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Does the Failure of the Expectations Hypothesis
Matter for Long-Term Investors?

ANTONIOS SANGVINATSOS and JESSICA A. WACHTER∗

ABSTRACT

We solve the portfolio problem of a long-run investor when the term structure is
Gaussian and when the investor has access to nominal bonds and stock. We apply our
method to a three-factor model that captures the failure of the expectations hypothesis.
We extend this model to account for time-varying expected inflation, and estimate
the model with both inflation and term structure data. The estimates imply that the
bond portfolio of a long-run investor looks very different from the portfolio of a mean-
variance optimizer. In particular, time-varying term premia generate large hedging
demands for long-term bonds.

THE EXPECTATIONS HYPOTHESIS OF INTEREST RATES states that the premium on long-
term bonds over short-term bonds is constant over time. According to this hy-
pothesis, there are no particularly good times to invest in long-term bonds
relative to short-term bonds, nor are there particularly bad times. Long-term
bonds will always offer the same expected excess return.1

While the expectations hypothesis is theoretically appealing, it has consis-
tently failed in U.S. postwar data. Fama and Bliss (1987) and Campbell and
Shiller (1991), among others, show that expected excess returns on long-term
bonds (term premia) do vary over time, and moreover, it is possible to predict
excess returns on bonds using observables such as the forward rate or the term
spread. This paper explores the consequences of the failure of the expectations
hypothesis for long-term investors.
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Wharton School at the University of Pennsylvania and the NBER. The authors are grateful for
helpful comments from Utpal Bhattacharya, Michael Brennan, John Campbell, Jennifer Carpenter,
Qiang Dai, Ned Elton, Rick Green, Blake LeBaron, Anthony Lynch, Lasse Pedersen, Matthew
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the Norwegian School of Economics and Business, the Norwegian School of Management, Univer-
sity of California at Los Angeles, Indiana University at Bloomington, the Spring 2003 NBER Asset
Pricing meeting, and the 2003 CIREQ-CIRANO-MITACS Conference on Portfolio Choice.

1 The expectations hypothesis, as we refer to it, should be distinguished from the pure expec-
tations hypothesis, which states that term premia are not just constant but equal to zero. Cox,
Ingersoll, and Ross (1981) examine variants of the pure expectations hypothesis in the context of
continuous-time equilibrium theory, and find that they are inconsistent with each other, and that
several imply arbitrage opportunities (see, however, Longstaff (2000)). Campbell (1986) shows that
these inconsistencies do not occur with the more general expectations hypothesis, which does not
require term premia to be zero. In fact, it is the expectations hypothesis, as opposed to the pure
expectations hypothesis, which is typically examined in the empirical literature (see Bekaert and
Hodrick (2001) for a discussion of recent empirical work testing the expectations hypothesis).
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We estimate a three-factor affine term structure model similar to that pro-
posed in Dai and Singleton (2002) and Duffee (2002) that accounts for the fact
that excess bond returns are predictable. We then solve for the optimal portfolio
for an investor taking this term structure as given. Bond market predictability
will clearly affect the characteristics of the mean-variance efficient portfolio,
but the consequences for long-horizon investors go beyond this. Merton (1971)
shows that when investment opportunities are time-varying, a mean-variance
efficient portfolio is generally suboptimal. Long-horizon investors wish to hedge
changes in the investment opportunity set; depending on the level of risk aver-
sion, the investor may want more or less wealth when investment opportunities
deteriorate than when they improve. As we will show, investors gain by hedg-
ing time-variation in the term premia. Thus, the investor’s bond portfolio looks
different from that dictated by mean-variance efficiency.

Despite the obvious importance of bonds to investors, as well as the strength
of the empirical findings mentioned above, recent literature on portfolio choice
has focused almost exclusively on predictability in stock returns. As shown by
Fama and French (1989) and Campbell and Shiller (1988), the price-dividend
ratio predicts excess stock returns with a negative sign. Based on this finding,
a number of studies (e.g., Balduzzi and Lynch (1999), Barberis (2000), Brandt
(1999), Brennan, Schwartz, and Lagnado (1997), Campbell and Viceira (1999),
Liu (1999), and Wachter (2002)) document gains from timing the stock market
based on the price-dividend ratio, as well as from hedging time-variation in
expected stock returns. One result of this literature is that when investors
have relative risk aversion greater than one, hedging demands dictate that
their allocation to stock should increase with the horizon. A natural question to
ask is whether the same mechanism is at work for bond returns. Just as stock
prices are negatively correlated with increases in future risk premia on stocks,
bond prices are negatively correlated with increases in future risk premia on
bonds.2 This intuition suggests that time-variation in risk premia would cause
the optimal portfolio allocation to long-term bonds to increase with horizon.

In the case where the investor allocates wealth between a long and a short-
term bond, we show that this intuition holds. Hedging demands induced by
time-variation in risk premia more than double the investor’s allocation to the
long-term bond. Moreover, we find large horizon effects. The investor with a
horizon of 20 years holds a much greater percentage of his wealth in long-term
bonds than an investor with a horizon of 10 years. In the case of multiple long-
term bonds, the mean-variance efficient portfolio often consists of a long and
short position in long-term bonds. This occurs because of the high positive cor-
relation between bonds of different maturities implied by the model and found
in the data. Hedging demand induced by time-varying risk premia generally
makes the allocation to long-term bonds more extreme. We find that following
a myopic strategy and, in particular, failing to hedge time variation in risk
premia carries a high utility cost for the investor.

2 We consider U.S. government bonds that are not subject to default risk. Nonetheless, we use
risk premia and term premia interchangeably, as we do not take a stand on the source of the premia.



Failure of Expectations Hypothesis 181

Our framework generalizes previous studies of portfolio choice when real
interest rates vary over time and there is inflation. Brennan and Xia (2002)
and Campbell and Viceira (2001) estimate a two-factor Vasicek (1977) term
structure model and determine optimal bond portfolios. Both of these studies
assume that risk premia on bonds and stocks are constant.3 Our study also
relates to that of Campbell, Chan, and Viceira (2003), who estimate a vector-
autoregression (VAR) including the returns on a long-term bond, a stock index,
the dividend yield, and the yield spread. Campbell et al. derive an approxi-
mate solution to the optimal portfolio choice problem when asset returns are
described by the VAR. The advantage of the VAR approach is that it captures
predictability in bond and stock returns in a relatively simple way. The disad-
vantage is that the term structure is not well defined; it is necessary to assume
that the investor only has access to those bonds included in the VAR. Moreover,
estimating bond returns using a VAR gives up the extra information resulting
from the no-arbitrage restriction on bonds, namely that bonds have to pay their
(nominal) face value when they mature.

Rather than modeling bond return predictability using a VAR, we fol-
low the affine bond pricing literature (e.g., Dai and Singleton (2000, 2002a),
Duffe (2002)) and specify a nominal pricing kernel.4 The drift and diffusion of
the pricing kernel is driven by three underlying factors that follow a multivari-
ate Ornstein-Uhlenbeck process. The price of risk is a linear function of the
state variables. Thus, the model is in the “essentially affine” class proposed by
Duffee (2002) and shown by Dai and Singleton (2002) to capture the pattern of
bond predictability in the data.

As a necessary step to show the implications of affine term structure models
for investors, we show how parameters of the inflation process can be jointly
estimated with term structure parameters. This joint estimation produces a
series for expected inflation that explains 37% of the variance of realized in-
flation. This result has implications not only for portfolio choice problems, but
also for the estimation of term structure models more generally.

The remainder of the paper is organized as follows. Section I describes the
general form of an economy where nominal bond prices are affine, and there
exists equity and unhedgeable inflation. Section II derives a closed-form so-
lution for optimal portfolio choice when the investor has utility over terminal
wealth and over intermediate consumption. When inflation is introduced, the
pricing kernel that determines asset prices is not unique; from the point of view
of the investor, it is not well defined. As He and Pearson (1991) show, there is a

3 Other work on bond returns and portfolio choice includes Brennan and Xia (2000) and Sorensen
(1999), who assume that interest rates are as in Vasicek (1977), and Liu (1999) and Schroder and
Skiadas (1999), who assume general affine dynamics. These studies assume that bonds are indexed,
or equivalently, that there is no inflation. Xia (2002) examines the welfare consequences of limited
access to nominal bonds under a Vasicek model. Wachter (2003) shows under general conditions
that as risk aversion approaches infinity, the investor’s allocation approaches 100% in a long-term
indexed bond. None of these papers explore the consequences of bond return predictability.

4 For recent surveys of this literature, see Dai and Singleton (2003) and Piazzesi (2002).
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unique pricing kernel that gives the marginal utility process for the investor.5

We derive a closed-form expression for this pricing kernel when incomplete-
ness results from inflation. This expression holds regardless of the form of the
term structure. Section III uses maximum likelihood to estimate the parame-
ters of the process and demonstrates that the model provides a good fit to term
structure data and to inflation. Section IV discusses the properties of the opti-
mal portfolio for the parameters we have estimated and calculates utility costs
resulting from suboptimal strategies. Section V concludes.

