZj ðstþ1Þ,Ajðs

tþ1Þ

� �
for j¼ 1,2:

ð21Þ

For the simulations, I can generate realizations of all the
quantities of interest based on a probability matrix
4 This revenue function could, for instance, be derived from a

production function ð
P

jaj,tKj,t Þ
aN1�a

t , where aj,t are shocks, 0oao1,

and labor N is paid its marginal product.
describing the law of motion for the exogenous state
st+ 1. In particular, combining the capital accumulation
equations, Eq. (2), with the specifications for Ij(s

t, st + 1) and
Zj(st, st + 1), the investment-capital ratios evolve as

Zjðs
tþ1ÞIjðs

tþ1Þ

KjðstÞ
¼

Zjðs
t ÞIjðs

tÞ

Kjðst�1Þ

ð1�djÞþ
Zjðs

t ÞIjðs
t Þ

Kjðst�1Þ

0
@

1
AlIj ðstþ1ÞlZj ðstþ1Þ

for j¼ 1,2: ð22Þ

To compute the aggregate return defined in Eq. (12), it is
also necessary to keep track of the ratio of the book values
of the two types of capital. It is easy to show that this ratio
evolves as

K1ðs
tÞ

Z1ðstÞ

K2ðs
tÞ

Z2ðstÞ
¼

K1ðs
t�1Þ

Z1ðst�1Þ

K2ðs
t�1Þ

Z2ðst�1Þ

� 1�d1þ
Z1ðs

t ÞI1ðs
t Þ

K1ðst�1Þ

	 

1�d2þ

Z2ðs
t ÞI2ðs

t Þ

K2ðst�1Þ

	 
 lZ2 ðstÞ

lZ1 ðstÞ
:

0
@

ð23Þ

Inspection of Eq. (20) reveals that given the various
assumptions made on the exogenous processes and
functional forms, and assuming stationary shocks
lIj ðstþ1Þ, lZj ðstþ1Þ, and Aj(st + 1), investment returns are
stationary. However, stationarity of the investment returns
is not sufficient for the stationarity of the aggregate asset
return. As shown in Eq. (12), the aggregate return equals a
weighted average of the investment returns. For statio-
narity, the weights need to be stationary too. Aggregate
returns are given by

Rðst ,stþ1Þ ¼
X

j

bðZjt Ij,t=Kj,t Þ
n�1

Zj,t
Kj,tþ1P

i
bðZit Ii,t=Ki,t Þ

n�1

Zi,t
Ki,tþ1

RI
jðs

t ,stþ1Þ: ð24Þ

A sufficient (and necessary) condition for stationarity,
given the previous assumptions, is that K1,t + 1/Z1,t and
K2,t + 1/Z2,t are cointegrated. Given that the investment
capital ratios ZjtIj,t /Kj,t are stationary, this is equivalent to
I1,t and I2,t being cointegrated. Setting investment expen-
diture growth rates equal across sectors, that is,

lI1
ðstþ1Þ ¼ lI2

ðstþ1Þ, guarantees that I1,t and I2,t are coin-
tegrated. While investment expenditure growth realiza-
tions are assumed to be equal across the two types of

capital, I remain free to choose the realizations for lZ1
t and

lZ2
t independently. This is less restrictive than it might

appear. What matters for the investment returns is the

behavior of the product lI1
t l

Z1
t , and not lI1

t individually.

That is, in general, it would be more important to fit the

process of real investment growth lI1
t l

Z1
t rather than the

growth in investment expenditure lI1
t . Moreover, for the

considered empirical counterparts, the historical volatili-

ties of lI1 and lI2 are nearly identical, and realizations of
the two growth rates are strongly positively correlated.
Alternatively, one could introduce additional components
for each process that have purely transitory effects and
would thus not need to be restricted to ensure balanced
growth. However, given the requirement to keep the
number of states small, the additional flexibility intro-
duced in this way would be rather limited.



5 If s1 ,s2 40, this implies that if m2�m1 40, one needs s2�s1 40,

and it can be seen that mj�rf 40. Alternatively, if s1 ,s2 o0, this condition

implies that if m2�m1 40, one needs s2�s1 o0 (sector 2 is more volatile),

and then again mj�rf 40.
6 In particular, consider a path where dz=0 for a very long time. Then,

under the assumptions made here, for a given constant lI , It/Kt converges

to lI
�1þd.

7 R ¼ ðA�cÞ=bðlI
�ð1�dÞÞn�1

þð1�1=nÞlI
þð1=nÞð1�dÞ.
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6. Analytical results

This section contains a series of analytical results
that illustrate key model mechanisms. First, the determi-
nants of the equity premium are considered. I present
simple closed-form expressions for the Sharpe ratio
and the risk-free rate depending on the technology
parameters and investment volatility. Second, I describe
the measures taken to ensure that the simulations are
consistent with non-negative state prices and finite firm
values.

6.1. What determines the equity premium?

The analysis proceeds in two steps. First, I show that to
have a positive equity premium, the investment return
that is expected to be higher needs to be the more volatile.
Second, I show conditions under which the production
technology and the investment choices are consistent with
this property.

For the analysis in this subsection, a continuous-time
representation turns out to be more transparent than the
discrete-time model used so far. As a counterpart to the
two-state representation in discrete time, consider a one-
dimensional Brownian motion. Investment returns for the
two types of capital are given by

dRj

Rj
¼ mjð�Þdtþsjð�Þdz, for j¼ 1,2, ð25Þ

and the state-price process has this form:

dL
L
¼�rf ð�Þdtþsð�Þdz: ð26Þ

Assume that the two returns are positively (perfectly)
correlated so that signðs1Þ ¼ signðs2Þ. The drift and diffu-
sion coefficients are allowed to change with the state of
the economy. For compactness, from now on, the notation
does not explicitly acknowledge this.

The objective is to derive the drift and diffusion
terms of the state-price process, �rf and s, from the given
return processes, that is, from the four values mj and sj for
j=1,2. In this environment, the absence of arbitrage implies
that

0¼ Et
dLt

Lt

� �
þEt

dRjt

Rjt

� �
þEt

dLt

Lt

dRjt

Rjt

� �
, ð27Þ

so that

0¼�rf dtþmi dtþsisdt, ð28Þ

and thus there are two equations and two unknowns. The
solution of this system is

rf ¼
s2m1�s1m2

s2�s1
, ð29Þ

�s¼ m2�m1

s2�s1
: ð30Þ

Clearly, to be able to recover the state-price process
from the two returns, the two volatility terms have to be
different, that is, s2�s1a0. This is an invertibility
requirement similar to the one for the discrete time case.
However, there is no issue here about possibly negative
state prices. A process such as Eq. (26) cannot become
negative if it is initially positive.

