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Why Is Long-Horizon Equity Less Risky?
A Duration-Based Explanation

of the Value Premium

MARTIN LETTAU and JESSICA A. WACHTER∗

ABSTRACT

We propose a dynamic risk-based model that captures the value premium. Firms are
modeled as long-lived assets distinguished by the timing of cash flows. The stochastic
discount factor is specified so that shocks to aggregate dividends are priced, but shocks
to the discount rate are not. The model implies that growth firms covary more with the
discount rate than do value firms, which covary more with cash flows. When calibrated
to explain aggregate stock market behavior, the model accounts for the observed value
premium, the high Sharpe ratios on value firms, and the poor performance of the
CAPM.

THIS PAPER PROPOSES A DYNAMIC RISK-BASED MODEL that captures both the high ex-
pected returns on value stocks relative to growth stocks, and the failure of the
capital asset pricing model to explain these expected returns. The value pre-
mium, first noted by Graham and Dodd (1934), is the finding that assets with a
high ratio of price to fundamentals (growth stocks) have low expected returns
relative to assets with a low ratio of price to fundamentals (value stocks). This
finding by itself is not necessarily surprising, as it is possible that the premium
on value stocks represents compensation for bearing systematic risk. However,
Fama and French (1992) and others show that the capital asset pricing model
(CAPM) of Sharpe (1964) and Lintner (1965) cannot account for the value pre-
mium: While the CAPM predicts that expected returns should rise with the
beta on the market portfolio, value stocks have higher expected returns yet do
not have higher betas than growth stocks.

To model the difference between value and growth stocks, we introduce a
cross-section of long-lived firms distinguished by the timing of their cash flows.
Firms with cash flows weighted more to the future endogenously have high
price ratios, while firms with cash flows weighted more to the present have
low price ratios. Analogous to long-term bonds, growth firms are high-duration
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assets while value firms are low-duration assets. We model how investors per-
ceive the risks of these cash flows by specifying a stochastic discount factor for
the economy, or equivalently, an intertemporal marginal rate of substitution
for the representative agent. Two properties of the stochastic discount factor
account for the model’s ability to fit the data. First, the price of risk varies,
implying that at some times investors require a greater return per unit of risk
than at others. Second, variation in the price of risk is not perfectly linked to
variation in aggregate fundamentals. We show that the correlation between ag-
gregate dividend growth and the price of risk crucially determines the ability
of the model to fit the cross section.

We require that our model match not only the cross section of assets based on
price ratios, but also aggregate dividend and stock market behavior. First, we
assume that log dividend growth is normally distributed with a time-varying
mean and calibrate the dividend process to fit conditional and unconditional
moments of the aggregate dividend process in the data. Firms are distinguished
by their cash flows, which we specify as stationary shares of the aggregate div-
idend. This modeling strategy, also employed by Menzly, Santos, and Veronesi
(2004), ensures that the economy is stationary, and that firms add up to the
market. Second, we choose stochastic discount factor parameters to fit the time
series of aggregate stock market returns. These choices imply that expected
excess returns on equity are time varying in the model, that there is excess
volatility, and that excess returns are predictable. We find that the model can
match unconditional moments of the aggregate stock market and produce div-
idend and return predictability close to that found in the data.

To test whether our model can capture the value premium, we sort firms
into portfolios in simulated data. We find that risk premia, risk-adjusted re-
turns, and Sharpe ratios increase in the value decile. The value premium (the
expected return on a strategy that is long the extreme value portfolio and short
the extreme growth portfolio) is 5.1% in the model compared with 4.9% in the
data when portfolios are formed by sorting on book-to-market. Moreover, the
CAPM alpha on the value-minus-growth strategy is 6.0% in the model, com-
pared with 5.6% in the data. These results do not arise because value stocks are
more risky according to traditional measures: Rather, standard deviations and
market betas increase slightly in the value decile and then decrease, implying
that the extreme value portfolio has a lower standard deviation and beta than
the extreme growth portfolio. Our model therefore matches both the magnitude
of the value premium and the outperformance of value portfolios relative to the
CAPM that obtain in the data.

In its focus on explaining the value premium through cash flow fundamen-
tals, our model is part of a growing literature that emphasizes the cash flow
dynamics of the firm and how these relate to discount rates. In particular, in
a model in which firms have assets in place as well as real growth options,
Berk, Green, and Naik (1999) show that acquiring an asset with low system-
atic risk leads to a decrease in the firm’s book-to-market ratio and lower future
returns. More recently, Gomes, Kogan, and Zhang (2003) explicitly link risk
premia to characteristics of firm cash flows in general equilibrium and Zhang
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(2005) shows how asymmetric adjustment costs and a time-varying price of risk
interact to produce value stocks that suffer increased risk during downturns.
These models endogenously derive patterns in the cross section of returns from
cash flows, but they do not account for the classic finding of Fama and French
(1992) that value stocks outperform, and growth stocks underperform, relative
to the CAPM.

Our model for the stochastic discount factor builds on the work of Brennan,
Wang, and Xia (2004) and Brennan and Xia (2006) and is closely related to es-
sentially affine term structure models (Dai and Singleton (2003), Duffee (2002)).
As Brennan et al. show, their model for the stochastic discount factor implies
that claims to single dividend payments are exponential-affine in the state
variables, which allows for economically interpretable closed-form expressions
for prices and risk premia. Motivated by these expressions, Brennan et al. em-
pirically evaluate whether expected returns on a cross-section of assets can be
explained by betas with respect to discount rates. Here we make use of similar
analytical methods to address a different goal, namely, endogenously generat-
ing a value premium based on the firm’s underlying cash flows.

Our paper also builds on work that uses the concept of duration to better
understand the cross section of stock returns. Using the decomposition of re-
turns into cash flow and discount rate components proposed by Campbell and
Mei (1993), Cornell (1999) shows that growth companies may have high betas
because of the duration of their cash flows, even if the risk of these cash flows
is mainly idiosyncratic. Berk, Green, and Naik (2004) value a firm with large
research and development expenses and show how discount rate and cash flow
risk interact to produce risk premia that change over the course of a project.
Their model endogenously generates a long duration for growth stocks. Lei-
bowitz and Kogelman (1993) show that accounting for the sensitivity of the
value of long-run cash flows to discount rates can reconcile various measures
of equity duration. Dechow, Sloan, and Soliman (2004) measure cash flow du-
ration of value and growth portfolios; they find that empirically, growth stocks
have higher duration than value stocks and that this contributes to their higher
betas. Santos and Veronesi (2004) develop a model that links time variation in
betas to time variation in expected returns through the channel of duration, and
show that this link is present in industry portfolios. Campbell and Vuolteenaho
(2004) decompose the market return into news about cash flows and news about
discount rates. They show that growth stocks have higher betas with respect to
discount rate news than do value stocks, consistent with the view that growth
stocks are high-duration assets. These papers all show that discount rate risk
is an important component of total volatility, and, further, that growth stocks
seem particularly subject to such discount rate risk. Our model shows how these
contributions can be parsimoniously tied together with those discussed in the
paragraphs above.

Finally, this paper relates to the large and growing body of empirical re-
search that explores the correlations of returns on value and growth stocks
with sources of systematic risk. This literature explores conditional versions
of traditional models (Jagannathan and Wang (1996), Lettau and Ludvigson



58 The Journal of Finance

(2001a), Petkova and Zhang (2005), Santos and Veronesi (2006)) and identi-
fies new sources of risk that covaries more with value stocks than with growth
stocks (Lustig and Van Nieuwerburgh (2005), Piazzesi, Schneider, and Tuzel
(2005), Yogo (2006)). Another strand of literature relates observed returns of
value and growth stocks to aggregate market cash flows or macroeconomic
factors (Campbell, Polk, and Vuolteenaho (2003), Liew and Vassalou (2000),
Parker and Julliard (2005), Vassalou (2003)). The results in these papers raise
the question of what it is, fundamentally, about the cash flows of value and
growth stocks that produces the observed patterns in returns. Other work ex-
amines dividends on value and growth portfolios directly (Bansal, Dittmar, and
Lundblad (2005), Cohen, Polk, and Vuolteenaho (2003), and Hansen, Heaton,
and Li (2004)) and finds evidence that the cash flows of value stocks covary
more with aggregate cash flows. The results in these papers raise the question
of why the observed covariation leads to the value premium. By explicitly link-
ing firms’ cash flow properties and risk premia, this paper takes a step toward
answering this question.

The paper is organized as follows. Section I updates evidence that portfolios
formed by sorting on prices scaled by fundamentals produce spreads in expected
returns. We show that when value is defined by book-to-market, earnings-to-
price, or cash-flow-to-price, the expected return, Sharpe ratio, and alpha tend
to increase in the value decile. The differences in expected returns and al-
phas between value and growth portfolios are statistically and economically
large.

Section II presents our model for aggregate dividends and the stochastic
discount factor. As a first step toward solving for prices of the aggregate market
and firms, we solve for prices of claims to the aggregate dividend n periods in
the future (zero-coupon equity). Because zero-coupon equity has a well-defined
maturity, it provides a convenient window through which to view the role of
duration in our model. The aggregate market is the sum of all the zero-coupon
equity claims. We then introduce a cross section of long-lived assets, defined by
their shares in the aggregate dividend. These assets are themselves portfolios
of zero-coupon equity, and together their cash flows and market values sum up
to the cash flows and market values of the aggregate market.