I. The Economy

As in the affine term structure literature, we specify an exogenous nominal
pricing kernel. Because our purpose is modeling predictability in excess bond
returns and, as Dai and Singleton (2002) and Duffee (2002) show, a Gaussian
model is well suited for this purpose, we will assume that all variables are
homoscedastic.6

Let dz denote a d × 1 vector of independent Brownian motions. Let r(t) denote
the instantaneous nominal riskfree rate. We assume that

r(X (t), t) = δ0 + δX (t), (1)

where X(t) is an m × 1 vector of state variables that follow the process

dX(t) = K (θ − X (t)) dt + σX dz(t), (2)

under the physical measure. The matrix of loadings on the Brownian motions,
σX , is m × d, K is m × m, and θ is m × 1. Suppose there exists a price of risk
�̄(t) that is linear in X(t):

�̄(t) = λ̄1 + λ̄2 X (t), (3)

where λ̄1 is d × 1 and λ̄2 is d × m. When λ̄2 = 0d×m, the price of risk is constant
and the model is a multi-factor version of Vasicek (1977). Given a process for
the interest rate r and the price of risk �̄, the pricing kernel is given by

d φ̄(t)
φ̄(t)

= −r(t) dt − �̄(t)�dz. (4)

The pricing kernel determines the price of an asset based on its nominal payoff.

5 Liu and Pan (2003) also associate the pricing kernel in the economy with the pricing kernel for
the investor. In Liu and Pan’s model markets are complete, so a unique pricing kernel exists.

6 Fisher (1998) shows that a two-factor Gaussian model can partially replicate the failure of the
expectations hypothesis, but does not make comparisons across models. Bansal and Zhou (2002)
show that a regime-switching is also successful at capturing the failure of the expectations hy-
pothesis in the data. Ahn, Dittmar, and Gallant (2002) discuss an affine-quadratic class of models
which, as Brandt and Chapman (2002) show, is also capable of accounting for the failure of the
expectations hypothesis. Extensions of the results in this paper to quadratic models and models
with regime shifts will be considered in future work.
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In this economy, bond yields are affine in the state variables X(t). Let
P(X(t), t, s) denote the price of such a bond maturing at s > t. Then P equals
the present discounted value of the bond payoff, namely $1:

P (X (t), t, s) = φ̄(t)−1 Et[φ̄(s)].

As shown by Duffie and Kan (1996), nominal bond prices take the form

P (X (t), t, s) = exp{A2(s − t)X (t) + A1(s − t)}, (5)

where A2(τ ) and A1(τ ) solve a system of ordinary differential equations given
in Appendix A. Bond yields are given by

y(X (t), t, s) = − 1
s − t

log P (X (t), t, s)

= − 1
s − t

(A2(s − t)X (t) + A1(s − t)). (6)

The dynamics of bond prices follow from Ito’s lemma:

dP(t)
P (t)

=
{
−A′

2(τ )X (t) − A′
1(τ ) + A2(τ )K (θ − X (t)) + 1

2
A2(τ )σX σX

� A2(τ )�
}

dt

+ A2(τ )σX dz. (7)

The expression for the drift of bond prices can be simplified by applying the
expressions for A2 and A1 given in Appendix A:

dP(t)
P (t)

= (A2(τ )σX �̄(t) + r(t)) dt + A2(τ )σX dz.

Equation (7) shows that bond prices vary with the state variables X(t). The
correlation between bond prices and state variables depends on the maturity of
the bond through the function A2(τ ). With slight abuse of notation, we let P(t)
denote a vector of m bond prices, with A2 the m × m matrix with rows equal to
the corresponding values of A2(τ ).

Our framework allows for the existence of other assets besides bonds. For
concreteness, we assume there exists a stock portfolio with price dynamics

dS(t)
S(t)

= (σS�̄(t) + r(t)) dt + σS dz. (8)

The row vector σS is assumed to be linearly independent of the rows of σX , so
that the stock is not spanned by bonds. We can then group the existing assets
into the vector process

(
dP(t)
dS(t)

)
= diag

(
P
S

)
(µ(t) dt + σ dz), (9)
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where

σ =
(

A2σX

σS

)
, (10)

and µ is such that

(µ(t) − ιr(t)) = σ�̄(t) (11)

with ι equal to an (m + 1) × 1 vector of ones. Because we have assumed there
exist m nonredundant bonds, and because the stock is not redundant, the
variance–covariance matrix of the assets, σσ� is invertible.

Equation (11) shows why this specification allows for predictable excess re-
turns. Because �̄(t) is a function of the state variables X(t), the instantaneous
expected excess return µ(t) − r(t) is also a function of X(t). The structure of λ̄2
determines how quantities that are correlated with the state variables, such as
the yield spread, predict asset returns.

So far, we have described the nominal economy. Because we are interested
in the strategies for an investor who cares about real wealth, it is necessary to
define a process for the price level. Define a stochastic price level 
(t) such that

d
(t)

(t)

= π (X (t), t) dt + σ
 dz. (12)

It is assumed that expected inflation π (t) is affine in the state variables7

π (t) = ζ0 + ζ X (t). (13)

In what follows, we do not require that there exists an asset that is riskfree in
real terms. In nominal terms, such an asset would have diffusion proportional to
σ
dz; thus, the existence of a real riskfree asset is equivalent to the existence
of a portfolio that perfectly hedges 
(t). As long as markets are incomplete
(no real riskfree asset exists), there are more sources of risk than there are
independent risky assets: there are m + 1 risky assets (m bonds and one stock),
but m + 2 sources of risk (m state variables, the stock, and the price level).
As a consequence, the price of risk and the pricing kernel are not unique. Any
process � that satisfies

σ� = µ − rι (14)

is a valid price of risk. Because (14) is a system of m + 1 equations in m + 2
unknowns, the solution is not unique. In what follows, �̄ denotes the price of
risk that is specified in (3), while � denotes a (generic) solution to (14).

Of special interest is the unique price of risk, �∗, that both prices and is
spanned by the underlying assets. This price of risk can be found by projecting �̄

7 It is sufficient for the portfolio choice results to require that r(t) − π (t) is an affine function.
However, (1), or equivalently (13), is required to achieve affine bond prices.
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onto the rows of σ (i.e., the loadings of asset returns on the underlying Brownian
motions)

�∗ = σ�(σσ�)−1σ�̄ = σ�(σσ�)−1σ� = σ�(σσ�)−1(µ − rι). (15)

The last two equalities hold for any price of risk satisfying (14). Because we
have assumed homoscedasticity, �∗ has the same functional form as �̄, with

λ∗
1 = σ�(σσ�)−1σ λ̄1 (16)

λ∗
2 = σ�(σσ�)−1σ λ̄2 (17)

replacing λ̄1 and λ̄2 in (3).
The price of risk �∗ is of interest for several reasons. First, the Cauchy in-

equality implies

max
σ

σ�∗
√

σσ� = (�∗)��∗
√

(�∗)��∗ =
√

(�∗)��∗.

Thus, the norm of �∗ equals the maximal Sharpe ratio. The maximal Sharpe
ratio is always positive, even if �∗ is not; this is because an investor can take
both short and long positions in any asset. Second, any price of risk � can be
written as a sum of �∗ and a process that is in the null space of σ . That is,

� = σ�(σσ�)−1σ� + (� − σ�(σσ�)−1σ�) = �∗ + ν. (18)

The second term, ν, satisfies σν = 0, and thus is in the null space of the under-
lying asset returns. This term completely determines �. There is a one-to-one
mapping between valid prices of risk � and processes ν in the null space of
σ . We denote the pricing kernel associated with �∗(t) by φ∗(t) and the pricing
kernel associated with �∗(t) + ν(t) by φν(t), where

dφ∗(t)
φ∗(t)

= −r(t) dt − (�∗(t))� dz, (19)

and
dφν(t)
φν(t)

= −r(t) dt − (�∗(t) + ν(t))� dz. (20)

While we started by defining a pricing kernel for nominal assets, we could
have equivalently defined payoffs in real terms, and defined a pricing kernel
for real assets. Any nominal pricing kernel φν(t) is associated with a “real”
pricing kernel. For an asset with nominal value V(s) at time s, the price at time
t (assuming the asset pays no dividends between t and s) equals

V (t) = Et

[
φν(s)
φν(t)

V (s)
]

. (21)

It follows directly from (21) that for the real payoff V(s)/
(s),



186 The Journal of Finance

V (t)

(t)

= Et

[
φν(s)
(s)
φν(t)
(t)

(
V (s)

(s)

)]
. (22)

Therefore, φν(t)
(t) is a valid pricing kernel when asset prices are expressed
in real terms. This also follows from the interpretation of φν(t) as a system of
Arrow-Debreu state prices. Normalizing φν(0) = 1 and 
(0) = 1, φν(t) is a ratio
of units of consumption at time 0 to dollars at time t. Then φν(t)
(t) is a ratio
of consumption at time 0 to consumption at time t. We choose to model prices
in nominal rather than real terms for ease of comparison to the affine term
structure literature.