From Eq. (27), the volatility term equals the Sharpe ratios

�s¼ m1�rf

s1
¼
m2�rf

s2
ð31Þ

and, using the solutions derived above,

mj�rf ¼�ssj ¼ sj
m2�m1

s2�s1

� �
: ð32Þ

With positively correlated returns, that is, signðs1Þ ¼

signðs2Þ, the signs of both risk premiums are identical,
and thus the sign of the aggregate equity premium, a
weighted average of the two premiums, is be the same as
for the two premiums. From Eq. (32) it is easy to see that
there is a positive equity premium in the aggregate if, and
only if, the return with the higher risk premium is more
volatile.5

Now apply these expressions to the returns derived
from my production model. I consider a model without
technology shocks, in which the only source of uncertainty
are the state prices. Technology shocks could be added for
this analysis but, given their relatively minor quantitative
impact, keeping the expressions simple seems preferable.
As shown in the Appendix, the realized return to a given
capital stock equals

A�c

b It
Kt

	 
n�1
þ 1�

1

n

� �
It=Kt�dþðn�1Þ

�
ðlI
�1Þ�ðIt=Kt�dÞ

8><
>:
þ

1

2
ðn�2Þs2

I

�9>=
>;dtþðn�1ÞsI dz, ð33Þ

where ðlI
�1Þ and sI are drift and diffusion terms of

investment. Given the previous analysis, in particular
Eq. (33), if an investment policy for which sI1

¼ sI2
is

considered, then to be able to recover the state-price
process n1an2 is required.

The risk premium for each type of capital can now be
computed by substituting drift and diffusion terms from
Eq. (33) for each type of capital into Eq. (32). To obtain
more transparent expressions, consider this return when
It=Kt ¼ ðl

I
�1Þþd. This holds at the deterministic steady

state for a given ðlI
�1Þ, assuming ðlI

�1Þþd40.6 The
return then simplifies to

ðR�1Þþ
1

2
ðn�1Þðn�2Þs2

I

� �
dtþðn�1ÞsI dz, ð34Þ

where R is the return in a deterministic model at the steady
state with the same technology parameters and with
investment growth equal to lI .7 Focusing on the return at
this steady state point is informative about average model
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behavior. An example at the end of the quantitative
analysis illustrates this by comparing the steady state with
the unconditional expectation. To further simplify expres-
sions, I consider an optimal choice for which investment is
equally volatile for both types of capital. This is not just a
benchmark that should have independent appeal. For the
types of capital considered below, historical investment
growth volatilities are roughly the same.

Proposition 1. Assume sIj
¼ sI and n1an2, then steady state

values for the Sharpe ratio and the risk-free rate are given by

mj�rf

sj







ss

¼
R2�R1

ðn2�n1ÞsI
þ
n1þn2�3

2
sI ð35Þ

and

rf jss ¼
ðn2�1ÞðR1�1Þ�ðn1�1ÞðR2�1Þ

n2�n1
�
ðn1�1Þðn2�1Þ

2
s2

I :

ð36Þ

Eq. (35) highlights two ways to generate a positive
Sharpe ratio and thus a positive equity premium in this
model. First, as shown by the first term, a difference in the
deterministic returns Rj contributes to an increase in the
Sharpe ratio, if the higher deterministic return corresponds
to the more volatile return. This mechanism is consistent
with the previous discussion as summarized in Eq. (32).8

Second, if Rj ¼ R, because sj and sI have the same sign
(given nj41), a necessary and sufficient condition for a
positive equity premium is that n1þn243. Under this
condition, the more volatile return also has the higher
mean. To relate this to the previous discussion as
summarized in Eq. (32), consider, for instance, the case
where nj41:5 for both j. Then, differentiating the drift
term in Eq. (34) (for a fixed R) yields

@ðn�1Þðn�2Þ

@n ¼ 2ðn�1:5Þ which implies

@ðn�1Þðn�2Þ

@n
40 if n41:5, ð37Þ

so that the capital with the higher n has the higher
expected return. Because ðn�1Þ multiplies sI dz in the
return equations (33) and (34), the capital with the higher
n will also have the more volatile return.

Eq. (35) suggests that the curvature parameters n have a
similarly important role as the risk aversion coefficient in
the basic consumption-based model. However, the equa-
tion for the Sharpe ratio, together with the return
equations (33) and (34), highlight a trade-off when
choosing values for n. Increasing the curvature parameters
increases the equity premium, but this also makes returns
more volatile. Therefore, asset price volatility imposes a
clear limit on how much curvature can be used to generate
large risk premiums. In standard consumption-based asset
pricing models, this trade-off is much less present. In fact,
as is well known, in a basic constant relative risk aversion
environment, for the benchmark case with independently
and identically distributed (iid) consumption growth,
8 Clearly, in a deterministic model, Rj ¼ R would be required to rule

out arbitrage (assuming both capitals are used). However, in a model with

uncertainty, there is no such requirement.
increasing risk aversion increases the equity premium
without affecting return volatility.

Eq. (36) for the risk-free rate shows how investment
uncertainty contributes to a lower steady state interest
rate by an extent that is affected by the amount of the
adjustment cost curvature. This parallels the precautionary
saving effect on interest rates in standard consumption-
based models. The equation for the risk-free rate further
simplifies if it is assumed that Rj ¼ R:

rf jss ¼ ðR�1Þ�
ðn1�1Þðn2�1Þ

2
s2

I : ð38Þ

To illustrate the behavior of the risk-free interest rate
more generally, Eq. (29) can be rewritten as

rf ¼
s2

s2�s1
m1�

s1

s2�s1
m2 ¼ am1þð1�aÞm2, ð39Þ

with a� s2=ðs2�s1Þ, where the subindexes refer again to
two generic returns. Thus, the risk-free rate equals a
weighted average of the two expected returns. However, as
can be seen from the definition of a, if the two returns are
perfectly positively correlated, signðs1Þ ¼ signðs2Þ, one of
two weights is negative and the other is larger than one.
Intuitively, with perfectly positively correlated returns, the
risk free-rate is replicated synthetically by going long the
return with the lower volatility and by shorting a smaller
amount of the return with the higher volatility. As can also
be seen in Eq. (39), when the volatility of one of the returns
is zero, this return equals the risk-free rate.

Using Eq. (33) that displays the return in the production
model and assuming that sIj

¼ sI yields

rf ¼
n2�1

n2�n1
m1�

n1�1

n2�n1
m2: ð40Þ

Therefore, in this case, movements in the risk-free rate are
driven solely by movements in the expected returns, m1

and m2, but not by changing ‘‘weights.’’ For the limiting
case where n1 goes to one (without loss of generality), the
risk-free rate equals m1 and, as can be seen from Eq. (33),
m1 is constant in the limit. Thus, by setting at least one of
the adjustment cost curvatures close to one, the risk-free
rate can be made arbitrarily smooth.