Section III discusses the time-series and cross-sectional implications of our
model. We calibrate the model to the time series of aggregate returns, divi-
dends, and the price-dividend ratio. After choosing parameters to match ag-
gregate time-series facts, we examine the implications for zero-coupon equity.
We find that the parameters necessary to fit the time series imply risk pre-
mia, Sharpe ratios, and alphas for zero-coupon equity that are increasing in
maturity. In contrast, CAPM betas and volatilities are nonmonotonic, and thus
do not explain the increase in risk premia. This suggests that our model has
the potential to explain the value premium. We then choose parameters of the
share process to approximate the distribution of dividend, earnings, and cash
flow growth found in the data, and produce realistic distributions of price ra-
tios. When we sort the resulting assets into portfolios, our model can explain
the observed value premium.
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Section IV discusses the intuition for our results. We show that the covari-
ation of asset returns with the shocks depends on the duration of the asset.
Consistent with the results of Campbell and Vuolteenaho (2004), growth stocks
have greater betas with respect to discount rates than do value stocks. This is
the duration effect: Because cash flows on growth stocks are further in the fu-
ture, their prices are more sensitive to changes in discount rates. Growth stocks
also have greater betas with respect to changes in expected dividend growth.
Value stocks, on the other hand, have greater betas with respect to shocks to
near-term dividends. The price investors put on bearing the risk in each of these
shocks determines the rates of return on value and growth stocks. While shocks
to near-term dividends are viewed as risky by investors, shocks to expected fu-
ture dividends are hedges under our calibration. Moreover, though discount
rates vary over time, shocks to discount rates are independent of shocks to div-
idends and are therefore not priced directly. Thus, even though long-horizon
equity is riskier according to standard deviation and market beta, it is not
seen as risky by investors because it loads on risks that investors do not mind
bearing.

I. Evidence on the Value Premium

Much of the previous literature shows that portfolios of stocks with high ratios
of prices to fundamentals have low future returns compared to stocks with low
ratios of prices to fundamentals.1 In this section, we update this evidence by
running statistical tests on portfolios formed on ratios of market to book value,
price to earnings, price to dividends, and price to cash flow. We show that in
all cases, the sorting produces differences in expected returns that cannot be
attributed to market beta. Moreover, the alpha relative to the CAPM tends to
increase in the measure of value. In our model, firms are distinguished by their
cash flows, thus earnings, dividends, and cash flows are equivalent. For this
reason, it is of interest to investigate whether the value effect is apparent in
portfolios formed according to different measures of value.

Table I reports summary statistics for portfolios of firms sorted into deciles on
each of the three characteristics described above and on book-to-market. Data,
available from the website of Ken French, are monthly, from 1952 to 2002.
We compute excess returns by subtracting monthly returns on the 1-month
Treasury Bill from the portfolio return. The first panel reports the mean excess
return, the second the standard error on the mean, the third the standard
deviation of the return, and the fourth the Sharpe ratio. Means and standard
deviations are in annual percentage terms (multiplied by 1,200 in the case of
means and

√
12 × 100 in the case of standard deviations). Each panel reports

results for the earnings-to-price ratio, the cash-flow-to-price ratio, the dividend
yield, and the book-to-market ratio.

1 See Graham and Dodd (1934), Basu (1977, 1983), Ball (1978), Rosenberg, Reid, and Lanstein
(1985), Jaffe, Keim, and Westerfield (1989), and Fama and French (1992). Cochrane (1999) surveys
recent literature on the value effect.
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Table I
Summary Statistics for Growth and Value Portfolios

Portfolios are formed by sorting firms into deciles on the dividend yield (D/P), the earnings yield
(E/P), the ratio of cash flow to prices (C/P), and the book-to-market ratio (B/M). Moments are in
annualized percentages (multiplied by 1,200 in the case of means and

√
12 × 100 in the case of

standard deviations). The data are monthly and span the 1952 to 2002 period.

Growth to Value
G V V–G

Portfolio 1 2 3 4 5 6 7 8 9 10 10–1

Panel A: Mean Excess Return (% per year)

E/P 4.71 5.02 6.97 7.04 7.00 9.18 9.94 11.18 11.68 12.95 8.25
C/P 5.05 6.07 6.49 6.73 8.48 7.72 8.85 9.18 11.47 11.81 6.77
D/P 7.35 6.41 7.28 7.41 6.49 7.60 7.73 9.49 8.84 7.45 0.10
B/M 5.67 6.55 6.98 6.51 8.00 8.33 8.27 10.08 9.98 10.55 4.88

Panel B: Standard Error of Mean

E/P 0.78 0.64 0.62 0.59 0.62 0.61 0.60 0.61 0.65 0.73 0.62
C/P 0.76 0.64 0.61 0.63 0.62 0.60 0.60 0.60 0.61 0.69 0.59
D/P 0.78 0.69 0.66 0.64 0.62 0.60 0.59 0.58 0.56 0.56 0.69
B/M 0.71 0.64 0.64 0.62 0.59 0.59 0.59 0.61 0.63 0.74 0.61

Panel C: Standard Deviation of Excess Return (% per year)

E/P 19.35 15.93 15.49 14.78 15.43 15.04 14.87 15.29 16.11 18.11 15.40
C/P 18.99 15.95 15.24 15.75 15.43 14.95 14.96 14.98 15.14 17.24 14.57
D/P 19.36 17.11 16.31 15.85 15.43 15.00 14.58 14.37 13.93 13.83 17.08
B/M 17.77 15.89 15.82 15.42 14.65 14.73 14.74 15.11 15.71 18.46 15.15

Panel D: Sharpe Ratio

E/P 0.24 0.32 0.45 0.48 0.45 0.61 0.67 0.73 0.73 0.72 0.54
C/P 0.27 0.38 0.43 0.43 0.55 0.52 0.59 0.61 0.76 0.69 0.46
D/P 0.38 0.37 0.45 0.47 0.42 0.51 0.53 0.66 0.63 0.54 0.01
B/M 0.32 0.41 0.44 0.42 0.55 0.57 0.56 0.67 0.64 0.57 0.32

Panel A of Table I shows that for all measures except the dividend yield,
the mean excess return is higher for the upper deciles (value) than for the
lower deciles (growth). Panel B shows that the average return on the portfolio
that is long the extreme value portfolio and short the extreme growth portfolio
is highly statistically significant, again except when portfolios are formed by
sorting on the dividend yield. Panel C shows that the standard deviation of
the excess return tends to decrease in the decile number, and thus move in
the opposite direction of the mean return. Finally, Panel D shows that the
Sharpe ratio increases in the decile number. For example, when portfolios are
formed by sorting on the earnings-to-price ratio, the bottom decile (growth) has
a Sharpe ratio of 0.24. The Sharpe ratio increases as the earnings-to-price ratio
increases and the top decile (value) has a Sharpe ratio of 0.72. Thus value stocks
not only deliver high returns, they deliver high returns per unit of standard
deviation.
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Table II
Correlation of Returns on Extreme Value and Growth Portfolios

Portfolios are formed by sorting firms into deciles on the dividend yield (D/P), the earnings yield
(E/P), the ratio of cash flow to prices (C/P), and the book-to-market ratio (B/M). The data are
monthly and span the 1952 to 2002 period.

E/P C/P D/P B/M

Panel A: Top Decile (Value)

E/P 1.00 0.94 0.76 0.85
C/P 0.94 1.00 0.74 0.85
D/P 0.76 0.74 1.00 0.75
B/M 0.85 0.85 0.75 1.00

Panel B: Bottom Decile (Growth)

E/P 1.00 0.98 0.93 0.96
C/P 0.98 1.00 0.93 0.97
D/P 0.93 0.93 1.00 0.94
B/M 0.96 0.97 0.94 1.00

The results in Table I suggest that portfolios formed by sorting on earnings-to-
price, cash-flow-to-price, the dividend yield, and book-to-market may be closely
related. This is confirmed in Table II, which shows the correlation of the bot-
tom and top deciles. For the bottom decile (growth), the correlations are 0.93
or above; for the top decile (value), the correlations are 0.74 or above. In both
cases, deciles formed by sorting on the dividend yield are less highly correlated
with the deciles formed by sorting on the other three variables than the deciles
formed by sorting on the other three variables are with each other. This is con-
sistent with the results in Table I, which shows that portfolios formed by sorting
on the dividend yield behave somewhat differently from portfolios formed by
sorting on the other variables.

Following the same format as Table I, Table III shows alphas, standard errors
on alphas, betas, standard errors on betas, and R2 statistics when portfolios
are formed by sorting on each measure of value. Alpha is the intercept from an
ordinary least squares (OLS) regression of portfolio excess returns on excess
returns of the value-weighted CRSP index, multiplied by 1,200. Beta is the
slope from this regression. The alpha for the portfolio that is long the extreme
value portfolio and short the extreme growth portfolio is statistically significant
for all four sorting variables. Panel A of this table confirms the classic result
that value stocks have high alphas relative to the CAPM. Moreover, the story
is consistent across all sorting variables, including the dividend yield: Alphas
are negative for growth stocks, positive for value stocks, and increasing in the
decile number. As Panel C shows, betas tend to decline in the decile number,
except for the extreme value portfolio. Thus, value stocks have positive alphas
relative to the CAPM, and relatively low betas.

To summarize, this section shows that, in the data, value stocks have higher
expected excess returns and higher Sharpe ratios than do growth stocks. Value
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Table III
Performance of Growth and Value Portfolios Relative to the CAPM

Intercepts and slope coefficients are calculated from OLS time-series regressions of excess portfolio
returns on the excess return on the value-weighted CRSP index. Portfolios are formed by sorting
firms into deciles on the dividend yield (D/P), the earnings yield (E/P), the ratio of cash flow to prices
(C/P), and the book-to-market ratio (B/M). Intercepts are in annualized percentages (multiplied by
1,200). The data are monthly and span the 1952 to 2002 period.