The connection between incomplete markets and the lack of a real riskfree
rate can also be seen from the real pricing kernel associated with the nominal
kernel φν(t). It follows from Ito’s Lemma that

d (φν(t)
(t))
φν(t)
(t)

= (−r(t) + π (t) − σ
(�∗(t) + ν(t))) dt + (σ
 − �∗(t) − ν(t)) dz. (23)

If a real riskfree rate were to exist, its real return must equal r(t) − π (t) +
σ
(�∗(t) + ν(t)), the drift of the real pricing kernel. While π (t), r(t), and σ
�∗(t)
are observable (note that �∗(t) can be inferred from asset prices using
equation (15)), σ
ν(t) is not. In particular, any choice of ν satisfying σν = 0
is consistent with the same asset prices, but implies different values of σ
ν,
and thus different real riskfree rates.

To summarize, the investor has access to an asset with riskless nominal
return r, and m + 1 risky assets whose nominal price dynamics are described by
(9), (10), and (11). Nominal markets are complete in that there exists a full term
structure of nominal bonds.8 However, real markets may be incomplete, because
there may not exist a combination of assets spanning unexpected inflation.
Equivalently, there may not exist an asset that is riskfree in real terms.

II. Optimal Portfolio Choice

In this section, we derive the optimal portfolio allocation for an investor who
takes bond and stock prices as given. Section A describes the general form of
the solution when there is unexpected inflation. Section B specializes to the
case of an affine term structure.

A. Portfolio Choice When Inflation Cannot Be Entirely Hedged:
General Results

We first solve the portfolio choice problem for an investor with power utility
over terminal wealth at date T, and then generalize to the case of consumption
withdrawal. We assume that the investor solves

8 In what follows, we also consider cases where the investor has access to only a subset of the
bonds (incomplete nominal markets).
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max
W (T )>0

Et

[
(W (T )/
(T ))1−γ

1 − γ

]
, (24)

such that W(T) can be achieved by taking positions in the underlying assets
with initial wealth W(0):

dW(t)
W (t)

= w(t)�(µ(t) − r(t)ι) dt + r(t) dt + w(t)�σ (t) dz, (25)

where w(t) is an (m + 1) × 1 vector of portfolio weights that satisfies integra-
bility conditions. To disallow doubling strategies, we require W(t) > 0 for all t
(see Dybvig and Huang (1988)).

To solve this problem, it is convenient to use the martingale technique of Cox
and Huang (1989), Karatzas, Lehoczky, and Shreve (1987), and Pliska (1986)
generalized to the case of incomplete markets by He and Pearson (1991).9 Cox
and Huang (1989) show that when markets are complete, the dynamic budget
constraint (25) can be replaced by a static budget constraint analogous to the
no-arbitrage condition (5) that determines bond prices. That is,

E[φ(T )W (T )] = W (0), (26)

for the unique pricing kernel φ(t). When markets are incomplete, however,
wealth, like any tradeable asset, must satisfy

E[φν(T )W (T )] = W (0) (27)

for any pricing kernel φν . In general, optimizing with respect to (27) for a par-
ticular pricing kernel produces an incorrect answer because it is not possible to
replicate the resulting process for wealth by trading in the underlying assets.

The insight of He and Pearson (1991) is that it suffices to verify (27) with
respect to a single pricing kernel φν∗ . As He and Pearson show, the incomplete-
markets problem can be recast as a complete-markets problem by “adding”
sufficient assets to complete the market, but setting the return process on these
assets so that their weight in the investor’s optimal portfolio is zero. In other
words, it suffices to choose ν such that in the complete market with (unique)
pricing kernel φν , the “additional” assets are not traded by the investor. The
resulting pricing kernel φν∗ is called the minimax kernel because it is the kernel
that minimizes the investor’s maximized utility; the “worst” way to add assets
from the point of view of the investor is to set their return processes such that
the investor does not want to trade them.

Thus, the incomplete-markets case can be solved as the complete markets
case if φν∗ , given by

dφν∗ (t)
φν∗ (t)

= −r(t) dt − (�∗(t) + ν∗(t))�dz, (28)

9 Recently, Schroder and Skiadas (1999, 2002) extend this work to a broader class of stochastic
processes for the state variables and to a broader class of utility functions, including recursive
utility.
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is used as the pricing kernel. Precisely, the investor optimizes wealth with
respect to

E[φν∗ (T )W (T )] = W (0). (29)

For some Lagrange multiplier l , the investor’s first-order condition equals

W (T )−γ


(T )1−γ
= lφν∗ (T ),

and the optimal terminal wealth policy is given by

W (T ) = (
lφν∗ (T )
(T )1−γ

)− 1
γ . (30)

Substituting back into (29) gives the expression for l .10 Given φν∗ , (30) describes
optimal wealth. Given optimal wealth, and hence an optimal portfolio rule, φν∗

is determined by setting the demand for the non-traded assets to zero.
The investor’s terminal wealth policy has an economic interpretation.

Rearranging,

W (T )

(T )

= (lφν∗ (T )
(T ))−
1
γ . (31)

The left-hand side is equal to real wealth. The term inside parentheses on the
right-hand side is proportional to φν∗ (T )
(T ). This equals the real pricing ker-
nel corresponding to the nominal kernel φν∗ . Thus, (31) states that the greater
the price of a given state, the less the agent consumes in that state. The lower
the risk aversion (γ ), the more the agent adjusts terminal wealth in response
to changes in the state-price density. Note, however, that φν∗ is also implicitly
a function of γ .

The optimal portfolio allocation is derived using (30). Define a new state
variable equal to the real wealth of the log utility investor if the unique price
of risk were φν∗ . In our environment with inflation, this state variable equals

Z ν∗ (t) = (lφν∗ (t)
(t))−1. (32)

No-arbitrage implies that wealth at time t must equal the present discounted
value of wealth at time T, where the discounting is accomplished by the mini-
max pricing kernel:

W (t) = φν∗ (t)−1 Et
[
φν∗ (T )
(T )Z ν∗ (T )

1
γ

]
= 
(t)Z ν∗ (t)Et

[
Z ν∗ (T )

1
γ
−1]

. (33)

The next theorem characterizes the optimal wealth and portfolio weights.

10 Solving (29) for l implies

l = W (0)−γ

(
E

(
φν∗ (T )1− 1

γ 
(T )1− 1
γ

))γ

.
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THEOREM 1: Assume that the investor has utility over terminal wealth with
coefficient of relative risk aversion γ . At time t, optimal wealth takes the form

W (t) = 
(t)Z ν∗ (t)
1
γ F (X (t), t, T ), (34)

where Z ν∗ (t) is given by (32). The minimax pricing kernel equals
dφν∗

φν∗
= −r dt − (�∗ + ν∗)� dz,

with

ν∗ = (1 − γ )
(
σ
 − (

σ
σ�)
(σσ�)−1σ

)�
. (35)

The function F satisfies the partial differential equation

1 − γ

γ
(r − π )F + FX

(
K (θ − X ) + 1

γ
σX (�∗ + ν∗) + γ − 1

γ
σX σ�




)

+ Ft + 1
2

(
1
γ

1 − γ

γ

(
(�∗ + ν∗)�(�∗ + ν∗) + σ�


 σ


)
F + tr

(
FXXσX σ�

X

))

=
[
γ − 1

γ

]2

σ
(�∗ + ν∗)F + FX σX (�∗ + ν∗), (36)

with boundary condition F(X(T), T, T) = 1.11 The optimal portfolio allocation
equals

w(t) = 1
γ

(σσ�)−1(µ − ιr) +
(

1 − 1
γ

)
(σσ�)−1(σσ�




)
+ (σσ�)−1(σσ�

X

) 1
F

(FX )�. (37)

The remainder of the investor’s wealth, 1 − w(t)�ι, is invested in the nominal
riskfree asset.

The proof is given in Appendix B. The minimax price of risk equals the price
of risk spanned by the existing assets plus ν∗, where ν∗ equals 1 − γ times the
unhedgeable part of inflation risk. Thus, ν∗ can be interpreted as an investor-
specific measure of market incompleteness.

Equation (37) shows that the investor can be viewed as investing in m + 2
“funds.” The first fund is the portfolio that is instantaneously mean-variance
efficient. It is straightforward to check that this portfolio achieves the maximum
Sharpe ratio

√
(�∗)��∗. The second fund adjusts for the fact that the first fund

is mean-variance efficient in nominal rather than real terms. Together, these
portfolios constitute what is known as “myopic demand,” namely the optimal
allocation if the investor ignores the future investment opportunity set.

It is the last term in (37) that is the focus of this study. This term represents
the sum of the m hedge portfolios:

11 The variable tr(·) denotes the trace. The variable FXX is the m × m matrix of second derivatives.
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(σσ�)−1(σσ�
X

) 1
F

(FX )� = 1
F

M∑
j=1

(σσ�)−1(σσ�
X j

)
FX j .

Hedge portfolio j is formed by projecting state variable j onto the available
assets. Scaling the portfolio is the sensitivity of wealth to state variables j,
1
F (FX j )

�. If increases in state variable j increase wealth in the future, then
the investor allocates a positive amount to the hedge portfolio (σσ�)−1(σσ�

X j
).

Because we have assumed that there are as many nonredundant bonds as state
variables, it is possible to completely hedge the state variables by trading in
the underlying assets. Moreover, hedging demand for bonds is nonzero. Because
bonds are the discounted value of $1, their prices co-vary with the variables that
affect the investment opportunity set, namely X(t).