The limiting case with a constant interest rate is a
problematic one. In this particular example, setting n¼ 1
makes the firm’s problem linear, and the first-order
conditions are no longer sufficient for describing optimal
firm behavior. More generally, with n41, if the interest
rate is constant in every period, then, for a model without
technology shocks, the returns to the firm (and the
investment return) are equal to the interest rate. This
result is formally shown in the Appendix. Intuitively, with
constant interest rates and no technology shocks, firms
face no uncertainty and, with convex adjustment costs, it is
not optimal to introduce fluctuations into an optimal plan.
This implies that there is no ‘‘nice’’ benchmark model with
a constant interest rate that can be used for my analysis.

6.2. What is an admissible investment process?

In this section I consider the requirements for an
investment process to be admissible, in the sense that it
has to represent a solution to the firm’s problem for the
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implied state price process and that this price process is
itself well behaved. The two key requirements are that the
derived state prices have to be positive and that the
implied firm value has to be finite. While a large set of
investment processes are admissible, these requirements
nevertheless impose constraints on the investment process
and on the specification of model. For this reason, this
section also provides the motivation for some of the
choices made in the empirical analysis.

6.2.1. Positive state prices

Solving Eq. (8) gives the state prices in the two-state
case as

Pðs1js
tÞ ¼

RI
2ðs

t ,s2Þ�RI
1ðs

t ,s2Þ

jRj
and

Pðs2js
tÞ ¼

RI
1ðs

t ,s1Þ�RI
2ðs

t ,s1Þ

jRj
, ð41Þ

with

jRj ¼ RI
1ðs

t ,s1ÞR
I
2ðs

t ,s2Þ�RI
2ðs

t ,s1ÞR
I
1ðs

t ,s2Þ: ð42Þ

As Eq. (41) makes clear, state prices in this model are not
state-separable. That is, the price for goods delivered in a
given state depends on the investment returns of the other
state, in addition to return of the same state. This is unlike
state prices implied by constant relative risk aversion
utility that depend solely on consumption growth of the
same state. Considering the ratio of the state prices offers
some intuitive insights about what is required for positive
state prices

Pðst ,s1Þ

Pðst ,s2Þ
¼

RI
2ðs

t ,s2Þ�RI
1ðs

t ,s2Þ

RI
1ðs

t ,s1Þ�RI
2ðs

t ,s1Þ
: ð43Þ

A necessary condition for positive state prices is that the
terms in the numerator and in the denominator of the
right-hand side of Eq. (43) have the same sign. Each of
these two terms represents the spread between the two
investment returns in a given state. As is clear from
Eq. (43), the two terms can have the same sign only if each
type of investment dominates the other in one of the two
states. Optimal choice with positive prices would imply
that if one type of investment were to generate a higher
return in both states, then resources would be reallocated
into this type of capital from the other.

To see some of the properties needed to satisfy this
positivity requirement, consider a second-order Taylor-
series approximation of the investment return around the
deterministic steady state. To focus on the quantitatively
important channels, I again consider a model without
technology shocks in which the only source of uncertainty
are the state prices. A second-order Taylor approximation
is obtained by assuming that the investment-capital ratio
is at its steady state ItðstÞ=Ktðst�1Þ ¼ l�1þd, for a given
steady state growth rate l, so that9

RI
t,tþ1 ¼ Rþðn�1ÞDl0 þ

B

2
ðDl0Þ2þoððDl0Þ2Þ, ð44Þ
9 The only difference compared with the continuous-time equation

derived above is the second-order term. With ð1�dÞ ¼ l¼ 1, B=(v�1)

(v�2), which is the term in the continuous time counterpart.
where Dl0 ¼ l0�l and

B¼
n�1

l
n�1�

1�d
l

� �
: ð45Þ

Assume equally sized up and down movements in a
two-state setting so that

Dljðs2Þ ¼ �Dljðs1Þ �Dlj for each j 2 ð1,2Þ: ð46Þ

Assume also, as in Section 6.1, that the investment growth
volatilities are equal in the two sectors and positively
correlated, so that

Dl1 ¼Dl2 ¼Dl: ð47Þ

With this approximation, the ratio determining relative
state prices is given as

Pð:,s1Þ

Pð:,s2Þ
¼
½n2�n1�Dlþ½ðR2�R1Þþ

1
2 ðB2�B1ÞðDlÞ2�þoððDlÞ2Þ

½n2�n1�Dl�½ðR2�R1Þþ
1
2 ðB2�B1ÞðDlÞ2�þoððDlÞ2Þ

:

ð48Þ

As shown by Eq. (48), to have positive prices at steady
state, the first term in the fraction ½n2�n1�Dl needs to
dominate the second. In general, this requires a minimum
amount of asymmetry in the curvature parameters nj

across types of capital.
Away from steady state, in particular when investment-

capital ratios reach lower levels, some state prices in
my quantitative setup have a tendency to eventually
turn negative. That this might happen is suggested by
Eq. (20). As the current investment-capital ratio gets close
to zero, returns can get arbitrarily large, and the spread
between two returns for a given state can switch sign. To
deal with this in the simulations, the marginal product
term A is allowed to be state-contingent with the objective
to rule out negative state prices. I describe the exact
approach in Section 7. Below it is also shown that shocks
to A have only second-order effects on the considered
asset price implications. This is because the level of A

is small relative to the other terms in the return
equation (20).

6.2.2. Finite value and transversality condition

In my model it is feasible to generate a sequence of
investment returns and state prices without fully specify-
ing the process for investment and possible technology
shocks. As shown in Eq. (21), returns are fully determined
by the current period investment-capital ratios and next
periods investment growth and technology shock realiza-
tions. However, because I fully specify investment growth
and technology shocks processes, it needs to be made sure
that these processes imply a finite firm value and satisfy
the transversality condition.