CAPM: Ri
t − R f

t = αi + βi

(
Rm

t − R f
t

)
+ εit

Growth to Value
G V V–G

Portfolio 1 2 3 4 5 6 7 8 9 10 10–1

Panel A: αi (% per year)

E/P −3.09 −1.62 0.69 0.95 0.74 3.25 4.08 5.33 5.60 6.22 9.31
C/P −2.70 −0.54 0.19 0.24 2.33 1.79 3.01 3.46 5.75 5.34 8.04
D/P −0.58 −0.73 0.62 0.98 0.44 1.77 2.03 4.11 3.96 3.44 4.01
B/M −1.66 −0.17 0.33 0.22 2.12 2.37 2.59 4.30 4.05 3.97 5.63

Panel B: Standard Error of αi

E/P 1.12 0.74 0.86 0.75 0.86 0.95 0.95 1.07 1.18 1.38 2.14
C/P 1.03 0.78 0.76 0.80 0.94 0.93 0.98 1.06 1.11 1.28 2.01
D/P 1.03 0.80 0.88 0.88 1.00 1.00 0.96 1.07 1.19 1.47 2.05
B/M 0.90 0.65 0.69 0.84 0.86 0.83 1.01 1.07 1.15 1.53 2.12

Panel C: βi

E/P 1.18 1.01 0.95 0.92 0.95 0.90 0.89 0.89 0.92 1.02 −0.16
C/P 1.17 1.00 0.95 0.98 0.93 0.90 0.89 0.87 0.87 0.98 −0.19
D/P 1.20 1.08 1.01 0.97 0.92 0.88 0.86 0.82 0.74 0.61 −0.59
B/M 1.11 1.02 1.01 0.95 0.89 0.90 0.86 0.87 0.90 1.00 −0.11

Panel D: Standard Error of βi

E/P 0.02 0.01 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.03 0.04
C/P 0.02 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.04
D/P 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.04
B/M 0.02 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.04

Panel E: R2

E/P 0.83 0.89 0.84 0.87 0.84 0.80 0.80 0.75 0.73 0.71 0.02
C/P 0.85 0.88 0.87 0.87 0.81 0.80 0.78 0.75 0.73 0.72 0.04
D/P 0.86 0.89 0.85 0.84 0.79 0.77 0.78 0.72 0.63 0.43 0.27
B/M 0.87 0.91 0.90 0.85 0.83 0.84 0.76 0.75 0.73 0.65 0.01

stocks have large positive alphas while growth stocks have negative alphas.
Moreover, value stocks do not have higher standard deviations or higher betas
than do growth stocks. Thus, any explanation of the value premium must take
into account the fact that value stocks do not appear to be riskier than growth
stocks according to traditional measures of risk. These empirical results hold
not only when value is defined by the book-to-market ratio, but also when value
is defined by the earnings-to-price or cash-flow-to-price ratios.



Why Is Long-Horizon Equity Less Risky? 63

II. The Model

This section presents our model. The first subsection discusses our assump-
tions on aggregate cash flows and the stochastic discount factor. The second
subsection solves for prices on equity that pays the aggregate dividend in a
fixed number of years; we refer to these claims as “zero-coupon equity,” and
they form the building blocks of our more complex assets. The third subsection
describes the market portfolio.

A. Dividend Growth and the Stochastic Discount Factor

The model has three shocks, namely, a shock to dividend growth, a shock to
expected dividend growth, and a shock to the preference variable. We let εt+1
denote a 3 × 1 vector of independent standard normal shocks that are inde-
pendent of variables observed at time t. Let Dt denote the aggregate dividend
in the economy at time t, and dt = ln Dt. The aggregate dividend is assumed to
evolve according to

�dt+1 = g + zt + σdεt+1, (1)

where zt follows the AR(1) process

zt+1 = φz zt + σzεt+1, (2)

with 0 ≤ φz < 1. The conditional mean of dividend growth is g + zt. Row vectors
σ d and σ z multiply the shocks on dividend growth and zt+1. The conditional
standard deviation of �dt+1 equals ||σd || = √

σdσ ′
d . Similarly, the conditional

standard deviation of zt equals ||σz || = √
σzσ ′

z , while the conditional covariance
is given by σdσ ′

z. This model for dividend growth is also explored by Bansal and
Yaron (2004) and by Campbell (1999).

We directly specify the stochastic discount factor for this economy. In partic-
ular we assume that the price of risk is driven by a single state variable xt that
follows the AR(1) process

xt+1 = (1 − φx)x̄ + φx xt + σxεt+1, (3)

with −1 ≤ φx < 1. As above, σ x is a 1 × 3 vector. This specification for the price
of risk is used in a continuous-time setting by Brenetal et al. (2004). However,
for simplicity, we assume that the real risk-free rate, denoted rf = ln Rf , is con-
stant. Lastly, we need to make an assumption about which risks in the economy
are priced. We could follow the affine term structure literature (e.g., Duffie and
Kan (1996)) and allow all three shocks to be priced. For simplicity, and to reduce
the number of degrees of freedom, we assume that only the dividend shock is
priced. This specification also allows us to compare our model to the external
habit formation models of Campbell and Cochrane (1999) and Menzly et al.
(2004), in which the only shock to the stochastic discount factor comes from ag-
gregate consumption. The assumption that only dividend risk is priced implies
that shocks to zt and xt will only be priced insofar as they correlate with �dt+1.
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The specification of xt and rf and the fact that only dividend risk is priced
together imply that the stochastic discount factor equals

Mt+1 = exp
{
−r f − 1

2
x2

t − xtεd ,t+1

}
, (4)

where

εd ,t+1 = σd

||σd ||εt+1.

The conditional log-normality of Mt+1 implies that

ln Et[Mt+1] = −r f − 1
2

x2
t + 1

2
x2

t σdσ ′
d ||σd ||−2

= −r f .

Therefore, it follows from no-arbitrage that rf is indeed the risk-free rate. The
maximum Sharpe ratio will be achieved by the asset that is most negatively cor-
related with Mt+1. Following the same argument as in Campbell and Cochrane
(1999), we note that the maximum Sharpe ratio is given by

σt(Mt+1)
Et[Mt+1]

=
√

ex2
t − 1 ≈ |xt |.

The question naturally arises as to how to interpret the variable xt. In the
models of Campbell and Cochrane (1999) and Menzly et al. (2004), the price of
risk is a decreasing function of the surplus consumption ratio. Conditionally,
the price of risk is perfectly negatively correlated with consumption growth.
The corresponding assumption here is σx/‖σx‖ = −σd/‖σd‖. However, we de-
part from these papers by assuming that shocks to xt+1 are uncorrelated with
shocks to �dt+1 and zt+1. In our model, shocks to xt+1 can be interpreted as
shocks to preferences or changes in sentiment. These shocks are uncorrelated
with changes in fundamentals. Below, we explain the implications for security
returns of this departure from habit formation.

B. Prices of Zero-Coupon Equity

The building blocks of the long-lived assets in our economy are “zero-coupon”
equity.2 Let Pnt be the price of an asset that pays the aggregate dividend n
periods from now. In this subsection, we solve for the price of zero-coupon equity
in closed form. Let Rn,t+1 denote the one-period return on zero-coupon equity
that matures in n periods. That is,

2 The method of separating the aggregate dividend into its zero-coupon components and using
affine term structure techniques to value each component is also applied in Ang and Liu (2004), Bak-
shi and Chen (1996), Bekaert, Engstrom, and Grenadier (2004), Johnson (2002), Wachter (2006),
and Wilson (2003).
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Rn,t+1 = Pn−1,t+1

Pnt
. (5)

The returns Rn,t+1 form a term structure of equities analogous to the term
structure of interest rates. No-arbitrage implies the Euler equation

Et[Mt+1 Rn,t+1] = 1, (6)

which in turn implies that Pnt and Pn−1,t+1 satisfy the recursive relation

Pnt = Et[Mt+1 Pn−1,t+1], (7)

with boundary condition

P0t = Dt , (8)

because equity maturing today must be worth the aggregate dividend. We con-
jecture that a solution to (7) and (8) satisfies

Pnt

Dt
= F (xt , zt , n) = exp{A(n) + Bx(n)xt + Bz (n)zt}. (9)

By the boundary condition, it must be that A(0) = Bx(0) = Bz(0) = 0. Substitut-
ing (9) into (7) produces

Et

[
Mt+1

Dt+1

Dt
F (xt+1, zt+1, n − 1)

]
= F (xt , zt , n). (10)

Matching coefficients on the constant, zt, and xt implies that

A(n) = A(n − 1) − r f + g + Bx(n − 1)(1 − φx)x̄ + 1
2

Vn−1V ′
n−1, (11)

Bx(n) = Bx(n − 1)
(

φx − σx
σ ′

d

||σd ||
)

− (
σd + Bz (n − 1)σz

) σ ′
d

||σd || , (12)

and

Bz (n) = 1 − φn
z

1 − φz
, (13)

where

Vn−1 = σd + Bz (n − 1)σz + Bx(n − 1)σx ,

Bx(0) = 0, and A(0) = 0. This confirms the conjecture (9).3

3 The fact that price–dividend ratios are exponential affine in the state variables invites a com-
parison to the affine term structure literature, wherein bond prices are exponential affine in the
state variables. In fact, this model is related to the essentially affine class of term structure models
explored in continuous time by Dai and Singleton (2003) and Duffee (2002) and in discrete time by
Ang and Piazzesi (2003). Our model is essentially affine rather than affine because the stochastic
discount factor is quadratic, as a result of the homoskedastic price of risk.
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Note that Bz > 0 for all n. Intuitively, the higher is zt, the higher is expected
dividend growth, and thus the higher is the price of equity that pays the aggre-
gate dividend in the future. Because expected dividend growth is persistent,
and because Dt+n cumulates shocks between t and t + n, the greater is n, the
greater is the effect of changes in zt on the price. Thus, Bz increases in n, con-
verging to 1/(1 − φz) as n approaches infinity.

The behavior of Bx is more complicated. In our benchmark case of σxσ
′
d = 0,

Bx(n) < 0 for all n. An increase in xt leads to an increase in risk premia and a
decrease in prices.4 We explore the intuition behind Bx(n) further in Section III.
Finally, An is a constant term that determines the level of price–dividend ratios.
The level depends on the average growth rate of dividends less the risk-free
rate, as well as on the average level of the price of risk (x̄). The remaining
term, 1

2 Vn−1V ′
n−1, is a Jensen’s inequality adjustment that arises because we

are taking the expectation of a log-normal variable.
In order to understand risk premia on more complex assets, it is helpful

to understand risk premia on zero-coupon equity. Define rn,t+1 = ln Rn,t+1. To
gain an understanding of the model, we compute ln Et[Rn,t+1/R f ] = Et[rn,t+1 −
r f ] + 1

2σt(rn,t+1)σt(rn,t+1)′.5 It follows from (9) that rn,t+1 can be written as

rn,t+1 = Et[rn,t+1] + σt(rn,t+1)εt+1, (14)

where

σt(rn,t+1) = Vn−1 = σd + Bx(n − 1)σx + Bz (n − 1)σz . (15)

Thus, returns are conditionally log-normally distributed, and we can rewrite
the conditional Euler equation (6) as

Et

[
exp

{
−r f − 1

2
x2

t − xtεd ,t+1 + Et[rn,t+1] + σt(rn,t+1)εt+1

}]
= 1.