Also of interest is the investor’s indirect utility. Cox and Huang (1989) show
that it is possible to derive indirect utility from the expression for wealth. Corol-
lary 1 generalizes this result to the case where there is unexpected inflation
(and specializes to the case of power utility).

COROLLARY 1: Define the investor’s indirect utility function as follows:

J (W (t), 
(t), X (t), t, T ) = Et

[
1

1 − γ

(
W (T )

(T )

)1−γ
]

. (38)

Then J(W, 
, X, t, T) takes the form

J (W (t), 
(t), X (t), t, T ) = 1
1 − γ

(
W (t)

(t)

)1−γ

F (X (t), t, T )γ ,

where F(X(t), t, T) is defined in Theorem 1.

The proof of Corollary 1 can be found in Appendix B.
These results generalize to the case where the investor has utility over con-

sumption between times 0 and T. At each time, besides allocating wealth among
assets, the investor also decides what proportion of wealth to consume. The in-
vestor solves

max E
[∫ T

0
e−ρt (c(t)/
(t))1−γ

1 − γ
dt

]
(39)

s.t. dW(t) = (w(t)�(µ(t) − r(t)ι) + r(t))W (t) dt + w(t)�σ W (t) dz − c(t) dt

W (T ) ≥ 0.

As shown in Wachter (2002), computing the solution to this case does not
require solving a new partial differential equation.12 As in the case of terminal
wealth, the dynamic problem can be recast as static problem for an endogenous

12 While the results in Wachter (2002) assumed that markets were complete, the same reasoning
can be applied here because the adjustment for incomplete markets in the minimax pricing kernel
(35) takes a particularly simple form.
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pricing kernel. Using arguments similar to those in the proof of Theorem 1, it
can be shown that, when the only market incompleteness comes from inflation,
the investor-specific pricing kernel (φν∗ ) for the case of intermediate consump-
tion takes the same form as the investor-specific pricing kernel for terminal
wealth. The static budget constraint is therefore equal to

E
[∫ T

0
c(t)φν∗ (t) dt

]
= W (0). (40)

The following corollary describes the form of the investor’s consumption pol-
icy, optimal wealth, and portfolio allocation.

COROLLARY 2: The optimal consumption policy c(t) satisfies

c(t)

(t)

= (lφν∗ (t)
(t))−
1
γ e− ρ

γ
t , (41)

where l is the Lagrange multiplier that allows (40) to hold. Optimal wealth is
given by

W (t) = Z ν∗ (t)
1
γ 
(t)

∫ T

t
F (X (t), t, s)e− ρ

γ
(s−t) ds, (42)

where Z ν∗ (t) is defined by (32), and F satisfies the partial differential equa-
tion (36). The optimal portfolio weights are given by (37) with F replaced by∫ T

t Fe− ρ

γ
(s−t).

Theorem 1 shows that in the homoskedastic setting of our paper, the invest-
ment opportunity set is determined by �∗ and r − π . This can be seen from the
differential equation (36), and the fact that σ
, σX , σS, and ν∗ (by (35)) are con-
stant. Note that r and π do not appear separately in (36), they only appear as
the difference r − π . For convenience, we abuse terminology slightly and refer
to r − π as the real riskfree rate, keeping in mind that there may not exist an
asset that is riskfree in real terms.13

B. Portfolio Allocation When the Nominal Term Structure Is Affine

Theorem 1, Corollary 1, and Corollary 2 do not require that bond yields be
affine. They hold generally, as long as the investor has power utility over ter-
minal wealth. The following corollary explicitly solves for the portfolio weights,
given the assumptions on �̄, r, and π .

13 Indeed, the results in Section I show that this only equals the real riskfree rate if markets are
completed such that the price of inflation risk is zero.
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COROLLARY 3: Assume �̄ and r − π are linear in the state variables X(t), and
that inflation and asset prices are homoscedastic, and the investor has utility
over terminal wealth given by (24). Then F takes the form

F (X (t), t, T ) = exp
{

1
γ

(
1
2

X (t)�B3(τ )X (t) + B2(τ )X (t) + B1(τ )
)}

, (43)

where τ = T − t and the matrix B3, the vector B2, and the scalar B1 satisfy a
system of ordinary differential equations. The optimal portfolio rule equals

w(t) = 1
γ

(σσ�)−1(µ − ιr) + γ − 1
γ

(σσ�)−1(σσ�



)

+ 1
γ

(σσ�)−1(σσ�
X

) (
B3(τ ) + B3(τ )�

2
X (t) + B2(τ )�

)
. (44)

The remainder of the investor’s wealth, 1 − w(t)�ι, is invested in the nominal
riskfree asset.

The proof of Corollary 3 and the differential equations for B3, B2, and B1 can
be found in Appendix B. A noteworthy special case arises when risk premia
are constant. Then B3(τ ) = 0, as can be checked by setting λ∗

2 = 0 into the dif-
ferential equation (B7). The optimal portfolio allocation is constant, and F is
exponential-affine. A two-factor version of this case is considered by Brennan
and Xia (2002).

Why do time-varying risk premia produce a functional form for optimal
wealth (43), and hence for indirect utility (by Corollary 2), that is exponen-
tial quadratic? As Campbell and Viceira (1999) discuss, the reason is that the
investor can profit both when risk premia σ�∗ are especially high and positive,
and when they are especially low and negative. A function for wealth that is
quadratic in X(t) captures this quality. Note that exponential-quadratic wealth
implies a portfolio rule that is linear in the state variables.

Using Corollary 2, it is also possible to write down an explicit formula for the
optimal portfolio for an investor with utility over consumption.

COROLLARY 4: Assume �̄ and r − π are linear in the state variables X(t), and
that inflation and asset prices are homoscedastic. Suppose the investor has utility
over consumption. The optimal portfolio weights equal

w(t) = 1
γ

(σσ�)−1(µ − ιr) + γ − 1
γ

(σσ�)−1(σσ�



) + 1
γ

(σσ�)−1(σσ�
X

)

×




∫ T

t
F (t, t + τ )

(
1
2

(B3(τ ) + B3(τ )�)X (t) + B2(τ )�
)

e− ρ

γ
τ dτ∫ T

t
F (t, t + τ )e− ρ

γ
τ dτ


 .
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The results above show that wealth, indirect utility, and the optimal allo-
cation are available in closed form up to the solution of ordinary differential
equations. In the following sections, we estimate the parameters of the model
and evaluate the implications for portfolio choice.

III. Estimation

The previous sections described optimal portfolio choice when the nominal
term structure is affine and the investor has access to stock as well as bonds.
In this section, we estimate a three-factor term structure model that has been
shown to perform well in out-of-sample forecasting (Duffee (2002)), and in repli-
cating the failure of the expectations hypothesis seen in the data (Dai and
Singleton (2002)).14 Our estimation differs from the estimation in these stud-
ies in that we incorporate data on equity returns, and most importantly, on
inflation.15

There are five sources of risk in the model. The first three are due to the state
variables X defined in (2), the fourth is due to the stock price S defined in (8),
and the fifth is due to the price level 
 defined in (12). Thus, dz is a 5 × 1 vector
of independent Brownian motions, σX is a 3 × 5 matrix, and σS and σ
 are 1 × 5
vectors. Without loss of generality, we order the elements of dz so that when
σX , σS, and σ
 are stacked, the resulting 5 × 5 matrix is lower triangular:




σX

σS

σ



 =




σX (1,1) 0 0 0 0
σX (2,1) σX (2,2) 0 0 0
σX (3,1) σX (3,2) σX (3,3) 0 0
σS(1) σS(2) σS(3) σS(4) 0
σ
(1) σ
(2) σ
(3) σ
(4) σ
(5)




.

Thus, dz1 is the risk arising from X1, dz2 is risk arising from X2 that is orthog-
onal to the risk in X1, dz3 is risk arising from X3 that is orthogonal to the risk
in X1 and X2, etc.

In the estimation, we seek to identify

�∗(t) = λ∗
1 + λ∗

2 X (t),

the unique price of risk that is within the span of the underlying assets. Given
the ordering for dz, it follows that λ∗

1 and λ∗
2 take the form

λ∗
1 = [

λ∗
1(1) . . . λ∗

1(4) 0
]�

14 In the notation of these papers, the model we estimate is known as A0(3) because it contains
three factors and no square root processes.

15 There is a substantial literature on using yields on nominal bonds to extract expected inflation.
This includes Boudoukh, Richardson, and Whitelaw (1994), Fama (1975), Fama and Gibbons (1982),
and Mishkin (1981) who use a regression approach, as well as Ang and Bekaert (2003), Boudoukh
(1993), Pennacchi (1991), and Sun (1992), who estimate expected inflation within a term structure
framework that precludes the existence of arbitrage.
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and

λ∗
2 =




λ∗
2(1,1) . . . λ∗

2(1,3)
...

...
λ∗

2(4,1) . . . λ∗
2(4,3)

0 0 0


 .