The transversality condition that guarantees optimality
of the path satisfying the first-order condition is

lim
t-1

X
st

PðstÞ

Pðs0Þ
fAðstÞþHIðs

tÞð1�dÞ�HK ðs
tÞgKtðs

t�1Þ ¼ 0: ð49Þ

In the simulations, I check numerically that firm values are
finite. Given the setup used, it can be shown that if firm
values are finite, the transversality condition is also
satisfied. Typically, the finiteness requirement is satisfied
by bounding the investment-capital ratios. Specifically,
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consider a two-state process for the growth rates in
investment and Z, where the realizations are fixed
functions of the two realizations of s. Then, the extreme
paths of repeating forever either the higher or the lower of
the two growth rates, lIj ðsÞ and lZj ðsÞ generate natural
upper and lower bounds for the investment-capital ratios,
as is clear from Eq. (22). For the parameterizations
considered, such two-state processes do not satisfy finite-
ness. However, finiteness can be achieved with tighter
bounds. I implement this by making the investment
growth rates lIj a function of not only the current
realization of s, but also of the current investment-capital
ratios, as described in more detail in Section 7. Intuitively,
to have a finite firm value, I need to rule out paths
for which the growth rates of the capital stocks are
very high.
7. Calibration

Parameter values are assigned based on three types of
criteria. First, a set of parameter values are picked to match
direct empirical counterparts. Second, some parameters
are chosen to yield the best implications for key asset
pricing moments. Third, some parameters are chosen to
make sure the derived state prices are admissible. I first
present a short summary of the baseline calibration. The
details and the specification with shocks to the investment
technology are given thereafter.
7.1. Summary

Table 1 lists the main parameters chosen for the baseline
case. In the baseline case there are no shocks to the
investment specific technologies Zj. They are considered in
Section 8.1.

r stands for the first-order serial correlation of invest-
ment growth. A set of parameters is chosen based on direct
empirical counterparts; namely, lI

ðs1Þ, l
I
ðs2Þ, r, ðdE,dSÞ, and

ðKE=ZEÞ=ðKS=ZSÞ. To replicate steady state values for qZ,
(bE,bS) are selected; (cE,cS) are then determined to generate
the lowest possible total adjustment cost. The curvature
parameters, nE and nS, and the steady state returns, RE and
RS (implicitly AE and AS), are chosen to match historical
first and second moments of the market return and the
risk-free rate.
Table 1
Parameter values.

Name Symbol Value

Investment growth rates lI
ðs1Þ, l

I
ðs2Þ

0.9587, 1.1078

Serial correlation r 0.2 or 0

Depreciation rates dE ,dS 0.112, 0.031

Relative value of capital

stocks
ðKE=ZEÞ=ðKS=ZSÞ 0.6

Adjustment cost

parameters
bE,bS, cE,cS so that qZ 1.5

Adjustment cost curvatures nE , nS 2.115, 3.854

Marginal products of

capital
AE, AS so that RE , RS 1.04644,

1.08026
7.2. Details of calibration

This section provides additional information about
parameter choices and data sources.
7.2.1. Investment and productivity processes

I consider the Bureau of Economic Analysis’ (BEA)
quantity indexes of investment for equipment and soft-
ware as well as for structures as the empirical counterparts
to investment in units of capital goods, IZ. Because Z

measures the number of units of capital goods that can be
produced from one unit of the final good, ruling out
arbitrage implies that 1/Z is the price of the capital good in
terms of the final good. Equivalently, 1/Z is the replace-
ment cost for capital (not including adjustment cost) or the
book value of capital. For both types of capital, Z is
computed as the deflator for nondurable consumption and
services divided by the deflator of the investment good.
Investment expenditure, I, can then be obtained by
combining the series for IZ and Z. Based on annual data
covering 1947–2003, the properties of the growth rates of
these series are shown in Table 2.

As is well known, the price of equipment and software
has been decreasing over time. The 1.82% annual increase
in Z shows that in Table 2. Table 2 also shows that the
volatilities of investment and investment expenditure are
very similar for the two types of capital.

The calibration of the investment growth process
proceeds in two steps. First, the probability matrix is
determined to match the serial correlation and the
frequency of low and high growth states. These two
moments do not depend on the shock values themselves
but only on the probabilities. Specifically, the two diagonal
elements of the probability matrix are given as

p11 ¼
rþ fr

1þ fr
, p22 ¼

1þ fr � r
1þ fr

, ð50Þ

where fr is the relative frequency of state 1, the recession
state. The numbers of realizations of investment growth
rates above and below the mean are almost the same; thus,
I set fr=1. As shown in Table 2, the first-order serial
correlations of the growth rates of investment are 0.13 and
0.28, respectively, and 0.08 and 0.27 for investment
expenditure. The common r is set at the average for
investment expenditure of 0.2; the natural benchmark
case, where r¼ 0 is also considered.

For the baseline calibration, I abstract from shocks to
the investment technology, Z. Due to the balanced growth
requirement, the growth rates of investment expenditures
are equalized across sectors. The mean of lI

�1 is set at
3.33% per year, which is the average of the historical
investment growth rates across the two types of capital.
The implied standard deviation is 7.46%, the historic
average of the standard deviations across the two types
of capital. The perfect positive correlation of the invest-
ment growth rates in the model is not that far from
the historical reality. The historical sample correlations
for investment across the two sectors are 0.61 and
0.64, for investment and investment expenditure, respec-
tively.



Table 2
US Investment 1947–2003 (growth rates).

Series Mean Standard deviation First autocorrelation

Investment expenditure IE 3.81% 6.98% 0.08

IS 2.85% 7.94% 0.27

Investment IZE 5.71% 7.81% 0.13

IZS 2.29% 6.86% 0.28

Investment technology ZE 1.82% 2.56% 0.66

ZS �0.44% 2.35% 0.31

10 Return data are from Ibbotson Associates (2004). Arguably, returns

in the model could be compared to an unlevered return to capital. For

comparability with the literature, this is not done here.
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To help the model produce admissible outcomes, that
is, positive state prices based on finite firm values, I bound
the domain of the investment capital ratios. Specifically, an
upper and a lower bound for the investment capital ratio
for equipment and software, IZ/KE, are set. The upper
bound corresponds to IZ/KE after seven high (positive)
investment growth rates starting from the steady state
value. For the lower bound, it is seven low (negative)
growth rates. The presented quantitative results are not
significantly affected by the values of these bounds.
However, without the bounds, the requirement of finite
firm values in particular cannot necessarily be satisfied
within the presented model specification. Mechanically,
the bound is enforced by replacing IZ/KE values beyond a
given bound with the value of the bound. The implied
investment growth rate lI is then also applied to the other
type of capital to ensure balanced growth. This procedure
also implicitly bounds IZ/KS.

For the case in which the investment specific technol-
ogy Z is allowed to vary in both sectors, the six values for
the realized growth rates of investment expenditure (two)
and the sector specific investment technologies (four) are
set so as to match as closely as possible the eight means
and standard deviations (equally weighted) of the growth
rates of IZE, IZS, ZE, and ZS. This objective can be achieved
quite well. The empirical correlation of investment with its
technological growth are 0.43 and �0.32 for the two types
of capital, respectively, while the correlation of the
technological growth across types is 0.3. Clearly, due to
limited degrees of freedom, the two-state process cannot
match all these correlations. As shown below, for most
quantities of interest, the Z shocks do not turn out to
matter that much.