Solving for the expectation and taking logs produces the relation

Et
[
rn,t+1 − r f

] + 1
2

σt(rn,t+1)σt(rn,t+1)′ = σt(rn,t+1)
σ ′

d

||σd ||xt

= (σd + Bx(n − 1)σx + Bz (n − 1)σz )
σ ′

d

||σd ||xt .

(16)
As (16) shows, risk premia on zero-coupon equity depend on the loadings on
each of the sources of risk, multiplied by the “price” of each source of risk. In
our base case the term σxσ

′
d disappears, so the loading on shocks to xt, Bx(n),

is not relevant for risk premia on zero-coupon equity. In other cases we exam-
ine below, this term becomes important. Also determining risk premia is the
loading on zt, Bz(n), and the price of zt-risk, which is given by ‖σd‖−1σzσ

′
dxt. In

what follows, similar reasoning can be used to understand risk premia of the
aggregate market and of firms, both of which are portfolios of these underlying
assets.

4 Alternatively, it might be the case that (σd + Bz(n − 1)σz)σd < 0. In this case, an increase in xt

would decrease risk premia and increase prices.
5 When we match the simulated model to the data, we compute E[Rt+1 − Rf ].
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C. Aggregate Market

The aggregate market is the claim to all future dividends. Accordingly, its
price–dividend ratio is the sum of the price to aggregate dividend ratios of
zero-coupon equity. That is,

Pm
t

Dt
=

∞∑
n=1

Pnt

Dt
=

∞∑
n=1

exp{A(n) + Bx(n)xt + Bz (n)zt}. (17)

The Appendix gives necessary and sufficient conditions on the parameters such
that (17) converges for all xt and zt. The return on the aggregate market equals

Rm
t+1 = Pm

t+1 + Dt+1

Pm
t

=
(
Pm

t+1

/
Dt+1

) + 1

Pm
t

/
Dt

Dt+1

Dt
. (18)

In sum, this section describes the model for the stochastic discount factor and
the aggregate dividend. The following section calibrates the model and de-
scribes its implications for equity returns.

III. Implications for Equity Returns

To study implications for the aggregate market and the cross section, we sim-
ulate 50,000 quarters from the model. Given simulated data on shocks εt+1 and
state variables xt+1 and zt+1, we compute ratios of prices to aggregate dividends
for zero-coupon equity from (9) and the price–dividend ratio for the aggregate
market from (17).

We calibrate the model to the annual data set of Campbell (1999), which be-
gins in 1890, updating Campbell’s data (which end in 1995) through the end of
2002. To ensure that our simulated values are comparable to the annual values
in the data, we aggregate up to an annual frequency. Annual flow variables (re-
turns, dividend growth) are constructed by compounding their quarterly coun-
terparts. Price–dividend ratios for the market and for firms (described below)
are constructed analogously to annual price–dividend ratios in the Campbell
data set: We divide the price by the current dividend plus the previous three
quarters of dividends on the asset.

Section A describes the calibration of our model to the aggregate time series.
Section B gives the model’s implications for the behavior of the aggregate mar-
ket and dividend growth and discusses the fit to the data. Section C gives the
implications for prices and returns on zero-coupon equity. While zero-coupon
equity has no analogue in the data, it allows us to illustrate the properties
of the model in a stark way. Section D discusses the calibration of the share
process that determines the prices of long-lived assets (“firms”), and describes
implications of the model for portfolios formed by sorting on scaled price ratios.
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A. Calibration

Following Menzly et al. (2004), we calibrate the model to provide a reasonable
fit to aggregate data. We then ask whether the model can match moments of the
cross section. In order to accurately capture the characteristics of our persistent
processes, we use the century-long annual data set of Campbell (1999), which
we update through 2002. The risk-free rate is the return on 6-month commercial
paper purchased in January and rolled over in July. Stock returns, prices, and
dividends are for the S&P 500 index. All variables are adjusted for inflation. The
Data Appendix of Campbell (1999) contains more details on data construction.

We set rf equal to 1.93%, the sample mean of the risk-free rate. Similarly,
we set g equal to 2.28%, which is the average dividend growth in the sample.
Calibrating the process zt, which determines expected dividend growth, is less
straightforward as, strictly speaking, this process is unobservable to the econo-
metrician. However, Lettau and Ludvigson (2005) show that if consumption
growth follows a random walk and if the consumption–dividend ratio is sta-
tionary, the consumption–dividend ratio captures the predictable component of
dividend growth. The consumption–dividend ratio can therefore be identified
with zt up to an additive and multiplicative constant.6 In our annual sample, the
consumption–dividend ratio has a persistence of 0.91 and a conditional correla-
tion with dividend growth of –0.83; these are, respectively, our values for φz and
the correlation between zt and �dt. We set ‖σd‖ to match the unconditional stan-
dard deviation of annual dividend growth in the data.7 Our empirical results
imply a standard deviation of zt that is small relative to the standard deviation
of dividend growth. Despite the fact that dividend growth is predictable at long
horizons by the consumption–dividend ratio, the consumption–dividend ratio
has very little predictive power for dividend growth at short horizons. Moreover,
the autocorrelation of dividend growth is relatively low (−0.09). We show that
‖σz‖ = 0.0016 (0.0032 per annum) produces similar results in simulated data.

The remaining parameters are x̄, φx , and ‖σx‖. Because the variance of ex-
pected dividend growth is small, the autocorrelation of the price–dividend
ratio is primarily determined by the autocorrelation of x. We therefore set
φx = 0.87

1
4 = 0.966, as 0.87 is the autocorrelation of the price–dividend ratio

in annual data. We set ‖σx‖ to 0.12, or 0.24 per annum, to match the volatility
of the log price dividend ratio. We choose x̄ so that the maximal Sharpe ratio,
when xt is at its long-run mean, is 0.70. This produces Sharpe ratios for the
cross section that are close to those in the data. Setting the maximum Sharpe
ratio

√
ex̄2 − 1 equal to 0.70 implies x̄ = 0.625. As we discuss in the subsequent

section, this produces an average Sharpe ratio for the market that is 0.41, which
is somewhat higher than the data equivalent of 0.33. However, expected stock

6 An equivalent way of writing down our model would be to specify a consumption process that
follows a random walk and model the consumption–dividend ratio as an AR(1) process. Note,
however, that consumption plays no special role in our model.

7 The model is simulated at a quarterly frequency and aggregated up to an annual frequency.
Because dividend growth is slightly mean reverting, and because the variance of zt is small, this
results in an unconditional annual standard deviation of dividend growth very close to that in the
data.
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Table IV
Parameters of the Model

Model parameters are calibrated to aggregate data starting in 1890 and ending in 2002. The model
is simulated at a quarterly frequency. The unconditional mean of dividend growth g, the risk-free
rate rf , the persistence variables φx and φz, and the conditional standard deviations ‖σd‖, ‖σz‖,
and ‖σx‖, are in annual terms (i.e., 4g, φ4

x , 2‖σd‖). Parameters g, rf , and ‖σd‖ are set to match their
data counterparts. Parameters φz and the correlation between shocks to z and shocks to �d are
set to match their data counterparts, assuming that the conditional mean of dividend growth is
determined by the log consumption–dividend ratio in the data. The parameter ‖σz‖ is set to match
the autocorrelation and predictability of dividend growth in the data, ‖σx‖ is set to match the
volatility of the price–dividend ratio, and φx is set to match the persistence of the price–dividend
ratio.

Variable Value

g 2.28%
rf 1.93%
x̄ 0.625
φz 0.91
φx 0.87
‖σd‖ 0.145
‖σz‖ 0.0032
‖σx‖ 0.24
Correlation of �d and z shocks −0.83
Correlation of �d and x shocks 0
Correlation of z and x shocks 0

Implied Volatility Parameters

σd [0.0724, 0, 0]
σ z [−0.0013, 0.0009, 0]
σ x [0, 0, 0.12]

returns are measured with noise, and 0.41 is still below the Sharpe ratio of
post-war data.

To determine the vectors σd, σz, σx, we assume without loss of generality that
the 3 × 3 matrix [σ ′

d , σ ′
z , σ ′

x]′ is lower triangular. Thus ε1,t+1 = εd,t+1, so that the
first element of σ d equals ‖σd‖ and the second and third elements equal zero.
The vector σ z has nonzero first and second elements determined by ‖σz‖ and
σdσ ′

z, and zero third element. We focus on the case in which xt+1 is independent
of �dt+1 and zt+1, so the first and second elements of σ x equal zero, and the
third equals ‖σx‖. Table IV summarizes these parameter choices.

Given our parameter choices, it is possible to infer the process for xt based
on the observed price–dividend ratio and consumption–dividend ratio. The
consumption-dividend ratio can be used to construct an empirical proxy for
zt.8 For each time-series observation on the price–dividend ratio and zt, we find
a corresponding xt by numerically solving (17). Figure 1 plots the resulting
series for xt, along with several macroeconomic time series that recent theory
suggests should be related to aggregate risk aversion. These macroeconomic

8 Specifically, the consumption–dividend ratio is demeaned, divided by its standard deviation,
and multiplied by the standard deviation of zt.
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Figure 1. Implied time series for x and macroeconomic variables. Macroeconomic variables
are my (the deviation from the cointegration relationship between human wealth and outstanding
home mortgages as in Lustig and Van Nieuwerburgh (2005)), α (the share of nonhousing consump-
tion in total consumption as in Piazzesi, Schneider, and Tuzel (2005)), and cay (the consumption-
wealth ratio of Lettau and Ludvigson (2001)). All series are demeaned and standardized. The
annual data span the 1947 to 2002 period.

Table V
Results from Contemporaneous OLS Regressions

of x on Macroeconomic Variables
The variable my is the deviation from the cointegration relationship between human wealth and
outstanding home mortgages as in Lustig and Van Nieuwerburgh (2005), cay is the consumption–
wealth ratio of Lettau and Ludvingson (2001), and α is the share of nonhousing consumption in
total consumption as in Piazzesi, Schneider, and Tuzel (2005). The annual data span the period
1947 to 2002.