The variables λ∗
1 and λ∗

2 have zeros in the fifth row because both bonds and stocks
load only on the first four Brownian motions. Otherwise, λ∗

1 and λ∗
2 would not

be within the span of σ as required.16

As Dai and Singleton (2000) discuss, the processes for X, �∗, and r have
too many degrees of freedom to be identified by the data. For example, it is
not possible to simultaneously identify θ and δ0. Following Dai and Singleton
(2000) and Duffee (2002), we set θ = 03×1, and specify that K is lower triangular.
Further, we set

σX = [I3×3 03×2] (45)

analogously to Dai and Singleton and Duffee who set σX equal to the identity
matrix.

With the restrictions described above, all of the parameters in the model can,
in principle, be identified. In practice, the large number of parameters in such
models has led to concerns of over-fitting. We follow Duffee (2002) in further
restricting the matrix K and the price of risk λ∗

2 in order that the estimation
be more reliable. Given the form of σX (and because bonds load only on the
state variables), the first three rows of λ∗

1 and λ∗
2 are determined by risk premia

on bonds and can be identified from term structure data. We place the same
restrictions on these elements of λ∗

2 as does Duffee (2002). In addition, we re-
strict the fourth row of λ∗

2 so that the equity premium is constant. We set this
requirement because of the difficulty in identifying three separate sources of
variation in the equity premium that all arise from the term structure, and
because the focus of this paper is on bond return, rather than stock return,
predictability. Because σS is determined from the variance–covariance matrix
of bond and stock returns, and because the first three and fifth rows of λ∗

1 and
λ∗

2 are determined, the equation for the equity premium is given by

σS
(
λ∗

1 + λ∗
2 X (t)

) = η0.

Note that this is a system of four equations in four unknowns. The fourth
element in λ∗

1 is determined by

σSλ∗
1 = η0, (46)

while the three elements in the fourth row of λ∗
2 are determined by

σSλ∗
2 = 01×3. (47)

16 In what follows, we also consider the case of incomplete nominal markets. For these cases, �∗

must be adjusted further so that it is within the span of the existing assets.
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Table I
Processes for the Riskfree Rate and Expected Inflation

The three-factor model described in Section III is estimated using monthly data on bond yields,
inflation, and stock returns from 1952 to 1998. The nominal interest rate r(t) = δ0 + δ1X1(t) +
δ2X2(t) + δ3X3(t), expected inflation equals π (t) = ζ0 + ζ1X1(t) + ζ2X2(t) + ζ3X3(t). The process for
X is given by dX(t) = −KX(t) dt + σXdz(t), where σX is shown in Table II. Outer product standard
errors are given in parentheses. Parameter values are annual and in natural units.

Panel A: Constant Terms

δ0 ζ0

0.056 0.040
(0.034) (0.026)

Panel B: Coefficients on State Variables

X1 X2 X3

ζi 0.018 0.018 0.007
(0.002) (0.004) (0.0005)

δi 0.018 0.007 0.010
(0.0003) (0.0009) (0.0003)

K1,i 0.576 0 0
(0.027)

K2,i 0 3.343 0
(0.210)

K3,i −0.421 0 0.083
(0.170) (0.055)

Rather than estimate the fourth row of λ∗
1 and λ∗

2 directly, we estimate η0 and
back out λ∗

1 and λ∗
2 using (46) and (47), respectively.

Our bond data consist of monthly observations on zero coupon yields for
3-month, 6-month, and 1-, 2-, 5-, and 10-year U.S. government bonds. The bond
data are available from the web site of Gregory Duffee. Monthly observations
on the CPI and on returns on a broad stock index are available from CRSP.
The sample begins in 1952 and ends in 1998. Following Duffee (2002), we as-
sume that prices on the 3-month, 1-year, and 5-year bonds are measured with
normally distributed errors. The model implies that state variables, stock re-
turns, and realized inflation are jointly normally distributed. The parameters
are thus δ0, δ, ζ0, ζ, K, λ∗

1, λ∗
2, σS, σ
, and η0, and the variance–covariance matrix

of the errors. We estimate the model using maximum likelihood, an alternative
to the Generalized Method of Moments approach of Gibbons and Ramaswamy
(1993). Details are contained in Appendix E.

Tables I–III describe the results from our estimation. Because the yields are
in annual terms, time is in years. As shown in Table I, the parameters δ0 and ζ0
equal 0.056 and 0.040, respectively. The value of δ0 is approximately equal to
the mean of the 3-month Treasury bill return in the data, 0.055. The value of
ζ0 is approximately equal to the mean of inflation in the data, which is 0.039.
While the ability to match these values may seem like a natural property for
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Table II
Volatility Matrix

Estimates of loadings on the Brownian motions. For example, the unpredictable component of the
stock price is given by σS(1) dz1 + σS(2) dz2 + σS(3) dz3 + σS(4) dz4 + σS(5) dz5. The entries of σX
and the last entry of σS cannot be identified from the data; they are set equal to the values below
without loss of generality. Outer product standard errors are in parentheses.

dz1 dz2 dz3 dz4 dz5

1 0 0 0 0
σX 0 1 0 0 0

0 0 1 0 0
σS (×100) −1.255 0.572 −2.946 14.277 0

(0.578) (0.592) (0.632) (0.304) –
σ
 (×100) 0.001 −0.011 0.133 −0.084 0.911

(0.042) (0.042) (0.042) (0.042) (0.024)

Table III
Prices of Risk

Estimates of the price of risk �∗ = λ∗
1 + λ∗

2X(t) and of the equity premium. The ith Brownian motion
is denoted by zi(t). The first three rows of λ∗

1 and λ∗
2 control risk premia on bonds (because σX takes

the form shown in Table II). The fourth row is determined by the equity premium σS�∗ = η0. The
fifth row is zero by construction. Outer product standard errors are in parentheses. Parameter
values are annual and in natural units.

Equity Premium η0 0.075
λ∗

2(0.025)
Source of Risk λ∗

1 X1 X2 X3

z1(t) −0.563 0 1.754 0
(0.212) (0.078)

z2(t) −0.245 0 −1.815 0
(0.078) (0.169)

z3(t) −0.219 0.537 0.376 −0.082
(0.052) (0.174) (0.117) (0.055)

z4(t) 0.440 0.111 0.305 −0.017
zt(5) 0 0 0 0

a model to have, as Campbell and Viceira (2001) discuss, it is not guaranteed
that models such as this one fit time series means. In fact, the affine models
investigated by Duffee (2002) all result in an estimate of δ0 that is too low
compared to the mean of the short-term interest rate.17 Surprisingly, including
inflation in the estimation helps to estimate this parameter.

Table II describes the elements of σS and σ
. The first and third elements of
σS are negative, consistent with a positive correlation between bond and stock

17 Duffee ends his sample in 1994. This does not account for the difference, however. We estimate
the A0(3) model without inflation and find δ0 = 0.044%, even when we include the last 4 years of
the sample.
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Table IV
Asset Return Correlations

The first panel shows conditional correlations of asset returns implied by the parameter values in
Tables I to III. For example, the conditional correlation between returns on the 1-year bond and
on the stock is equal to A2(1)σXσ�

S (A2(1)σSσ�
S A2(1)�)−1/2(σSσ�

S )−1/2 by (7). The second panel shows
unconditional correlations from the data.

1-Year Bond 5-Year Bond 10-Year Bond Stock

Panel A: Model

1-year 1.000 0.878 0.741 0.191
5-year 1.000 0.950 0.208
10-year 1.000 0.212
Stock 1.000

Panel B: Data

1-year 1.000 0.853 0.734 0.190
5-year 1.000 0.932 0.192
10-year 1.000 0.214
Stock 1.000

returns (indeed, as Table IV shows, the correlation is positive). The fourth el-
ement of σS (by far the largest) represents the component of stock returns or-
thogonal to bond returns. The fourth element of σ
 is negative and significant,
consistent with a negative correlation between unexpected changes in the price
level and stock returns. Moreover, note that the correlation between unexpected
inflation and the first and the third state variables is positive, while the corre-
lation between unexpected inflation and the second state variable is negative.
Because bond returns are negatively correlated with the first and third state
variables (Table V), but positively correlated with the second state variable,
this is consistent with a negative correlation between unexpected inflation and
bond returns. The estimates in Table II imply that the volatility of unexpected
inflation,

√
σ
σ�


 = 0.93% per annum. This is close to, but smaller than the
volatility of realized inflation in the data (1.17%). This makes sense; the state
variables add information and thus reduce the volatility.

Other than δ0 described above, the parameters that we estimate for the term
structure are very close to those found by Duffee (2002).18 As Table III shows,
the restrictions on λ∗

2 imposed above imply that two factors determine time-
varying risk premia on bonds. The first is given by the transitory factor X2, while
the second is a linear combination of X1, X2, and X3, and hence is more persis-
tent. Table III also shows that the estimated equity premium equals 7.5%.19

18 The variance–covariance matrix for the errors, which we do not report, is nearly identical to
that found by Duffee (2002).

