
Handout 4: Gains from Diversification for 2 Risky Assets

Corporate Finance, Sections 001 and 002

Suppose you are deciding how to allocate your wealth between two risky assets. Recall

that the expected return of a two-asset portfolio is:

R̄p = X1R̄1 +X2R̄2

where R̄1 and R̄2 are the expected returns on Asset 1 and 2, and X1 and X2 are the

weights invested in each. The standard deviation (σ) on the portfolio is:

σp =
[

X2

1
σ2

1
+X2

2
σ2

2
+ 2X1X2σ1σ2ρ

]1/2

where ρ is the correlation between the two assets.

Suppose we have the following information:

R̄1 = .17 σ1 = .25

R̄2 = .10 σ2 = .12

We also know that the correlation between these assets is ρ = .2. Notice that Asset 2

has a lower mean and standard deviation than Asset 1. Using the two formulas, we can

compute the mean and standard deviation for a range of weights in Assets 1 and 2:

X1 X2 R̄p σp

0 1 .100 .120

.2 .8 .114 .117

.4 .6 .128 .134

.6 .4 .142 .166

.8 .2 .156 .206

1 0 .170 .250

For example, consider the portfolio with 20% in Asset 1 and 80% in Asset 2. From the

formula for the mean:

R̄p = .2(.17) + .8(.10) = .114.
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From the formula for the standard deviation:

σp =
[

(.2)2(.25)2 + (.8)2(.12)2 + 2(.2)(.8)(.25)(.12)(.2)
]1/2

= .117

The table shows that as we go from 100% in the second asset (X2 = 1) to 100% in the

first the mean increases. Not so for the standard deviation. Adding a little bit of Asset 1

to Asset 2 causes a decrease in standard deviation. This is a gain from diversification.

How is it that we can increase the mean and decrease the standard deviation at the

same time? The best way to understand this gain from diversification is to consider three

special cases that are particularly intuitive.

Case 1. Perfect correlation: ρ = 1

When ρ = 1, the formula for variance becomes:

σ2

p = X2

1
σ2

1
+X2

2
σ2

2
+ 2X1X2σ1σ2

It turns out that this expression is a perfect square, and

σ2

p = (X1σ1 +X2σ2)
2.

That means:

σp = X1σ1 +X2σ2

In this very special case, the standard deviation is a weighted average, just like the

mean. We have two linear equations, so every point on our mean-variance diagram

(shown below) is a straight line. As we move along the line, for each bit of expected

return, we have to pay in terms of standard deviation. In the case of ρ = 1 (and only in

this case) we have no gains from diversification.

2



Case 2. Perfect negative correlation: ρ = -1

When ρ = −1, the formula for variance becomes:

σ2

p = X2

1
σ2

1
+X2

2
σ2

2
− 2X1X2σ1σ2.

This is also a perfect square:

σ2

p = (X1σ1 −X2σ2)
2

Because σp must be a positive number:

σp = |X1σ1 −X2σ2|.

The amazing thing about ρ = −1 is that we can reduce the standard deviation all

the way to zero. Remember that X1 = 1 −X2. Setting σp to zero in the formula above

implies:

(1−X2)σ1 −X2σ2 = 0

Collecting terms:

σ1 −X2(σ1 + σ2) = 0.

Therefore:

X2 =
σ1

σ1 + σ2

Using σ1 = .25 and σ2 = .12:

X2 =
.25

.25 + .12
= .68

Which implies X1 = .32

R̄p = .32(.17) + .68(.10) = .12

This tells us that for ρ = −1, the investment opportunity set must touch the y-axis at .12.

In the case of ρ = −1 we have huge gains in diversification. Perfect negative correlation
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means that when Asset 1 is high relative to its mean, Asset 2 is low. A portfolio that

combines Asset 1 and 2 will not have as wide swings as Asset 1 or Asset 2 by itself. What

is surprising is that we can reduce the risk all the way to zero.

The cases of ρ = 1 and ρ = −1 are depicted in the mean-variance diagram shown

below.
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Case 3. Independence: ρ = 0

It may seem like in this case that we don’t have gains from diversification. But we

do. Consider what happens to the formula when we put in ρ = 0:

σ2

p = X2

1
σ2

1
+X2

2
σ2

2

This formula is not a weighted average, despite appearances. The squares of weights sum

to less than one. In fact,

σp = (X2

1
σ2

1
+X2

2
σ2

2
)1/2 < X1σ1 +X2σ2

The standard deviation is much less than it would be if ρ = 1. The best way to prove it

to yourself is to calculate the standard deviations of the portfolios:
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X1 X2 R̄p σp

0 1 .100 .120

.2 .8 .114 .108

.4 .6 .128 .123

.6 .4 .142 .158

.8 .2 .156 .201

1 0 .170 .250

Note that the means are identical to the case where ρ = .2. This is not surprising - the

correlation does not enter into the formula for the mean.

These points are plotted in the figure on the previous page. Even in this case we can

simultaneously increase our mean and decrease our standard deviation.

Real Life. ρ > 0

In real life, the most common case we encounter is that ρ > 0. For example, in the

case above, ρ = .2. The intuition for the positive correlation case is exactly the same as

in the zero-correlation case, though the gains from diversification are less powerful.

Below, ρ = .2 and ρ = .5 are added into the plot. Notice that for ρ = .5, there is

no backward bend to the diagram. The standard deviation is steadily increasing. Even

here, however, there are gains from diversification relative to the case of ρ = 1. Standard

deviation increases, but it does so less than proportionally.

For all values of ρ < 1, the standard deviation of a portfolio is less than its standard

deviation when ρ = 1. Because the standard deviation when ρ = 1 is the weighted

average, the standard deviation when ρ < 1 must be less than the weighted average.

Note also that diversification can never create a “monster portfolio”. That is, the

standard deviation never “explodes” because it never exceeds a weighted average of the

two underlying standard deviations. The reason is that ρ can never be greater than one.
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Thus the largest possible standard deviation is a weighted average of σ1 and σ2.
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