β t-Statistics R2

my 2.80 6.13 0.54
cay 21.32 3.44 0.28
α 29.30 6.19 0.30

time series are: my, the deviation from the cointegration relationship between
human wealth and outstanding home mortgages constructed by Lustig and
Van Nieuwerburgh (2005); α, the share of non-housing consumption in total
consumption constructed by Piazzesi et al. (2005); and cay, the consumption–
wealth ratio of Lettau and Ludvigson (2001b). All series are demeaned and
standardized. Figure 1 shows that all three series are positively correlated with
xt. Long-run fluctuations in xt appear to be related to long-run fluctuations in
both my and α, while cay (which is constructed using data on prices as well as
macroeconomic quantities) also picks up short-run fluctuations in xt.

Table V shows results of contemporaneous regressions of the implied xt
on the variables described above. This table confirms that xt is positively
and significantly related to all three macroeconomic-based risk aversion
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measures.

B. Implications for the Aggregate Market and Dividend Growth

Table VI presents statistics from simulated data, and the corresponding
statistics computed from actual data. The volatility of the price–dividend ratio
is fit exactly and the autocorrelation of the price-dividend ratio is very close
(0.87 in the data versus 0.88 in the model). This is not a surprise because ‖σx‖
and φx are set so that the model fits these parameters. The model produces a
mean price–dividend ratio equal to 20.1, compared to 25.6 in the data. Match-
ing this statistic is a common difficulty for models of this type: Campbell and
Cochrane (1999), for example, find an average price-dividend ratio of 18.2. As
they explain, this statistic is poorly measured due to the persistence of the
price–dividend ratio. The model fits the volatility of equity returns (19.2% in
the model vs. 19.4% in the data), though it produces an equity premium that
is slightly higher than in the data (7.9% in the model vs. 6.3% in the data).
As with the mean of the price–dividend ratio, the average equity premium is
measured with noise. In the long annual data set, the annual autocorrelation
of excess returns is slightly positive (0.03). In our model, the autocorrelation is
slightly negative (−0.02). The autocorrelation of dividend growth is small and
negative (−0.04), just as in the data (−0.09).

Table VII reports the results of long-horizon regressions of continuously
compounded excess returns on the log price–dividend ratio in the model and
in the data. In our sample, as elsewhere (e.g., Campbell and Shiller (1988),
Cochrane (1992), Fama and French (1989), Keim and Stambaugh (1986)), high
price-dividend ratios predict low returns. The coefficients rise with the hori-
zon. The R2s start small, at 0.05 at an annual horizon, and rise to 0.31 at
a horizon of 10 years. The t-statistics, computed using autocorrelation- and

Table VI
Simulated Moments for the Aggregate Market and Dividend Growth

The model is simulated for 50,000 quarters. Returns, dividends, and price ratios are aggregated to
an annual frequency. The data are annual and span the period 1890 to 2002.

Data Model

E(P/D) 25.55 20.96
σ (p − d) 0.38 0.38
AC of p − d 0.87 0.88
E[Rm − Rf ] 6.33% 7.87%
σ (Rm − Rf ) 19.41% 19.19%
AC of Rm − Rf 0.03 −0.04
Sharpe ratio of market 0.33 0.41
AC of �d −0.09 −0.04
σ (�dt) 14.48% 14.43%
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Table VII
Long Horizon Regressions—Excess Returns

Excess returns are regressed on the lagged price–dividend ratio in annual data from 1890 to 2002
and in data simulated from the model. Specifically, we run the regression

H∑
i=1

rm
t+i − r f

t+i = β0 + β1(pt − dt ) + εt

in the data and in the model. For each data regression, the table reports OLS estimates of the
regressors, Newey–West (1987) corrected t-statistics (in parentheses), and adjusted-R2 statistics
in square brackets. Significant data coefficients using the standard t-test at the 5% level are high-
lighted in boldface.

Horizon in Years

1 2 4 6 8 10

Panel A: Full Data

β1 −0.12 −0.23 −0.37 −0.60 −0.86 −1.09
t-stat (−2.39) (−2.44) (−2.01) (−2.24) (−2.97) (−3.54)
R2 [0.05] [0.08] [0.10] [0.16] [0.25] [0.31]

Panel B: Data Up to 1994

β1 −0.21 −0.39 −0.61 −0.89 −1.16 −1.34
t-stat (−3.45) (−4.04) (−3.17) (−4.08) (−5.81) (−6.22)
R2 [0.07] [0.13] [0.19] [0.30] [0.41] [0.44]

Panel C: Model

β1 −0.11 −0.21 −0.36 −0.49 −0.58 −0.65
R2 [0.06] [0.11] [0.18] [0.23] [0.26] [0.28]

heteroskedasticity-adjusted standard errors, are significant at the 5% level.
The simulated data exhibit the same pattern. The R2s start at 0.06 and rise
to 0.28. We conclude that the model generates a reasonable amount of return
predictability.9

Table VIII reports the results of long-horizon regressions of dividend growth
on the price–dividend ratio. As Campbell and Shiller (1988) show, dividend
growth is not predicted by the price–dividend ratio, contrary to what might be
expected from a dividend discount model. This result also holds in our data:
The coefficients from a regression of dividend growth on the price–dividend
ratio are always insignificant and are accompanied by small R2 statistics. In
contrast, the consumption–dividend ratio predicts dividend growth in actual

9 Lettau and Ludvigson (2005) find evidence that excess returns are predictable by expected
dividend growth, as well as by the price–dividend ratio. This effect can be captured in our model by
allowing shocks to xt to be positively correlated with shocks to zt. Because introducing this positive
correlation has very little effect on our cross-sectional results, for simplicity we focus on the case
of zero correlation.
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Table VIII
Long Horizon Regressions—Dividend Growth

Aggregate dividend growth is regressed on lagged values of the price–dividend ratio and the
consumption–dividend ratio in annual data from 1890 to 2002 and in data simulated from the
model. For each data regression, the table reports OLS estimates of the regressors, Newey–West
(1987) corrected t-statistics (in parentheses), and adjusted-R2 statistics in square brackets. Signif-
icant data coefficients using the standard t-test at the 5% level are highlighted in boldface.

Horizon in Years

1 2 4 6 8 10

Panel A: Data
∑H

i=1 �dt+i = β0 + β1(pt − dt ) + εt
β1 0.02 −0.01 −0.04 −0.12 −0.23 −0.31
t-stat (0.56) (−0.23) (−0.34) (−0.85) (−1.26) (−1.61)
R2 [−0.01] [−0.01] [−0.01] [0.00] [0.02] [0.05]∑H

i=1 �dt+i = β0 + β1(ct − dt ) + εt
β1 0.10 0.18 0.34 0.56 0.65 0.68
t-stat (2.30) (2.52) (3.05) (3.42) (3.56) (3.78)
R2 [0.03] [0.06] [0.13] [0.24] [0.26] [0.25]

Panel B: Model
∑H

i=1 �dt+i = β0 + β1(pt − dt ) + εt
β1 0.05 0.09 0.17 0.24 0.29 0.33
R2 [0.02] [0.03] [0.06] [0.08] [0.09] [0.09]∑H

i=1 �dt+i = β0 + β1zt + εt
β1 3.73 7.09 13.19 18.13 22.23 25.81
R2 [0.04] [0.07] [0.13] [0.18] [0.21] [0.24]

data. The coefficients are significant, and the adjusted-R2 statistics start at 3%
for an annual horizon and rise to 25% for a horizon of 10 years.

Our model replicates both of these findings. Despite the fact that the mean of
dividends is time varying, dividends are only slightly predictable by the price–
dividend ratio. A regression of simulated dividend growth on the simulated
price–dividend ratio produces R2s that range from 2% to 9% at a horizon of
10 years. By contrast, dividends are predictable by zt. Here, the R2s range from
4% to 24%, close to the values in the data. We conclude our model captures the
pattern of dividend predictability found in the data.

C. Prices and Returns on Zero-Coupon Equity

Figure 2 plots the solutions for A(n), Bz(n), and Bx(n) as a function of n for the
parameter values given above. A(n) is decreasing in n, as is necessary for con-
vergence of the market price–dividend ratio. This is also sensible economically:
The further the payoff is in the future, the lower the value of the security when
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Figure 2. Model solution. Given the parameter values in Table IV, the top left panel shows the
solution for A defined by (11), the top right panel shows the solution for Bz defined by (13) and
scaled by 1 − φz, and the bottom panel shows the solution for Bx defined by (12).

the state variables are at their long-run means. What generates the decrease
is the positive average price of risk x̄ and the risk-free rate rf , counteracted by
average dividend growth g and the Jensen’s inequality term.

Given that we describe the behavior of Bz(n) in Section A, here we focus on
Bx(n). For all values of n, Bx(n) is negative, indicating that an increase in the
price of risk xt leads to a decrease in valuations. Also, Bx(n) is nonmonotonic,
starting at zero, decreasing to below −1, then increasing, eventually converg-
ing to a value near −0.5. It is not surprising that Bx(n) initially decreases in
maturity. This is the duration effect: The longer is the maturity, the more sen-
sitive the price is to changes in the discount rate. More curious is the fact that
Bx(n) rises after a maturity of 10 years. This is because the duration effect
is countered by the increase in Bz(n). Because expected dividend growth and
dividend growth are negatively correlated, shocks to expected dividend growth
act as a hedge. Moreover, as the plot of Bz shows, expected dividend growth
becomes more important the longer the maturity of the equity. Hence, equity
that pays in the far future is less sensitive to changes in xt than equity that
pays in the medium term, though both are more sensitive than short-horizon
equity.

Figure 3 plots the ratios of price to aggregate dividends for zero-coupon equity
as a function of maturity n. The top panel sets zt to be two unconditional stan-
dard deviations (2‖σz‖/(1 − φ2

z )1/2) below its unconditional mean, the middle
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Figure 3. Ratios of prices to aggregate dividends for zero-coupon equity. The top panel

shows ratios of prices to aggregate dividends as a function of maturity for z = −2||σz ||/
√

1 − φ2
z , the

middle panel for z = 0, and the lower panel for z = 2||σz ||/
√

1 − φ2
z . Each panel shows price ratios

for x = x̄ − 2||σx ||/
√

1 − φ2
x , x = x̄, and x = x̄ + 2||σx ||/

√
1 − φ2

x .

panel to the unconditional mean of zero, and the bottom panel to two stan-
dard deviations above the mean. Each panel plots the price–dividend ratio
for xt at its unconditional mean and two unconditional standard deviations
(2‖σx‖/(1 − φ2

x )1/2) around the mean. Prices are increasing in zt for all values of
xt and n, and decreasing in xt for all values of zt and n. That is, higher expected
dividend growth and lower risk premia imply higher prices.