19 We find that the sample equity premium 12
563

∑563
t=1[log St+1 − log St − y(t,t + 0.25)

12 ] = 6.25% . This
value differs from our estimate of η0 in part because the maximum likelihood estimate of δ0 is
not exactly equal to 1

563

∑563
t=1 y(t, t + 0.25), and in part because this sample mean ignores Jensen’s

inequality, which η0 takes into account (see, e.g., (E2)).
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Table V
Correlations between Asset Returns, Innovations to Inflation, and

Innovations to the Investment Opportunity Set
Panel A shows conditional correlations between asset returns and innovations to inflation (
);
expected inflation (π ); the nominal interest rate (r); and the “real” interest rate (r − π ) implied
by the parameter values in Tables I–III. Panel B shows conditional correlations between as-
set returns and innovations to risk premia on the 1-year, 5-year, and 10-year bonds. Panel C
shows conditional correlations between asset returns and innovations to the state variables. For
example, the correlation between returns on the 1-year bond and innovations to 
 is equal to
A2(1)σXσ�


 (A2(1)σ
σ�

 A2(1)�)−1/2(σ
σ�


 )−1/2 by (7).

1-Year Bond 5-Year Bond 10-Year Bond Stock

Panel A: Interest Rate and Inflation


 −0.085 −0.118 −0.137 −0.117
π −0.459 −0.112 −0.117 −0.087
r −0.779 −0.478 −0.418 −0.148
r − π −0.477 −0.704 −0.570 −0.091

Panel B: Risk Premia

µ1 − r −0.213 −0.471 −0.341 −0.031
µ5 − r −0.157 −0.445 −0.336 −0.026
µ10 − r −0.034 −0.380 −0.319 −0.015

Panel C: State Variables

X1 −0.764 −0.366 −0.143 −0.086
X2 0.313 0.512 0.345 0.039
X3 −0.564 −0.777 −0.927 −0.201

Figures 1 to 3 illustrate the implications of the model for average yield
spreads, standard deviations of yield spreads, and Campbell–Shiller long-rate
regressions. Each figure plots the values in the data (“sample”) and the values
implied by the model. Following Dai and Singleton (2002), we construct 95%
confidence bands by simulating 500 sample paths from our model with length
equal to the sample path in the data. Figures 1 and 2 show that the model
implies average yield spreads and standard deviations of yield spreads close
to those found in the data. The confidence bands reflect the well-known result
that means are estimated much more imprecisely than variances. In both cases,
the data fall well within the error bands implied by the model. We conclude that
the model does a reasonable job of fitting the cross-sectional moments of bond
yields. Because the model must fit cross-sectional and time-series moments
together, the fit to the cross section is not automatic.

Because our aim is to study the implications of the expectations puzzle for in-
vestors, it is especially important to determine whether the model accounts for
the expectations puzzle found in the data. To do so, we follow the approach of Dai
and Singleton (2002) and check whether the model replicates the empirical find-
ings of Campbell and Shiller (1991). Dai and Singleton explain the connection
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Figure 1. Model-implied yield spread means. Bond yields are in annual terms, and defined
as in equation (6). The short-term yield has maturity of 3 months. Sample means are calculated
using data from 1953 to 1998 on bonds of selected maturities. The population means and the means
from the Monte Carlo experiment lie on top of each other.

between the Campbell–Shiller regressions and time-variation in risk premia
in detail.

Figure 3 plots the slope coefficients from regressions of quarterly changes in
yields on the scaled yield spread, as described in Campbell and Shiller (1991). If
the expectations hypothesis held, the coefficients would be identically equal to
1. Instead, Campbell and Shiller find coefficients that are negative and decrease
with maturity.20 Figure 3 replicates this result in our data and shows that the
model captures both the negative coefficients and the downward slope. Except
for values at the very short end of the term structure, the data fall within the
95% confidence bands implied by the model. It is apparent from Figure 3 that
the model captures the failure of the expectations hypothesis found in the data.
To the extent that the failure of the expectations hypothesis is a bit less extreme

20 Backus et al. (2001) note that the regression coefficients are noisier at longer maturities, and
in fact when deviations from the expectations hypothesis are measured using forward-rate regres-
sions, bonds at longer maturities appear to come closer to satisfying the expectations hypothesis
than bonds at shorter maturities.
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Figure 2. Model-implied yield spread standard deviations. Yields are in annual terms, and
defined as in equation (6). The short-term yield has maturity of 3 months. “Sample” refers to yield
spreads calculated using data from 1953 to 1998 on bonds of selected maturities.

in the model than the data, we may understate the implications for long-run
investors.21

Figure 4 plots the time series of monthly realized inflation, and our expected
inflation series constructed from the state variables using the relationship

π (t) = ζ0 + ζ X (t),

where values for ζ0 and ζ come from the maximum likelihood estimation de-
scribed above, and are given in Table I. Our joint estimation procedure allows
inflation to influence the dynamics of state variables. In practice, however, this

21 Expectations hypothesis regressions are subject to small-sample biases that could go in ei-
ther direction (Bekaert, Hodrick, and Marshall (1997, 2001), Stambaugh (1999), Valkanov (1998)).
Longstaff (2000b) finds that tests fail to reject the expectations hypothesis at the short end of the
term structure and argues that the failure of the expectations hypothesis may be due to a liquidity
premium in Treasury Bill rates. Bekaert and Hodrick (2001) argue that standard tests tend to
reject the expectations hypothesis even when it is true. They find, however, that the data remain
inconsistent with the expectations hypothesis, even after adjusting for small-sample properties.
Accounting for these biases within the investment decision is beyond the scope of this manuscript,
but will be pursued in future work.



Failure of Expectations Hypothesis 201

1 2 3 4 5 6 7 8 9 10
−4

−3

−2

−1

0

1

2

3

Maturity (years)

C
am

pb
el

l−
S

hi
lle

r 
R

eg
re

ss
io

n 
C

oe
ffi

ci
en

ts

Sample
Population
Monte Carlo Mean
Monte Carlo 95% Confidence Bands

Figure 3. Model-implied coefficients on Campbell and Shiller (1991) long-rate regres-
sions. Quarterly changes in yields, y(t, s) − y(t + 1

4 , s), are regressed on the spread between the
(s − t)-year bond, and the 3-month bond, scaled by 1/(4(s − t) − 1). “Sample” refers to yield spreads
calculated using data from 1953 to 1998 on bonds of selected maturities.

effect is small, and except for the effect on δ0 described above, our parameter
values are close to what we would find by first estimating the term structure
model, and then regressing realized inflation on the factors. This latter strategy
would, of course, understate the standard errors on ζ .

Figure 4 shows that our expected inflation series does indeed forecast realized
inflation. In fact, expected inflation accounts for 37% of the variance of realized
inflation. It is worth emphasizing that these results come about even though
the factors X(t) are linear combinations of yields alone. Thus, long-term bond
yields contain substantial information about future inflation.

Figure 5 plots the time series for the nominal interest rate r(t) implied by the
model. While not shown in the graph, r(t) is essentially equal to the 3-month
yield. The difference between the nominal interest rate r(t) and π (t), which
we informally refer to as the real interest rate, is also shown on the graph.
This series is positive through nearly the entire sample. Thus, the expected
inflation and real riskfree rate implied by the model have reasonable time-
series properties.
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Figure 4. Realized and expected inflation. Dotted lines denote realized inflation (from data);
solid lines denote expected inflation π (t) implied by the model and parameter estimates in Table I.
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Figure 5. The nominal and real riskfree rate. The thin line denotes the nominal riskfree rate
implied by the model and parameter estimates in Table I. The thick line denotes the real riskfree
rate (the nominal rate minus expected inflation) implied by the model and parameter estimates in
Table I.

The results in Section II show that the real interest rate r − π and the price
of risk �∗ are the important quantities for investors. The top panel of Figure 6
plots the time series of risk premia (a linear transformation of �∗) for the 1-,
5-, and 10-year bonds implied by the model. As Figure 6 shows, risk premia
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Figure 6. Risk premia and the maximum sharpe ratio. The top panel shows risk premia (in
annual percentages) on long-term bonds implied by the model. The risk premium is defined as the
instantaneous expected excess return over the nominal riskfree rate. The bottom panel shows the
time series of the maximum Sharpe ratio achievable by taking a position in bonds, stock, and
the nominal riskfree asset.

are highly volatile, especially in the latter half of the sample. Table III implies
that there are two factors driving risk premia: the first is the highly transitory
second state variable, the second is a linear combination of all three state vari-
ables that is much more persistent. Nonetheless, all three risk premia appear
to move closely together. This is consistent with the findings of Cochrane and
Piazzesi (2002), who show that a single factor can explain much of the time-
variation in expected excess returns on bonds. The bottom panel of Figure 6
plots the time series of the maximal Sharpe ratio

√
(�∗)��∗. The Sharpe ratio

tends to take on its largest values when excess returns are unusually negative
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or positive. This large variation in investment opportunities suggests that the
optimal allocation to bonds will also vary substantially as a function of the state
variables.

Taking the results in this section together, we conclude that our model suc-
ceeds in capturing important features of the term structure and of inflation. The
next section considers the implications of our parameter estimates for portfolio
choice.