7.2.2. Depreciation rates

The depreciation rates for equipment and software as
well as for structures, ðdE,dSÞ, are based on time series
averages of the depreciation rates reported in the Fixed
Assets tables from the BEA. These are 13.06% and 2.7%,
respectively, for the period 1947–2002. Because the BEA’s
depreciation includes physical wear as well as economic
obsolescence, the data are adjusted to take into account
that depreciation in the model covers only physical
depreciation. To do this the price increase in the capital
good is added, so that

dt ¼
Dt

Kt
þðZt�1=Zt�1Þ, ð51Þ
with Dt depreciation according to the BEA. This adjustment
decreases depreciation by 1.82% for equipment and
�0.44% for structures, so that ðdE,dSÞ ¼ ð0:112,0:031Þ.

7.2.3. Relative size of capital stocks

The capital stock ratio, (KE,t/ZE,t)/(KS,t/ZS,t), is needed
only for computing aggregate returns, which are value-
weighted averages of the two capital returns. Based on the
Current-Cost Net Stocks of Fixed Assets from the BEA, for
the period 1947–2002, the average of ðKE,t=ZE,tÞ=ðKS,t=ZS,tÞ is
0.6. I set the steady state ratio in the model equal to this
value. In the model, the ratio of the physical capital stocks
KE,t/KS,t is allowed to be nonstationary, while, given the
balanced growth requirements, the ratio of the book values
of the capital stocks (KE,t/ZE,t)/(KS,t/ZS,t) is stationary. This
seems consistent with the behavior of the empirical
counterparts.

7.2.4. Adjustment costs and marginal products

Given the limited direct evidence on the precise values
of nE and nS as well as RE and RS, these parameters are
chosen with the objective to get the best possible model fit
for the first and second moments of the aggregate return
and the risk free rate, assuming that nS4nE. For the
considered empirical counterparts, the four moments can
be perfectly matched with the values ðnE,nS,RE,RSÞ ¼

ð2:11,3:875,1:04622,1:08108Þ, with the implied marginal
product terms (AE,AS) =(0.1762,0.1384).10 Mechanically,
I draw a sample for the exogenous state st of 100,000
periods and search in the four-dimensional parameter
space to match the four moments.

Given that this is a highly nonlinear model, it was not
necessarily to be expected that the model could in fact
match first and second moments of stock returns and risk-
free rates. I provide here some additional evidence
suggesting that the chosen parameter values are empiri-
cally reasonable.

Each of the four parameters affect all four moments, but
there are differences in sensitivities. In particular, in line
with Eq. (33), the average of the curvature parameters
affects the volatility of the aggregate return most strongly.
The level of the R 0js has a strong effect on the mean risk-
free rate, as suggest by Eq. (36). Consistent with Eq. (35),



Table 3
Model implications for the baseline calibration, compared with data for

1947–2003.

Unconditional means and standard deviations are shown for returns

denoted by RM, market; Rf, risk-free; RE, equipment and software; and RS,

structures. Conditional means and conditional standard deviations for

excess returns are denoted by EðRM�Rf jtÞ and StdðRM�Rf jtÞ, respectively.

Standard

Mean deviation

RM
�Rf 8.35%

RM 17.24%

Rf 1.09% 2.07%

Market price of risk 0.55 0.34

Sharpe ratio 0.52 0.38

RE
�Rf 4.15%

RE 8.48%

RS
�Rf 12.34%

RS 25.00%

EðRM�Rf jtÞ 6.27%

StdðRM�Rf jtÞ 1.03%

Real returns 1947–2003

RM
�Rf 8.35%

RM 17.24%

Rf 1.09% 2.07%

11 The difference between the top and bottom quintile can be written

as the difference of two portfolios each containing structures and

equipment

3% ðor 6%Þ ¼ ð1:25w � rSþð1�1:25wÞ � rEÞ�ð0:78w � rSþð1�0:78wÞ � rEÞ,

with w the average share of real estate capital across all firms, and rS and

rE the expected returns for structures and equipment. With w=0.625, this

implies that rS
�rE=10% (or 20%).
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the difference between RE and RS strongly affects the
Sharpe ratio. Finally, a smaller difference between nE and
nS has a positive effect on the volatility of the risk-free rate.

Most readers would probably find the assumption that
nS4nE a priori reasonable. More direct evidence also
suggests that the adjustment cost curvature should be
larger for structures than for equipment and software. For
example, as shown in Table 2, the fact that the first order
serial correlation of the growth rates is somewhat higher
for structures than for equipment can be interpreted as an
expression of the desire to smooth investment over time
due to the relatively higher adjustment cost. As another
example, Guiso and Parigi (1999) examine investment
behavior for equipment and structures with Italian data on
investment and sales, but no asset price data. Their
findings are also consistent with the notion that structures
are more costly to adjust than equipment.

One way to gauge whether the adjustment cost
parameters are reasonable is to consider the amount of
resources lost due to the adjustment process. For the
baseline calibration, the mean average adjustment cost
(from the simulated model) is 8.1% and 11.6% of invest-
ment for equipment and software and structures, respec-
tively. These values depend primarily on the target value
for qZ, which itself does not affect much the model’s asset
pricing implications. When compared with the extreme
risk aversion coefficients required to make consumption
data consistent with the equity premium, the adjustment
cost curvatures required here are much smaller. A prime
reason for this is that investment growth is substantially
more volatile than consumption growth.

A large literature estimates adjustment costs at the
microeconomic level. See, for instance, the survey by
Hamermesh and Pfann (1996) or, more recently, Hall
(2004). From these, there does not emerge much agree-
ment about the importance of adjustment cost. One
difficulty in linking the results of such studies to mine is
that it is typically assumed that adjustment cost functions
are quadratic. Another difficulty is that at a disaggregated
level fixed costs are likely to play an important role.

Our parameter selection yields RS4RE. Therefore, with
nS4nE, both terms in Eq. (35) are contributing positively to
the model’s Sharpe ratio and the equity premium. While
direct empirical evidence on the R 0js seems elusive, existing
evidence supports the model implication that structures
have higher expected returns than equipment. Tuzel
(2009) considers portfolios of firm returns sorted on real
estate capital. Her definition of real estate capital based on
Compustat data is very close to structures used here. She
finds that the returns of firms in the quintile with the
highest shares of real estate capital exceed that of firms in
the quintile with the lowest shares of real estate by 3–6%
annually. The top quintile has a share in real estate that is
25% above the average, and the bottom quintile has a
corresponding share that is 22% below the average. Based
on an average real estate share in total capital of 0.625 (as
reported in Section 7.2.3), this implies a spread in expected
returns between equipment and structures of 10–20%
annually.11 Table 3 displays the model implied expected
excess returns for equipment and structures to be 4.15%
and 12.34%, respectively (4.18% and 11.89% for the iid case
in Table 4). The spread in model implied expected returns
between the two types of capital do therefore not appear
excessive in light of Tuzel’s evidence.