For most values of zt and xt, prices decline with maturity. Generally, the
further in the future the asset pays the aggregate dividend, the less it is worth
today. Exceptions occur when xt is two standard deviations below the mean.
In this case, the premium for holding risky securities is negative in the short
term, so short-horizon payoffs are discounted by more than long-horizon payoffs.
Because xt reverts back to x̄, this effect is transitory and only holds at the short
end of the equity “yield curve.” The greater is zt, the longer the effect persists
because zt raises the price of long-run equity relative to short-run equity.

Figure 4 presents statistics for annual returns on zero-coupon equity. The
top panel shows that the risk premium ERi,t+1 − Rf declines with maturity.
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Figure 4. Summary statistics for zero-coupon equity. The top panel shows risk premia
E[Rnt − Rf ] on zero-coupon equity over the risk-free rate. The middle panel shows the standard
deviation of returns on zero-coupon equity. The bottom panel shows the Sharpe ratio (the risk
premium divided by the standard deviation). Returns are simulated at a quarterly frequency and
aggregated to an annual frequency.

The effect is economically large: The risk premium is 18% for equity that pays
a dividend 2 years from now and 4% for equity that pays a dividend 40 years
from now.

The second panel of Figure 4 shows that the return volatility initially in-
creases with maturity, and then decreases at maturities greater than 10 years.
The third panel of Figure 4 shows that the unconditional Sharpe ratio decreases
monotonically in maturity. These results suggest that the model has the poten-
tial to explain the patterns described in Table I. Firms that have more weight
in low-maturity equity will have higher expected returns, higher Sharpe ra-
tios, and possibly lower variance than firms that have more weight in equity of
greater maturity.

Figure 5 shows the results of regressing simulated zero-coupon equity returns
on simulated market returns. The top panel shows the regression alpha, the
middle panel the beta, and the last panel the R2. As in Figure 4, returns are
annual. The first panel shows that the alpha relative to the CAPM is decreasing
in maturity over most of the range, increasing only slightly for long-duration
equity. For the shortest-duration equity the alpha is as high as 11%. The alpha
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Figure 5. CAPM regressions for zero-coupon equity. The top panel shows the intercept
from time-series regressions of excess zero-coupon equity returns on the excess market return, the
middle panel shows the slope coefficient, and the bottom panel shows the R2. Statistics are shown
as a function of maturity. Returns are simulated at a quarterly frequency and aggregated to an
annual frequency.

falls below zero for equity maturing in 5 or more years, but remains above −5%.
Thus, the model produces relatively large positive alphas and relatively small
negative alphas, just as in the data.

The second panel of Figure 5 shows the regression beta. The beta first in-
creases, and then, beginning with a maturity of about 10 years, decreases slowly
as a function of maturity. The betas for zero-coupon equity lie in a relatively
narrow range; the lowest beta (for very long horizon equity) is about 0.7, and
the highest beta (for equity of about 10 years ) is 1.5. The beta for the shortest-
horizon equity is about 0.9. This plot shows that at least for short-horizon eq-
uity, high alphas are not necessarily accompanied by high betas. These results
suggest that the model has the potential to explain the patterns described in
Table III.

While the simplicity of zero-coupon equity makes it a convenient way to il-
lustrate the properties of the model, it does not have a direct interpretation in
terms of value and growth. The price–dividend ratio is not well defined because
zero-coupon equity only pays dividends during a single quarter. For this reason,
we turn to a model of firms, that is, long-lived assets that have nonzero cash
flows in every period.
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D. Implications for the Cross Section of Returns

This section shows the implications of the model for portfolios formed by
sorting on price ratios. Following Menzly et al. (2004), we exogenously specify
a share process for cash flows on long-lived assets. For each year of simulated
data, we sort these assets into deciles based on the ratio of price to dividends
(or equivalently, earnings or cash flows) and form portfolios of the assets within
each decile. This follows the procedure used in empirical studies of the cross
section (e.g., Fama and French (1992)). We then perform statistical analysis on
the portfolio returns.

D.1. Specifying the Share Process

In order to assess the quantitative implications of the model, we specify long-
lived assets with well-defined ratios of prices to dividends that together sum up
to the market portfolio. Moreover, we require that the cross-sectional distribu-
tion of dividends, returns, and price ratios be stationary. In order to accomplish
this, we follow Lynch (2003) and Menzly et al. (2004) in specifying the share
each security has in the aggregate dividend process Dt+1. The continuous-time
framework of Menzly et al. allows the authors to specify the share process as
stochastic, yet still keep shares between zero and one. This is more difficult
in discrete time; for this reason we adopt the simplifying assumption that the
share process is deterministic.

Consider N sequences of dividend shares sit, for i = 1, . . . , N. For convenience,
we refer to each of these N sequences as a firm, though they are best thought
of as portfolios of firms in the same stage of the life cycle. As our ultimate
goal is to aggregate these firms into portfolios based on price–dividend ratios,
this simplification does not affect our results. Firm i pays sit of the aggregate
dividend at time t, si,t+1 of the aggregate dividend at time t + 1, etc. Shares
are such that sit ≥ 0 and

∑N
i=1 sit = 1 for all t (so that the firms add up to the

market). Because firm i pays a dividend sequence si,t+1 Dt+1, si,t+2 Dt+2, . . . , no-
arbitrage implies that the ex-dividend price of firm i equals

P F
it =

∞∑
n=1

si,t+n Pnt ,

where Pnt is the price of zero-coupon equity maturing at time t + n.
We specify a simple model for shares. Let s

¯
be the lowest share of a firm in the

economy, and assume without loss of generality that firm 1 starts at s
¯
, namely

s11 = s
¯
. We assume that the share grows at a constant rate gs until reaching

s1,N/2+1 = (1 + gs)N/2s
¯

and then shrinks at the rate gs until reaching s1,N+1 = s
¯again. At this point the cycle repeats. All firms are ex ante identical, but are

“out of phase” with one another. Firm 1 starts out at s
¯
, firm 2 at s21 = (1 + gs)s¯

,
Firm N/2 at sN/2,1 = (1 + gs)N/2−1s

¯
, and Firm N at sN1 = (1 + gs)s¯

. The variable
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s
¯

is such that the shares sum to one for all t.10 We set the number of firms to
200, implying a 200-quarter, or equivalently, 50-year life cycle for a firm. While
this model for firms is simple and somewhat mechanical, it accomplishes our
objective of creating dispersion in the timing of cash flows across firms in a
straightforward way.11

The parameter that determines the growth in the share process, gs, is set
to 5%, implying an annual growth rate of 20%. We choose this value so that
the cross-sectional distribution of dividend growth rates in the model matches
that in the sample. Because data on earnings and cash flows are not available
prior to 1952, we construct the cross-section for data from 1952 to 2002.12 The
top panel of Figure 6 plots the implied cross-section of average growth rates of
dividends for firms in the model, as well as the cross-section of average growth
rates in earnings, dividends, and cash flows in the sample. Because the firms
in our model have no debt, the dividends in our model may be better analogues
to earnings and cash flows in the data, rather than dividends themselves. The
bottom panel of Figure 6 shows the distribution of firm price–dividend ratios in
the model, and price ratios in the data. While the overall fit is reasonable, the
model produces more high price-dividend ratio firms than there are in the data.
These firms have high price–dividend ratios because they have extremely low
dividends. It is possible to construct models that fit the dividend growth and
price ratio distributions more closely by assuming growth is linearly decreasing
or imposing a greater lower bound on the dividend share. As Lettau and Wachter
(2005) show, the asset pricing implications of these alternative models are very
similar to the present constant growth model.

D.2. Portfolio Returns

At the start of each year in the simulation, we sort firms into deciles by
their price–dividend ratio. We then form equal-weighted portfolios of the firms
in each decile. As firms move through their life cycle, they slowly shift (on
average) from the growth category to the value category, and then revert back
eventually to the growth category. This process is not deterministic because

10 That is,
∑N

i=1 sit = s
¯
+ (1 + gs)N/2s

¯
+ 2

∑N/2−1
i=1 (1 + gs)is

¯
= 1.

11 This model, like those of Gomes, Kogan, and Zhang (2003) and Menzly, Santos, and Veronesi
(2004), assumes that firms are infinitely lived. Alternatively, one could specify that a firm pays
dividends for one N-period cycle and then exits at the same time that a new firm enters. This entry
and exit specification still implies that at any time t, the aggregate dividend is Dt; however, the
market will be a claim to only a fraction of future dividends. Allowing entry and exit in this way
implies cross-sectional results that are stronger than those in the present model: In particular,
alphas are smaller for growth firms and larger for value firms than when firms are infinitely
lived.

12 Adrian and Franzoni (2002), Ang and Chen (2005), and Campbell and Vuolteenaho (2004)
show that value stocks have higher betas in the pre-war period, so the CAPM performs better. By
matching the cross section to the post-war data, we choose a harder target. We also assume that
agents observe the parameters in the economy. Lewellen and Shanken (2002) show that introducing
learning into a traditional model can help in understanding value premia.
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Figure 6. Cross-sectional distributions in the model and in the data. The top panel illus-
trates the distribution of annual growth rates of dividends, earnings, and cash flows across all firms
for the 1952 to 2002 period. Growth rates are censored at 100%. Firms that exit the sample are
assigned a growth rate of −100%. The solid line is the distribution of annual dividend growth rates
for all firms in the data simulated from the model. The bottom panel illustrates the corresponding
distribution of various price multiples in actual and simulated data.

shocks have differential impacts on price–dividend ratios of firms at different
stages of the life cycle.