IV. Portfolio Allocation under the Failure
of the Expectations Hypothesis

This section combines the theoretical results from Section II with the pa-
rameter estimates from Section III to evaluate the implications of the failure
of the expectations hypothesis for long-horizon investors. The failure of the ex-
pectations hypothesis could affect the optimal portfolio in two ways. First, the
myopic portfolio, 1

γ
(σσ�)−1(µ − ιr) + γ − 1

γ
(σσ�)−1(σσ�


 ), depends directly on risk
premia. If risk premia vary, so does myopic demand. Second, time-varying risk
premia imply that investment opportunities vary over time (as long as changes
in risk premia are not directly offset by changes in volatility). As Merton (1971)
shows, the investor hedges these changes in the investment opportunity set,
implying that the optimal allocation is not mean-variance efficient. Hedging de-
mand causes the optimal portfolio for a long-horizon investor to differ from the
optimal portfolio for an investor with a short horizon. Both effects are present
in theory. The question is, are they economically significant?

A. Optimal Allocation between a Long-Term Bond, Stock,
and the Nominal Riskfree Asset

To investigate the effect of time-varying risk premia on optimal portfolios,
we first consider the case where the investor has access to a single long-term
bond, stock, and a nominally riskfree asset. This case allows us to temporar-
ily abstract from questions pertaining to the optimal composition of the bond
portfolio and focus on the horizon properties, taking the composition as given.22

The results in Theorem 1 apply only to the case where nominal markets are
complete, namely when there are the same number of long-term bonds as state
variables. However, they are easily modified for the case of incomplete nomi-
nal markets. Optimal wealth and allocation to long-term bonds still take the
same form as in Corollary 3. Theorem 1 and Corollary 3 are extended to the
incomplete-market case in Appendix C.23

Figure 7 plots the optimal allocation for the investor who allocates wealth
between a 5-year bond, stock, and the nominally riskfree asset. The investor

22 Note, however, that there is a cost to restricting the maturity of the bond. Brennan and Xia
(2002) show in a related setting that, if the investor is allowed to trade only one bond, the optimal
maturity of the bond depends on the investor’s horizon.

23 The results for utility over consumption (Corollary 4) have no straightforward extension.
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Figure 7. Optimal allocation as a function of horizon for an investor with access to a
5-year bond, the stock market, and the nominal riskfree asset. Shown are the allocations to
the bond and the stock; the allocation to the riskfree asset is one minus the sum of these quantities.
The state variables X2 and X3 are set equal to zero, while X1 is set equal to minus one standard
deviation (1.9) in the top panel, 0 in the middle panel, and plus one standard deviation in the
bottom panel. “Premium” refers to the risk premium on the 5-year bond implied by each value of
X = (X1, X2, X3). Risk aversion γ = 4 (left panel) or 10 (right panel).

is assumed to have utility over wealth at the end of the horizon. In the left
panel, risk aversion γ = 4, in the right panel γ = 10. Both myopic demand and
hedging demand depend on the current premia on bonds over the riskfree rate.
Thus, the optimal allocation is a function of the state as well as the horizon. In
order to understand how the optimal portfolio varies with the state, we plot the
optimal allocation when the state variables are equal to their long-run mean
of zero, and then we vary each state variable by two unconditional standard
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deviations. The results are similar in each case, so we discuss only the effects
of varying X1.24

The risk premium on the 5-year bond equals 2% per annum when the state
variables are at their long-run mean, 6% when X1 is two standard deviations
below its long-run mean, and −3% when X1 is two standard deviations above
its long-run mean. The negative relationship between the risk premium on the
5-year bond and X1 is implied by the parameter estimates in Table III and
the correlation between the 5-year bond and the state variables in Table V. In
particular, Table III shows that λ2(3,1) > 0 and λ2(i,1) = 0 for i = 1, 2. This means
that the price of risk associated with the third Brownian motion is increasing
and the price of risk for the first two Brownian motions is constant in X1.
Because state variables can be exactly identified with Brownian motions, the
price of X3 risk is increasing in X1. Because bond prices load negatively on X3,
risk premia on bonds are decreasing in X1. Note that the equity premium is
constant in X1 by construction. The fourth row of λ∗

2 is set so that σSλ∗
2 = 0.

The top panel in Figure 7 shows the optimal allocation when X1 is two stan-
dard deviations below its long-run mean (risk premium = 6%), the middle panel
shows the allocation when X1 is at its long-run mean (risk premium = 2%), and
the bottom panel shows the allocation when X1 is two standard deviations above
its long-run mean (risk premium = −3%). The myopic allocation is equal to the
y-intercept, because, under power utility, it is independent of horizon. Not sur-
prisingly, the lower is X1 (and the greater are risk premia), the greater is the
myopic allocation to the 5-year bond. When risk premia are at their long-run
mean, the optimal allocation to bonds is positive. When risk premia are neg-
ative, the optimal allocation involves taking a short position in the long-term
bond. Because of the positive correlation between returns on the 5-year bond
and on the stock, an increase in the risk premium on the 5-year bond leads to a
lower allocation to the stock. A comparison between the panels shows that the
investor with risk aversion γ = 4 times the market more aggressively than the
investor with risk aversion equal to 10.

There are strong horizon effects for long-term bonds.25 For values of X1 imply-
ing positive bond premia, the allocation to the 5-year bond rises steadily with
the horizon. When bond premia are negative, the optimal allocation initially
falls, but then rises after a horizon of about 1 year. The difference between
short-horizon and long-horizon investors is economically large. For example,
when X1 is at its long-run mean, the myopic investor with γ = 10 allocates 20%
of his wealth to the long-term bond. An investor with γ = 10 and a horizon of
20 years, by contrast, allocates over 100% of his wealth to the long-term bond.

24 The unconditional variance–covariance matrix of the state variables can be calculated using
the results of Appendix E. The unconditional standard deviation is 0.93 for X1, 0.39 for X2, and
3.0 for X3. Varying X3 has smaller effects on myopic demand, which can be seen by comparing
0.93λ∗

2(3, 1) to 3λ∗
2(3, 3). Because X3 is a more persistent variable, the effects on hedging demand

are larger. By contrast, X2 has a larger effect on risk premia, and thus on myopic demand. However,
its effects on hedging demand are smaller because it is much less persistent.

25 Relative to the long-term bond, stocks have a low correlation with the investment opportunity
set and, thus, negligible horizon effects.



Failure of Expectations Hypothesis 207

Premium = 12%, γ = 4 Premium = 12%, γ = 10

0 10 20
−4

−2

0

2

4

6

8

A
llo

ca
tio

n

Horizon (years)

5−yr
stock

0 10 20

−1

0

1

2

3

A
llo

ca
tio

n

Horizon (years)

5−yr
stock

Premium = 2%, γ = 4 Premium = 2%, γ = 10

0 10 20
−4

−2

0

2

4

6

8

A
llo

ca
tio

n

Horizon (years)

5−yr
stock

0 10 20

−1

0

1

2

3

A
llo

ca
tio

n

Horizon (years)

5−yr
stock

Premium = -8%, γ = 4 Premium = -8%, γ = 10

0 10 20
−4

−2

0

2

4

6

8

A
llo

ca
tio

n

Horizon (years)

5−yr
stock

0 10 20

−1

0

1

2

3

A
llo

ca
tio

n

Horizon (years)

5−yr
stock

Figure 8. Allocation when the investor hedges only the real riskfree rate (plain lines)
and when the investor hedges only risk premia (lines with circles) as a function of hori-
zon. The investor has utility over terminal wealth and access to a 5-year bond, the stock market,
and the nominal riskfree asset. Shown are the allocations to the bond and the stock; the allocation
to the riskfree asset is one minus the sum of these quantities. For the stock, the two allocations lie
on top of each other. The state variablels X2 and X3 are set equal to zero, while X1 is set equal to
minus one standard deviation (1.9) in the top panel, 0 in the middle panel, and plus one standard
deviation in the bottom panel. “Premium” refers to the risk premium on the 10-year bond implied
by each value of X = (X1, X2, X3). Risk aversion γ = 4 (left panel) or 10 (right panel).

While hedging demand for γ = 4 is smaller than that for γ = 10 as a proportion
of myopic demand, it is still economically large. When the state variables are
at their long-run mean, hedging demand more than doubles the allocation to
the 5-year bond for the γ = 4 investor.

What drives the horizon effects seen in Figure 7? As discussed in Section II,
hedging demand arises from two sources. One is time-variation in risk premia,
the other is time-variation in the real riskfree rate, r − π . To separate out these
two effects, Figure 8 plots the allocation when the investor has the correct
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myopic demand but she hedges only time variation in the real riskfree rate
(plain lines), and the allocation when the investor has the correct myopic de-
mand but she hedges only time variation in risk premia (lines with circles).

Suppose first that the investor hedges only time variation in the real riskfree
rate (i.e., in the calculation of hedging demand, risk premia are assumed to be
constant). This allocation is given by (44), the same equation that defines the
optimal allocation, but with λ∗

2 set equal to zero in the equations for B3(τ ), B2(τ ),
and B1(τ ). Figure 8 shows that hedging demand induced by time-variation in
the real riskfree rate is positive and increasing in the horizon, though it is
substantially smaller than the full hedging demand shown in Figure 7.