The values for bj are picked to replicate steady values
for Tobin’s Q, qZ of 1.5 for both types of capital. The c0js are
then picked to minimize the overall amount of output lost
due to adjustment cost. These parameters have very
limited influence on the model’s return implications.

Many studies estimate qZ. Lindenberg and Ross
(1981) report averages for two-digit sectors for the period
1960–1977 between 0.85 and 3.08. Lewellen and
Badrinath (1997) report an average of 1.4 across all sectors
for the period 1975–1991. Gomes (2001) reports an
average of 1.56. Based on this, I use a steady-state target
value for qZ, qZ , of 1.5 for both sectors. One problem with
using empirical studies to infer the required heterogeneity
of costs across types is that most studies consider
adjustment costs by sector of activity. For the analysis
here, I would need information about the adjustment costs
by type of capital.

The marginal product terms Aj(s
t +1) are made state-

contingent so as to guarantee that the implied state prices
are always positive. I choose to do this by introducing
state-contingency only when needed and then in a very
limited way. In particular, AE(st +1) is kept constant at AE

throughout. AS(st +1) is constant at AS except if the state
price were to be negative, which is the case for low values



Table 4
Model implications with iid investment growth rates, compared with

data for 1947–2003.

Unconditional means and standard deviations are shown for returns

denoted by RM, market; Rf, risk-free; RE, equipment and software; and RS,

structures. Conditional means and conditional standard deviations for

excess returns are denoted by EðRM�Rf jtÞ and StdðRM�Rf jtÞ, respectively.

Standard

Mean deviation

RM
�Rf 8.25%

RM 17.26%

Rf 1.01% 1.75%

Market price of risk 0.52 0.31

Sharpe ratio 0.51 0.33

RE
�Rf 4.18%

RE 8.66%

RS
�Rf 11.89%

RS 24.22%

EðRM�Rf jtÞ 5.36%

StdðRM�Rf jtÞ 0.81%

Real returns 1947–2003

RM
�Rf 8.35%

RM 17.24%

Rf 1.09% 2.07%
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of IZ/KS. In this case ASðs
t ,stþ1Þ ¼ ASð17xðstÞÞ, with x(st) set

to obtain a state price in state 2 equal to zero. For the
benchmark calibration, the shock is turned on 19.3% of the
time. In 83% of these cases, x(st) is smaller than 0.05, 0.5%
of the time it is larger than 0.5, and no realizations are
larger than 0.6. While these shocks are useful in ensuring
that the implied state prices are admissible, they have only
second-order effects on key asset pricing moments. This is
because the marginal product components Aj represents a
small part of the overall return. The implied correlation
between productivity shocks and investment is positive,
which seems reasonable.
8. Quantitative properties

Table 3 presents model implications for the baseline
calibration as well as empirical counterparts for a set of
moments. Model results are based on a sample of 100,000
yearly periods starting from steady state. For uncondi-
tional moments, the key finding is that the model is able to
match the historical mean equity premium and risk-free
rate, by also matching return volatilities for the aggregate
return and the risk-free rate. In Table 4, the model with
iid investment growth rates, but otherwise unchanged,
implies essentially the same unconditional moments, with
the risk-free rates being slightly less volatile.

Of particular interest is the model’s ability to generate
substantial time variation in expected excess returns and in
Sharpe ratios. The standard deviation of the one-period ahead
conditional equity premium is 6.32% and 5.42% for the
baseline calibration with and without serially correlated
investment growth rates, respectively. It is worth emphasiz-
ing that despite the high volatility in risk premiums, the
volatility of the risk-free rate is not excessive, with a standard
deviation of 2.07% and 1.76%, respectively. A number of
empirical studies measure excess return predictability. For
example, Campbell and Cochrane (1999) report R20 s of 0.18
and 0.04 for regressions of excess returns on lagged
price-dividend ratios at a one-year horizon for the periods
1947–1995 and 1871–1993, respectively. Combining the R2

with the volatility of the excess returns,
ffiffiffiffiffiffi
R2
p

StdðR�Rf Þ

provides an estimate of the volatility of the conditional
equity premium. Setting R2=0.1 this would be

ffiffiffiffiffiffiffi
0:1
p

�

0:17¼ 5:27%. Thus, the model’s values of 6.32% and 5.42%
are close.

In the model, the high volatility of the (conditional) equity
premium can be understood as the combination of volatile
expected investment returns for both types of capital and a
relatively stable risk-free rate. The main driver of the
expected return of a given type of capital is its investment
capital ratio, as is clearly shown in the return equations (20)
and (33). In the calibrated model, investment-capital ratios
are negatively related to expected returns. Fig. 1 illustrates
this relation by plotting the (simulated) expected investment
returns for each type of capital against its own investment-
capital ratio. In this case, the state of the economy consists
of the two investment-capital ratios and the realized
investment growth rate. The realized investment growth
rate matters, because, with serially correlated growth rates, it
affects the forecast of next period’s growth rate. Higher
expected growth rates increase expected returns, as can
clearly be seen in the return equation (33). Thus, in Fig. 1, the
upper line (or set of points) in each panel corresponds to the
high growth rate, and for the iid case (not shown) there
would be only one line in each graph. In addition to the
investment growth rate, for equipment, the expected return
depends only on its own investment-capital ratio. For
structures, with extreme investment-capital ratios, the
investment-capital ratio of equipment matters, too, because
of the shocks to the marginal product terms (in the lower
range only) and because of the bounds on the investment-
capital processes. Intuitively, the main mechanism at work is
that when an investment-capital ratio is high, the current
cost of adding capital (that is Tobin’s Q, bðIZ=KÞn�1) is high,
and thus the expected return going forward is low. Given the
considerable volatility of expected returns illustrated in
Fig. 1, and given the relatively stable risk-free rates,
expected excess returns (and thus the equity premium)
inherit most of the dynamic properties of expected returns.
Given that investment-capital ratios are strongly pro-cyclical
(positively correlated with Gross Domestic Product), a model
with iid investment growth rate predicts a counter cyclical
equity premium.

From the more general perspective of merely assuming
the absence of arbitrage, the conditional equity premium
can be written as

EtðRtþ1�Rf
t Þ ¼�

stðmtþ1Þ

Etmtþ1
stðRtþ1Þrtðmtþ1,Rtþ1Þ: ð52Þ

In the model, the conditional return volatility stðRtþ1Þ

does not move very much, with standard deviations
of 1.03% and 0.81% for the benchmark cases with and
without serial correlation displayed in Tables 3 and 4.
For the continuous-time approximation, as shown in
Eq. (33), with homoscedastic investment growth rates,



Fig. 1. Expected investment returns as a function of the capital to investment ratio. Panel A shows expected returns to equipment and software as a

function of the investment to capital ratio in equipment and software. Panel B is for structures. The top line of each graph shows the expected return

when the growth rate of investment is expected to be high, and the lower line is for low expected investment growth.