Having sorted the firms into deciles at the beginning of each “year,” we com-
pute statistical tests on returns over the year. The first panel of Table IX shows
the expected excess return, the standard deviation, and the Sharpe ratio for
each portfolio. These simulation results should be compared to the numbers
in Table I, which show corresponding results for the data. The expected excess
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Table IX
Performance of Growth and Value Portfolios in the Model

In each simulation year, firms are sorted into deciles on the price–dividend ratio. Returns are
calculated over the subsequent year. Intercepts and slope coefficients are from OLS time-series
regressions of excess portfolio returns on the excess market return, and on the excess market return
together with the return on a portfolio short the extreme growth decile and long the extreme value
decile (HML).

Growth to Value
G V V–G

Portfolio 1 2 3 4 5 6 7 8 9 10 10–1

Panel A: Summary Statistics

ERi − Rf 5.00 5.18 5.47 5.90 6.46 7.15 7.89 8.58 9.16 10.08 5.09
σ (Ri − Rf ) 19.27 19.48 19.64 19.67 19.51 19.08 18.38 17.56 16.99 17.30 8.27
Sharpe Ratio 0.26 0.27 0.28 0.30 0.33 0.37 0.43 0.49 0.54 0.58 0.62

Panel B: Ri
t − R f

t = αi + βi

(
Rm

t − R f
t

)
+ εit

αi −2.60 −2.52 −2.31 −1.93 −1.33 −0.50 0.52 1.59 2.48 3.38 5.98
βi 1.00 1.01 1.02 1.03 1.02 1.00 0.97 0.92 0.88 0.88 −0.12
R2

i 0.97 0.97 0.97 0.98 0.99 1.00 1.00 0.98 0.96 0.93 0.07

Panel C: Ri
t − R f

t = αi + βi

(
Rm

t − R f
t

)
+ γiHMLt + εit

αi 0.05 0.04 0.02 0.01 0.01 0.01 0.03 0.05 0.06 0.05 0.00
βi 0.95 0.96 0.98 0.99 1.00 0.99 0.98 0.95 0.93 0.95 0.00
γi −0.44 −0.43 −0.39 −0.32 −0.22 −0.09 0.08 0.26 0.40 0.56 1.00
R2

i 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

return on the extreme growth portfolio is 5.0% per annum, while for the extreme
value portfolio it is 10.1% per annum.13 A similar spread occurs in the data:
The lowest book-to-market stocks have a premium of 5.7%, while the highest
have a premium of 10.6%. The model generates volatilities between 19% and
17%; the volatilities for book-to-market-sorted portfolios vary between 18% and
15% in the data. Moreover, the model predicts that value portfolios have lower
volatilities than growth portfolios despite their higher returns, as is the case
in the data. The model predicts that the Sharpe ratio rises from 0.26 for the
extreme growth portfolio to 0.58 for the extreme value portfolio. In the data,
the lowest book-to-market portfolio has a Sharpe ratio of 0.32 while the highest
book-to-market portfolio has a Sharpe ratio of 0.57. To summarize, the model
implies that value stocks have high expected returns, low volatility, and high
Sharpe ratios, just as in the data, and further, the magnitude of the difference
between value and growth is comparable to that in the data.

13 Here and throughout this section, we compare the statistics on annual returns in the model to
statistics on monthly returns in the data. The monthly data statistics are annualized as described
in Section I. We choose this approach because it corresponds most closely to the approach taken in
the empirical literature on the value premium. Data results for annual returns are very similar to
those in Tables I–III (except for standard errors).
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The second panel of Table IX shows alphas and betas relative to the CAPM.
Annual excess portfolio returns are regressed on excess returns on the aggre-
gate market. Alpha, beta, and the R2 are reported for each decile. As this panel
shows, the model can replicate the classic result of Fama and French (1992):
Value portfolios have positive alphas relative to the CAPM, while growth port-
folios have negative alphas. Moreover, value portfolios tend to have lower betas
than growth portfolios. Our model predicts alphas that rise from −2.6 for the
extreme growth portfolio to 3.4 for the extreme value portfolio. In the data, the
lowest book-to-market portfolio has an alpha of −1.7, while the highest book-
to-market portfolio has an alpha of 4.0. Thus, the model generates alphas of
the correct magnitude, as well as a sizable spread between value and growth.
Moreover, alphas in the model are asymmetric: Growth alphas are smaller in
absolute value than are value alphas, as in the data.

The third panel of Table IX shows results of regressing portfolio returns on
the market return and on a high-minus-low factor (HML) equal to the return on
a portfolio short the extreme growth decile and long the extreme value decile.
The purpose of this test is to see whether the model analogue to the high-minus-
low Fama-French factor describes the cross section of returns in the model, as
it does in the data. When we add HML to the regression, the alphas are indeed
two orders of magnitude smaller than the alphas relative to the CAPM.

D.3. Relation to Conditional Factor Models

The previous discussion shows that the model replicates the high expected
returns, low volatility, high Sharpe ratios, and high alphas of value stocks rel-
ative to growth stocks. The model also generates testable predictions. Because
only the innovation to dividends is priced, expected returns on stocks should
be determined by their conditional correlation with the aggregate dividend
process. According to the model, a conditional CAPM does not hold because
innovations to market returns are not perfectly conditionally correlated with
innovations to dividends. Moreover, a conditional dividend CAPM should pro-
vide a better fit to the cross section than a conditional CAPM.

To evaluate these predictions, we compare pricing errors for an unconditional
CAPM, an unconditional dividend CAPM, a conditional CAPM, and a condi-
tional dividend CAPM in simulated and actual data. For the simulated data,
the assets are the 10 portfolios formed on dividend–price ratios described above;
for the actual data the assets are the 10 value-weighted book-to-market-sorted
portfolios. Theoretically, the conditioning variables should be xt and zt. How-
ever, because innovations in the price–dividend ratio are driven by innovations
to these variables, the price–dividend ratio works well as a conditioning vari-
able in data simulated from the model. To estimate each factor model, we solve
minδ[g(δ)′g(δ)], where g(δ) = E[δ′ftRt − 1] and R is the vector of returns. For the
CAPM, ft = [1, Rm

t ]′; for the dividend CAPM, ft = [1, �dt]′; for the conditional
CAPM, ft = [1, Rm

t , (dt−1 − pt−1)Rm
t , dt−1 − pt−1]′; and for the conditional divi-

dend CAPM, ft = [1, �dt, (dt−1 − pt−1)�dt, dt−1 − pt−1]′, where Rm is the market
return, �dt is log dividend growth and dt − pt is the log dividend–price ratio on
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Table X
Minimized Pricing Errors in the Data and in the Model

A factor model is estimated by minimizing g(δ)′g(δ), where g(δ) = E[δ′ftRt − 1] and ft is the vector of
factors at time t. In the data, the return vector R consists of the 10 value-weighted book-to-market
sorted portfolios. In the model, R consists of the 10 portfolios formed by sorting firms into deciles
on the price-dividend ratio. For the CAPM, ft = [1, Rm

t ]′; for the dividend CAPM, ft = [1, �dt]′;
for the conditional CAPM, ft = [1, Rm

t , (dt−1 − pt−1)Rm
t , dt−1 − pt−1]′; and for the conditional divi-

dend CAPM, ft = [1, �dt, (dt−1 − pt−1)�dt, dt−1 − pt−1]′, where Rm is the market return, �dt is log
dividend growth, and dt − pt is the log dividend-price ratio. In the column “Data-Repurchases,”
dividends are adjusted for share repurchases. The table reports the annualized square root of the
squared average pricing errors. The monthly data span the period 1952–1 to 2003–12.

Avg. Pricing Error
Data Data-Repurchases Model

CAPM 1.634% 1.634% 0.571%
Dividend CAPM 1.399% 1.076% 0.266%
Cond. CAPM 0.930% 0.687% 0.033%
Cond. Dividend CAPM 0.609% 0.492% 0.014%

the market. In the data, the value-weighted CRSP portfolio is used to proxy for
the market.

Table X reports the annualized square root of the squared average pricing
errors for each factor model. The first column reports the results from the data,
the second column reports results for which the dividend growth process and
the price–dividend ratio are adjusted for repurchases as in Boudoukh et al.
(2007), and the last column reports data simulated from the model. In both
the data and the model, the unconditional CAPM fares the worst, with the un-
conditional dividend CAPM performing better. Both conditional factor models
perform better than either unconditional model in the data, a finding that the
model replicates. Moreover, in both the model and the data, the conditional
dividend CAPM implies the lowest pricing errors of all the factor models.

IV. Model Intuition

What explains the model’s ability to capture the value premium? As we sug-
gest in Section II, the value premium arises from the differential correlations
of returns on value and growth portfolios with underlying shocks.

Figure 7 plots betas from unconditional regressions of portfolio returns on the
three shocks, and the R2 from the unconditional regressions. The coefficient on
the dividend shock, βd, is positive and greater for value portfolios than for
growth portfolios. The coefficient on the shock to expected dividends, βz, is
also positive but smaller for value portfolios than for growth portfolios. While a
shock to expected dividend growth raises the valuation of all portfolios, (as in the
present value models of Campbell and Shiller (1988) and Vuolteenaho (2002)),
it especially affects the valuations of growth stocks, which pay dividends in the
distant future. Finally, all portfolios are negatively correlated with shocks to
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Figure 7. Regressions of portfolio returns on fundamental shocks. The top panels show re-
sults of regressing portfolio returns on the shock to dividends 2σdεt, the middle panels show results
for regressions on the shocks to the component of expected dividend growth that is uncorrelated
with the shock to dividends 2σz(2)εt(2), and the bottom panels show results for regressions on the
shocks to the price of risk 2σxεt (note that the shocks to the Sharpe ratio are uncorrelated with
shocks to dividends and expected dividends). Data are simulated from the model at a quarterly
frequency and aggregated to an annual frequency.

the Sharpe ratio variable xt, as indicated by a negative βx. A positive shock to xt
raises expected returns, and thus lowers prices and realized returns. Because
of the duration effect, βx is greater in magnitude for growth portfolios. The R2

coefficients follow the same pattern as the magnitude of the βs.14

The patterns in Figure 7 can be traced back to the properties of zero-coupon
equity. Growth firms place more weight on high-duration zero-coupon claims
than do value firms, and thus they inherit the sensitivity of these high-duration
claims to shocks to xt and zt. Interestingly, βx does not inherit the nonmonotonic-
ity of Bx in Figure 2. This is because, all else equal, equity that pays further in
the future is worth less (Figure 3). Medium-horizon equity may therefore have
a greater weight than long-horizon equity, even for growth firms.

