Handout 6: Portfolio Variance with Many Risky Assets

Corporate Finance, Sections 001 and 002

Case 1: Unsystematic risk only.

Recall that when the correlation ρ between two securities equals zero, the portfolio variance is given by:

$$\sigma_p^2 = X_1^2\sigma_1^2 + X_2^2\sigma_2^2$$

A simple generalization of this formula holds for many securities provided that $\rho = 0$ between all pairs of securities:

$$\sigma_p^2 = X_1^2 \sigma_1^2 + X_2^2 \sigma_2^2 + \dots + X_N^2 \sigma_N^2.$$
(1)

We will prove the following result. As $N \to \infty$, the portfolio standard deviation $\sigma_p \to 0$.

To make the notation simpler, assume that $\sigma_1 = \sigma_2 = \cdots = \sigma_N = \sigma$. This means that each asset is equally risky. Under those circumstances, we try the simple diversification strategy of dividing our wealth equally among each asset such that $w_i = \frac{1}{N}$.

These assumptions allow us to rewrite expression (1) as

$$\sigma_p^2 = \left(\frac{1}{N}\right)^2 \sigma^2 + \left(\frac{1}{N}\right)^2 \sigma^2 + \dots + \left(\frac{1}{N}\right)^2 \sigma^2 \tag{2}$$

There are N identical terms in expression (2), which means:

$$\sigma_p^2 = N\left(\frac{1}{N}\right)^2 \sigma^2$$
$$\sigma_p^2 = \frac{1}{N}\sigma^2$$

The expression in (3) shows that as N grows larger and larger, the variance the portfolio declines. As $N \to \infty$, the variance goes to zero.

Case 2: Systematic and unsystematic risk

In fact, U.S. stocks do not have zero correlation with one another. We can capture the positive correlation of U.S. stocks with a factor model. Let R_i denote the return on an

individual stock, and R_M the return on a broad market index like the S&P 500. One way to capture the common source of variation is to run a regression of the values of R_i on R_M :

$$R_i = \alpha_i + \beta_i R_M + \epsilon_i \tag{3}$$

This is equivalent to fitting a line through a scatter plot of pairs of returns (R_M, R_i) . The slope of the line equals β_i . You may have heard in your statistics class that

$$\beta_i = \frac{\operatorname{Cov}(R_i, R_M)}{\sigma_M^2}.$$
(4)

The coefficient β_i is a measure of how much the stock moves together with the market index R_M . The error term, ϵ_i , measures the variability in R_i that is independent of all other securities in R_M .

Using (3), we can decompose the variance of a stock into its systematic and unsystematic components:

$$\sigma_i^2 = \beta_i^2 \sigma_M^2 + \sigma_\epsilon^2$$
(5)
Total risk = Systematic risk + Idiosyncratic risk

Here, σ_M^2 is the variance of R_M . Equation (5) follows from the fact that ϵ and R_M are independent random variables.

Equation (5) shows that U.S. stocks have both systematic risk $(\beta_i^2 \sigma_M^2)$ and unsystematic risk (σ_{ϵ}^2) . The argument from Case 1 demonstrates that the unsystematic component of stock risk goes away in a well-diversified portfolio (i.e. a portfolio with a large number of securities N). Only the systematic component remains.