12 In particular, if the average of the deviations from the uncondi-

tional means for the two types of capital is positive, the common

investment growth realization is set to the high rate and vice versa.
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instantaneous returns are also homoscedastic. In this
case, the conditional standard deviation of aggregate
returns moves only through shifts in the relative
value weights of the two capital stocks. In the simulated
model, the shocks to the marginal product terms and
the limits on the range of the investment-capital process
also create some heteroscedasticity. Given the relatively
stable conditional return volatility, the Sharpe ratio
implied by the aggregate market, EtðRtþ1�Rf

t Þ=stðRtþ1Þ,
inherits the dynamic properties of the conditional equity
premium. A number of recent studies provide empirical
support for volatile and countercyclical Sharpe ratios. See,
for instance, Brandt and Kang (2004) and Ludvigson and
Ng (2007). The model with IID investment growth is
consistent with these findings. In the model, the Sharpe
ratio is mainly driven by time variation in the market price
of risk, stðmtþ1Þ=Etmtþ1. However, the correlation be-
tween the stochastic discount factor and the market return
is also time-varying. This being a two-state model,
conditional correlations are either 1 or �1. While the
correlation is typically equal to �1, it changes sign at
times when the investment-capital ratios are very high,
that is, when Sharpe ratios are very low. The slightly higher
volatility of the Sharpe ratio compared with the market
price of risk, as displayed in Tables 3 and 4, is a reflection
of this.

To further illustrate model properties, I consider the
implications from feeding the investment realizations for
the US for the period 1947–2003 through the model.12



Fig. 2. Gross annual growth rates of investment for equipment and software and for structures (1948–2003), compared with the growth rates of the

two-state process that is fed through the model.

Fig. 3. Gross annual returns to the aggregate stock market: model compared with the data. The data represents the Ibbotson Associates large company

stocks returns (1948–2002) deflated by the price index for nondurable consumption and services.
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Given that investment growth in the model follows a two-
state distribution, the fit of the driving process is not
perfect. Nevertheless, as shown in Fig. 2, the fit can be very
good, with correlations between the model and the data of
0.78 and 0.71 for equipment and structures, respectively.
Fig. 3 shows that the model-generated returns are related
to realized stock returns, with a correlation of 0.48
between the two.
Fig. 4 Panels A and B show conditional moments. In
Panel A, the high frequency movements in expected
returns as well as Sharpe ratios are driven by the
forecastable component of the investment growth rates;
the low frequency movements are driven by the
investment-capital ratios. For the iid case displayed in
Panel B, investment-capital ratios are the only drivers of
time-varying asset returns. It is interesting to consider the



Fig. 4. Model implied expected excess returns of the aggregate stock market, Sharpe ratios, and market prices of risk. Investment growth rates are

assumed serially correlated in Panel A and independently and identically distributed (iid) in Panel B.
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1990s. As shown in Fig. 2, the decade produced a series of
eight high investment growth realizations in a row.
Through that sequence, investment-capital ratios are
continuously increasing. As shown in Fig. 4 Panel B, at
the end of this sequence, the expected equity premium
becomes negative, and thus the conditional correlation
between the stochastic discount factor and realized
returns has switched sign. From the perspective of the
firms making investment decisions, the story told by the
model is that throughout the 1990s firms continued to
invest heavily, despite declining expected returns, because
investment returns were considered less and less risky.
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8.1. Sensitivity and discussion

I consider here the effects of the investment specific
technology shocks and the shocks to the marginal product
terms. The quantitative content of the continuous-time
approximations is also examined.

Tables 5 and 6 show results for the calibrations with
investment specific technology shocks Z. In Table 5 the
correlation of Z with the investment growth of the same
type equals 1; in Table 6, �1. While there are some
Table 5
Model with investment technology shocks positively correlated with

investment growth.

Unconditional means and standard deviations are shown for returns

denoted by RM, market; Rf, risk-free; RE, equipment and software; and RS,

structures. Conditional means and conditional standard deviations for

excess returns are denoted by EðRM�Rf jtÞ and StdðRM�Rf jtÞ, respectively.

Standard

Mean deviation

RM
�Rf 6.72%

RM 14.20%

Rf 2.34% 2.52%

Market price of risk 0.55 0.35

Sharpe ratio 0.52 0.40

RE
�Rf 2.78%

RE 10.50%

RS
�Rf 6.09%

RS 21.75%

EðRM�Rf jtÞ 5.28%

StdðRM�Rf jtÞ 1.08%

Real returns 1947–2003

RM
�Rf 8.35%

RM 17.24%

Rf 1.09% 2.07%

Table 6
Model with investment technology shocks negatively correlated with

investment growth.

Unconditional means and standard deviations are shown for returns

denoted by RM, market; Rf, risk-free; RE, equipment and software; and RS,

structures. Conditional means and conditional standard deviations for

excess returns are denoted by EðRM�Rf jtÞ and StdðRM�Rf jtÞ, respectively.

Standard

Mean deviation

RM
�Rf 10.09%

RM 19.28%

Rf
�0.24% 2.91%

Market price of risk 0.57 0.34

Sharpe ratio 0.55 0.39

RE
�Rf 5.71%

RE 14.26%

RS
�Rf 10.77%

RS 27.11%

EðRM�Rf jtÞ 7.20%

StdðRM�Rf jtÞ 1.17%

Real returns 1947–2003

RM
�Rf 8.35%

RM 17.24%

Rf 1.09% 2.07%
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quantitative differences compared with the baseline case,
and between the two cases considered here, none of the
main conclusions is affected.

Table 7 illustrates the effect of the shocks to the
marginal product terms. In this case, the shocks to the
marginal product term AS are always turned on at 730%,
and sometimes higher if needed to make prices stationary.
Comparing this with the benchmark case in Table 3 without
the shocks (except if needed to make prices stationary),
there is little difference. Having the shocks on all the time,
increases the risk-free rate by 81 basis points and reduces
the equity premium roughly by the same amount. Return
volatilities are essentially the same in the two cases.

Finally, I reconsider the closed-form expressions de-
rived for the continuous-time model at steady state for the
Sharpe ratio and the risk-free rate. This allows the
continuous-time setup to be compared to the more fully
specified simulated discrete-time model, as well as to
appreciate the difference between steady state values and
unconditional averages.