The loadings of portfolios on various shocks present an intriguing link
with the empirical results of Campbell and Vuolteenaho (2004). Using the

14 The R2s fail to sum to one because Figure 7 plots the results from unconditional regressions
rather than conditional regressions.
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vector autoregression (VAR) methodology of Campbell (1991), Campbell and
Vuolteenaho decompose unexpected market returns into changes in expecta-
tions of future discount rates and changes in expectations of future dividend
growth rates. Changes in expected discount rates are computed using the VAR;
changes in expected growth rates comprise the residual variation in market
returns. Relative to value firms, growth firms have high betas with respect to
news about discount rates, but low betas with respect to news about dividends.

While not precisely analogous, shocks to xt are similar in spirit to news about
discount rates in the Campbell and Vuolteenaho (2004) framework. It is there-
fore encouraging that our model produces betas with respect to shocks to xt that
are greater in magnitude for growth firms than for value firms. The analogue
to dividend growth news is less clear in our model. Campbell and Vuolteenaho
compute this as a residual, but Figure 7 shows that the residual variance is
not accounted for by shocks to current or expected future dividends. Rather,
we find that more of the residual is accounted for by �dt+1 than by zt+1. Thus,
it is also encouraging that value portfolios load more on shocks to �dt+1 than
growth portfolios.

Figure 7 shows that value and growth portfolios have different loadings on
the underlying shocks in the economy. How this translates into risk premia de-
pends on the price of risk of these shocks. Equation (16) provides an illustration
of how conditional risk premia on zero-coupon equity vary based on loadings
on different shocks. As we discuss in Section III, we estimate that shocks to
expected dividend growth zt are negatively correlated with shocks to realized
dividend growth. This empirical result implies that expected dividend growth
has a negative risk price: Because it is negatively correlated with shocks to
realized dividend growth, it serves as a hedge and reduces risk premia.

We assume that shocks to xt are uncorrelated with shocks to realized divi-
dends, and thus carry a zero risk price. This assumption represents a departure
from the models of Campbell and Cochrane (1999) and Menzly et al. (2004), in
which shocks to the price of risk are perfectly negatively correlated with shocks
to aggregate dividends. What role does this assumption play in our analysis?

To answer this question, consider the conditional risk premium for equity
that matures next period:

ln Et[R1,t+1/R f ] = ||σd ||xt .

Equity that matures two periods from now has a risk premium of

ln Et[R2,t+1/R f ] =
(

1 − ρd x ||σx || + ρdz
||σz ||
||σd ||

)
||σd ||xt ,

where ρd x = σd σ ′
x

||σd ||||σx || represents the conditional correlation between �dt+1 and

xt+1, and ρdz = σd σ ′
z

||σd ||||σz || represents the conditional correlation between �dt+1

and zt+1. The risk premium on equity that matures next period is equal to the
quantity of risk (the standard deviation of dividends) multiplied by the price
of risk, xt. For equity maturing two periods from now, there is also the risk
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due to changes in xt and changes in zt. The latter effect is small because σz is
a small fraction of σ d. Whether long-horizon equity has a lower risk premium
than short-horizon equity depends in large part on the sign of the correlation of
dividend growth with xt. In particular, ρdx < 0 leads to relatively high premia
for long-horizon equity, while ρdx > 0 leads to relatively low premia for long-
horizon equity.

We make this statement precise by solving the model under three differ-
ent values for ρdx. Figure 8 plots risk premia on zero-coupon equity when
ρdx = −0.5, ρdx = 0 (our base case), and ρdx = 0.5. For ρdx = 0, Panel B shows
that risk premia decrease in maturity as long as xt > 0 (as it is most of the
time). The reason for this decrease is the negative correlation between �dt+1
and zt+1. In contrast, for ρdx = −0.5, Panel A shows that risk premia generally
increase with maturity. Long-horizon equity (i.e., growth stocks) have greater
risk premia than do short-horizon equity. This occurs even though ρdz is nega-
tive; even a modest correlation of −0.5 between dividends and the price of risk
overrides the effect of ρdz. The case of ρdx < 0 is of special interest because it cor-
responds to the correlation between the price of risk and aggregate dividends
in external habit models. In the models of Campbell and Cochrane (1999) and
Menzly et al. (2004), shocks to the aggregate dividend (which is identified with
consumption) increase surplus consumption, and therefore lower the amount of
return investors demand for taking on risk. Indeed, in a term structure context,
Wachter (2006) shows that the model of Campbell and Cochrane (1999) implies
that long-horizon assets exhibit greater risk premia than do short horizon as-
sets for exactly this reason. Long-horizon assets load more negatively on the
shock to discount rates; if discount rates are negatively correlated with con-
sumption (or dividends), then long-horizon assets will command greater risk
premia.

An alternative is to set the correlation between dt+1 and xt+1 to be positive, as
illustrated in Panel C. Under this assumption, risk premia fall more dramat-
ically in maturity than when dt+1 and xt+1 are uncorrelated and the premium
for short-horizon equity is greater.

These results at first suggest that a model that seeks to explain the value
premium should set ρdx > 0, rather than ρdx = 0 as we assume. However, the
sign of ρdx has time-series as well as cross-sectional implications. We are able
to calibrate our model to match the time series of aggregate stock returns, as
well as the cross section of value and growth portfolios, because our model
produces reasonable risk premia in the aggregate. For ρdx > 0, this may not
be the case. Figure 8 shows that the greater is ρdx, the lower are risk premia
in the economy, for all but the shortest-maturity equity. As an asset that pays
cash flows in the future, equity must load negatively on xt. If investors view
xt-risk as a hedge (ρdx > 0), this makes equity less risky. On the other hand, if xt
moves in the same direction as dividends (ρdx < 0), equity becomes more risky.
Explaining the level of the equity premium is therefore easiest when ρdx < 0
and hardest when ρdx > 0. The assumption that ρdx < 0 is part of what enables
Campbell and Cochrane (1999) and Menzly et al. (2004) to explain both the high
variance and the high premium that stocks command, with comparatively little
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Figure 8. Effect of ρdx on zero-coupon equity. In each panel, risk premia are shown for xt
equal to its unconditional mean x̄ and two standard deviations on either side of the mean. In the
top panel ρdx (the correlation of dividend shocks and shocks to xt) equals −0.5, in the middle panel
ρdx equals 0, and in the bottom panel ρdx equals 0.5.
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variance in fundamentals. Faced with this tension between the time series and
the cross section, we choose to set the correlation between dividend growth and
xt to zero.

In summary, this section shows that setting ρdx to zero, in combination with
the duration effect and the correlation between current and future dividend
growth, makes long-horizon equity less risky than short-horizon equity. It cre-
ates a large premium on value stocks, while at the same time limiting their
covariance with the market. We hope that future work will reveal microeco-
nomic foundations that determine this important parameter.

V. Conclusion

This paper proposes a parsimonious model of the stochastic discount factor
that accounts for both the aggregate time-series behavior of the stock market
and the relative risk and return of value and growth stocks. At the root of the
model is a dividend process calibrated to match the aggregate dividend process
in the data, and a stochastic discount factor with a single factor, xt, proxying for
investors’ time-varying preference for risk. Time-varying preferences for risk
allow the model to capture the excess volatility and return predictability that
obtain in the data. Our specification for xt allows for interpretable closed-forms
solutions for asset prices and risk premia.

A key difference between our model and external habit models, which also
feature time-varying preferences for risk, is that xt does not arise from fluctu-
ations in aggregate dividends. This may seem like a small detail but it is key
to the model’s ability to explain how value stocks can have both higher returns
and lower betas than growth stocks. In our model, growth and value stocks
differ based on the timing of their cash flows. Growth stocks have more of their
cash flows in the future. They are high-duration assets, and thus their returns
covary more with the price of risk xt. We show that for growth stocks to have
relatively low returns, it must be the case that investors do not fear shocks to xt.
This only occurs if the conditional correlation of the price of risk with dividend
growth is zero or positive. We assume that the correlation is zero. In contrast,
external habit models assume a perfect negative correlation so that shocks to
the price of risk are feared as much as, if not more than, shocks to cash flows.

Our proposed resolution of the value puzzle is risk based. Value stocks, as
short-horizon equity, vary more with fluctuations in cash flows, the fluctuations
that investors fear the most. Growth stocks, as long-horizon equity, vary more
with fluctuations in discount rates, which are independent of cash flows and
which investors do not fear. As we show, such a resolution accounts for the
time-series behavior of the aggregate market, the relative returns of value and
growth stocks, and the failure of the capital asset pricing model to explain these
returns.

Appendix: Convergence of the Price–Dividend Ratio

Because xt and zt can take on both positive and negative values, a necessary
(but not sufficient) condition for (17) to converge for all values of xt and zt is that
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Bx(n) and Bz(n) approach finite values as n → ∞. We have that Bz converges if
and only if

|φz | < 1. (A1)

Let

λ = σd/||σd ||.
Assuming (A1) holds, Bx converges if and only if

|φx − σxλ| < 1. (A2)

Given (A1),

lim
n→∞ Bz (n) = 1

1 − φz
≡ B̄z .

Define B̄x to be the solution to

B̄x = B̄x(φx − σxλ) −
(

σd + σz

1 − φz

)
λ.

Then

B̄x = − (σd + σz/(1 − φz ))λ
1 − (φx − σxλ)

.

Given (A1) and (A2), it follows that

lim
n→∞ Bx(n) = B̄x .

and

lim
n→∞ Vn = σd + σz

1 − φz
+ B̄xσx ≡ V̄ .

Finally, let

Ā = −r + g + B̄x(1 − φx)x̄ + 1
2

V̄ V̄ .

It follows from the recursion for An that for N sufficiently large,

A(n) ≈ Ān + constant, n ≥ N ,

and therefore
∞∑

n=N

exp{A(n) + Bz (n)zt + Bx(n)xt} ≈ exp{constant + B̄z zt + B̄x xt}
∞∑

n=N

exp{Ān}.

It follows that necessary and sufficient conditions for convergence are (A1),
(A2), and

−r + g + B̄x(1 − φx)x̄ + 1
2

V̄ V̄ < 0. (A3)
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