As shown in Eqs. (35) and (36) the Sharpe ratio and the
risk-free rate at steady state in the continuous-time model
are function of ðnE,nS,RE,RSÞ and sI only. Based on the
values of these parameters used for the baseline calibra-
tion, the Sharpe ratio and the risk-free rate equal 0.3762%
and 1.54%, respectively. The discrete-time model with iid
shocks evaluated at steady state when the investment
growth rate is set equal to the average implies 0.3721% and
1.62% for these two quantities. Thus, in these two
dimensions, continuous-time and discrete-time versions
are very close. For mean values reported in Table 4, the two
are 0.51% and 1.01%. In this case, averages are somewhat
different from steady state values. The key feature that
makes the average Sharpe ratio relatively larger can be
seen in Fig. 1. For structures that have the higher
able 7
odel implications with technology shocks for structures (AS) always

urned on.

Unconditional means and standard deviations are shown for returns

enoted by RM, market; Rf, risk-free; RE, equipment and software; and RS,

tructures. Conditional means and conditional standard deviations for

xcess returns are denoted by EðRM�Rf jtÞ and StdðRM�Rf jtÞ, respectively.

Standard

Mean deviation

RM
�Rf 7.52%

RM 18.83%

Rf 1.90% 1.91%

Market price of risk 0.45 0.29

Sharpe ratio 0.42 0.33

RE
�Rf 3.35%

RE 8.48%

RS
�Rf 11.47%

RS 27.67%

EðRM�Rf jtÞ 6.05%

StdðRM�Rf jtÞ 0.63%

Real returns 1947–2003

RM
�Rf 8.35%

RM 17.24%

Rf 1.09% 2.07%
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adjustment cost curvature, expected returns are strongly
convex in the investment-capital ratio.
9. Conclusions

This paper examines the implications of producers’
first-order conditions for asset prices in a model in which
convex adjustment cost play a major role. Closed-form
expressions are presented that show how investment
behavior and production technologies are linked to the
returns on the aggregate stock market and on risk-free
bonds. A carefully calibrated model is shown to be able
to replicate empirical first and second unconditional
moments of the returns on the aggregate stock market
and on risk-free bonds. As far as conditional moments are
concerned, the expected excess stock return, the market’s
Sharpe ratio, and the market price of risk are found to be
very volatile. Overall, these rather positive findings derived
from relatively basic assumptions should encourage
further research on the production side of asset pricing.
Appendix: Continuous-time model

This appendix presents a continuous-time investment
model that replicates the setup of the discrete-time
environment. The technology side of the model follows
Abel and Eberly (1994) but without shocks. The main
difference is that here the firm faces changing state prices,
while in their case pricing is risk neutral with constant
interest rates. The steps needed to derive the return
equation (33) are also presented.

The capital stock evolves as dKt ¼ ðIt�dKtÞdt, and the
investment cost is given by

HðIt ,KtÞ ¼
b

n ðIt=KtÞ
n
þc

� �
Kt , ð53Þ

which is homogenous of degree one in I and K.13 The gross
profit is given as AKt. Assume that the state-price process is
given as

dLt ¼�LtrðxtÞdtþLtsðxtÞdzt , ð54Þ

where dzt is a one-dimensional Brownian motion and

dxt ¼ mxðxtÞdtþsxðxtÞ dzt : ð55Þ

Assume that the functions mxðxtÞ, sxðxtÞ, rðxtÞ and sðxtÞ,
satisfy the regular conditions such that there are solutions
for the above two stochastic differential equations.

The firm maximizes its value

V ¼max
fItþ sg

Et

Z 1
0
½AKtþ s�HðItþ s,K,tþ sÞ�

Ltþ s

Lt
ds

� �
: ð56Þ

Given the dynamics of Lt , it is obvious that the firm’s value
function V is independent of Lt . Following from the
Markov property of the state variable xt, the firm’s value
function would be a function of (Kt,xt). The Hamilton–
13 The model used in the main text features two capital stocks.

Because these enter separably into production, the presentation focuses

here, for compactness, on a single capital stock.
Jacobi–Bellman equation is

rV ¼max
fItg

�
½AKt�HðIt ,KtÞ�þðIt�dKtÞVK

þmxVxþ
1

2
s2

x VxxþssxVx

�
: ð57Þ

The first-order condition is

HIðIt ,KtÞ ¼ VK � qt : ð58Þ

That is,

VK ¼ bðIt=KtÞ
n�1

ð59Þ

and

It ¼
VK

b

� �1=n�1

Kt : ð60Þ

Because of constant returns to scale in Kt, following
Hayashi, it is easy to see that VðKt ,xtÞ ¼ KtVK ðxtÞ. Thus, it
is clear that optimal investment follows an Ito process,
dIt=It ¼ mIðKt ,xtÞdtþsIðKt ,xtÞdzt .

Define realized returns to the firm as

AKt�HðIt ,K,tÞ

Vt
dtþ

dVt

Vt
: ð61Þ

Given Hayashi’s result and the first-order conditions,

AKt�HðIt ,K,tÞ

Vt
dtþ

dVt

Vt
¼

AKt�HðIt ,K,tÞ

qtKt
dtþ

dKt

Kt
þ

dqt

qt
:

ð62Þ

Using the first-order condition qt=HI (It,Kt) together with
Ito’s lemma, the last term of this equation can be written as

dqt

qt
¼

dHIðIt ,K,tÞ

HIðIt ,K,tÞ
¼

HIIðIt ,K,tÞdIþHIK ðIt ,K,tÞ dKþ1
2HIIIðIt ,K,tÞðdIÞ2

HIðIt ,K,tÞ
,

ð63Þ

and given the functional form for H(�), some algebra yields

dqt

qt
¼ ðn�1Þ mI�ðIt=Kt�dÞþ

1

2
ðn�2Þs2

I

� �
dtþðn�1ÞsI dz:

ð64Þ

Using this result, the return equation (33) given in the
main text can then easily be derived.

As discussed in Section 6.1, for the model without
technology shocks, constant interest rates imply constant
investment returns. The continuous-time model admits a
compact proof for this property. Changing to the risk-
neutral measure Q, the firm’s problem becomes

V ¼max
fItþ sg

EQt

Z 1
0

e�
R tþ s

t
ru du
½AKtþ s�HðItþ s,K,tþ sÞ�ds

� �
, ð65Þ

with

dxt ¼ ðmxðxtÞþsðxtÞsxðxtÞÞdtþsxðxtÞdzQt ð66Þ

and

dKt ¼ ðIt�dKtÞdt: ð67Þ

Written in this form, it is obvious that if the interest rate ru is
constant, the firm faces no uncertainty, and thus, it will not
introduce any uncertainty into an optimal investment plan.
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