Hedging demand resulting from the real riskfree rate is positive because long-
term bond prices and the real riskfree rate are negatively correlated (Table V).
A multi-period investor chooses the optimal portfolio not only to maximize the
Sharpe ratio, but also so that future wealth has the “right” correlation with
future investment opportunities. For γ > 1, the investor has lower marginal
utility of wealth when the real riskfree rate is high; the income effect dominates
(a higher riskfree rate makes him richer, he can afford a lower payoff in those
states). For γ < 1, the investor has lower marginal utility of wealth when the
riskfree rate is low; the substitution effect dominates (wealth is more valuable
when the riskfree rate is higher because it can be invested at a higher rate).
Thus, the investor with γ > 1 invests more than the mean-variance efficient
allocation in assets that have a negative covariance with changes in the riskfree
rate. These assets pay off when the riskfree rate is low, giving the investor more
wealth when marginal utility for wealth is highest.

All of the reasoning above goes through regardless of the level of risk premia.
Indeed, Figure 8 shows that hedging demand coming from the real riskfree
rate does not depend on the value of the state variables. Mathematically, this
follows from the fact that B3(τ ) ≡ 0 when λ∗

2 = 0, as noted in Section II. When
the investor only hedges changes in the real interest rate, hedging demand is
non-stochastic.

A number of studies (e.g., Brennan and Xia (2000), Sorensen (1999), Wachter
(2003)) have argued that a time-varying riskfree rate leads investors with
longer horizons to allocate a greater percentage of their portfolio to long-term
bonds. According to this argument, long-term bonds are negatively correlated
with the riskfree rate, and thus should be over-weighted in the portfolios of
investors with risk aversion greater than one. The limitation of this argument
is that it requires bonds to be real. Nominal bonds are negatively correlated
with the nominal riskfree rate, but the investor desires to hedge the real risk-
free rate r − π , and nominal bonds may not be negatively correlated with the
real riskfree rate. For our calibration, long-term bonds are indeed negatively
correlated with the real riskfree rate, though it is important to note that this
is an empirical, not a theoretical result. Thus, the investor with risk aversion
greater than one chooses to increase her allocation to long-term bonds relative
to the myopic portfolio. Because changes in the real riskfree rate are persistent,
the longer the investor’s horizon, the greater the effect of the riskfree rate on
indirect utility, and the greater is hedging demand.
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We now consider the optimal allocation when the investor hedges bond risk
premia, but not the riskfree rate (i.e., in the calculation of hedging demand, the
real riskfree rate r − π is assumed to be constant). This is calculated by setting
ζ = δ in the equations for B3, B2, and B1. This allocation is shown in Figure 8
and marked with circles. When bond risk premia are positive, hedging demand
induced by time-varying risk premia is also positive. When bond risk premia
are negative, hedging demand induced by time-varying risk premia is negative
at short horizons and positive at long horizons.

Consider first the case where risk premia on long-term bonds are positive.
A rise in bond risk premia counts as an improvement in investment opportu-
nities, while a fall in bond risk premia counts as a deterioration. The same
reasoning that applied in the case of a time-varying riskfree rate applies here,
too. When the income effect dominates (γ > 1), hedging demand is positive for
assets that are negatively correlated with bond premia. As shown in Table V,
bond prices and bond risk premia are negatively correlated. This explains why
hedging demand for long-term bonds induced by time variation in risk premia
is positive when bond risk premia are positive. Moreover, changes in risk pre-
mia are persistent, as are changes to the real riskfree rate. Thus, the longer is
the investor’s horizon, the greater is hedging demand, and the greater is the
total allocation to the long-term bond.

This reasoning also explains why hedging demand for the long-term bond
can be negative when bond risk premia are negative. Figure 8 shows that when
risk premia are negative, hedging demand arising from time variation in risk
premia causes the allocation to fall with the horizon before increasing again.
When the investor is short the long-term bond, reductions in the risk premium
represent improvements in the investment opportunity set. In order to hedge
these changes, the investor has a more negative allocation to the long-term
bond than the myopic investor. However, rather than steadily decreasing in the
horizon, hedging demand begins to increase after a horizon of about 2 years,
and eventually becomes positive.

This counter-intuitive result arises because average risk premia on bonds are
positive. Because risk premia are linear functions of the mean-reverting state
variables X(t), risk premia that are negative in the present imply that, in the
future, risk premia are likely to pass through zero. A long-horizon investor cares
not only about risk premia today, but also about risk premia at all future points
in time. Zero is the least advantageous value for the investor because neither
a short nor a long position is profitable in expectation. All else equal, a long-
term investor would prefer positive risk premia because they are more likely
to stay positive, than negative risk premia are to stay negative. In a setting
with time-varying equity premia, Campbell and Viceira (1999) and Kim and
Omberg (1996) also note that when the risk premium is negative but close to
zero, hedging demand is positive for long-horizon investors.

Returning to Figure 7, it is clear that optimal hedging demand is not simply
a sum of hedging demand when only the real riskfree rate varies and hedg-
ing demand when only risk premia vary. It arises from a nonlinear interac-
tion between the two. Because the investor uses the long-term bond to hedge
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time-variation in the real riskfree rate, she has an additional reason to prefer
positive risk premia in the long run. This induces her to hedge risk premia to
a greater extent than she would if the riskfree rate were constant.

This section has shown that accounting for time-variation in the risk premia
on long-term bonds has two effects on the investor’s optimal portfolio. First, it
induces investors to time the bond market. A lower risk premium on a long-
term bond leads the investor to allocate less wealth to the bond at all horizons.
The second effect arises from the investor’s wish to hedge changes in the risk
premium and the real riskfree rate. This causes the optimal portfolio to increase
dramatically with the horizon. Thus, the failure of the expectations hypothe-
sis “matters” for long-term investors, at least in the case where the investor
has access to a single long-term bond. The following section generalizes these
results to the case where the investor has access to multiple long-term bonds.

B. Optimal Allocation to Multiple Long-Term Bonds

Panel A of Table VI shows the optimal allocation when the investor has access
to a 3-year bond, a 10-year bond, stock, and a nominally riskless asset. As in the
previous section, we determine the optimal allocation for the long-run mean of
the state variables, and for the state variables plus and minus one standard
deviation. We report only the effects of varying X1.

For all three values of the state variable, the myopic portfolio consists of
a short position in at least one of the bonds. These leveraged positions arise
because of the correlation structure of bond returns implied by the model
(and found in the data). Table IV shows the implied correlations in bond re-
turns (Panel A), and correlations of monthly log bond returns from the data
(Panel B).26 As Table IV shows, bonds at all maturities are highly correlated.
Thus, any estimated difference in the risk-return trade-off between the 3- and
10-year bonds leads the investor to leverage the bonds off one another. In the
context of a time-varying real interest rate, Brennan and Xia (2002) and Camp-
bell and Viceira (2001) also find that the investor takes highly levered positions
in long-term bonds.

When risk premia are high and positive, the investor takes a leveraged po-
sition in the 10-year bond, financed by a short position in the 3-year bond and
the riskfree asset. In this case, hedging demand makes the myopic allocation
more extreme. Because the investor has a long position in the 10-year bond,
decreases in the risk premium on the 10-year bond reflect deteriorations in the
investment opportunity set. The investor hedges these changes in risk premia
by allocating more, relative to myopic demand, to the 10-year bond. Because
the investor has a short position in the 3-year bond, increases in the risk pre-
mium reflect deteriorations in the investment opportunity set. This leads the
investor to take a greater short position in the 3-year bond. It is also the case

26 Because yield data are unavailable for all maturities, the correlations in Panel B rely on
approximating the yield on the 9-year, 11-month bond with the yield on the 10-year bond. Thus,
the correlations in Panel B are essentially correlations between changes in yields.
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Table VI
Optimal Allocation When There Are Multiple Long-Term Bonds

Panel A shows the optimal portfolios for different horizons when the investor is able to invest in the
3-year bond, 10-year bond, the stock, and the nominal riskfree asset. Panel B shows the optimal
portfolios for different horizons when the investor is able to invest in the 1-year bond, 5-year bond,
10-year bond, the stock, and the nominal riskfree asset. Shown are the allocations to the bonds and
the stock; the allocation to the riskfree asset is one minus the sum of these quantities. Allocations
are shown for an investor with investment horizons of 0, 1, 10, and 20 years, and coefficients of
relative risk aversion (γ ) of 4 and 10. The state variables X2 and X3 are set equal to zero, while X1
is set equal to minus one standard deviation (1.9) in the top panel, 0 in the middle panel, and plus
one standard deviation in the bottom panel. “Premium” refers to the risk premium on the 5-year
bond implied by each value of X = (X1, X2, X3).

γ = 4 γ = 10

0 Years 1 Year 10 Years 20 Years 0 Years 1 Year 10 Years 20 Years

Panel A: Allocation to 2 Bonds and the Stock

Premium = 12% 3-yr −0.73 −1.64 −2.62 −2.67 −0.28 −0.70 −1.36 −1.55
10-yr 2.79 3.39 3.85 3.93 1.11 1.41 1.80 1.99
Stock 0.49 0.45 0.45 0.45 0.19 0.17 0.17 0.17

Premium = 2% 3-yr 2.86 4.13 4.66 4.61 1.16 1.86 2.11 1.93
10-yr −0.84 −1.11 −1.23 −1.15 −0.35 −0.48 −0.44 −0.26
Stock 0.82 0.81 0.80 0.80 0.33 0.32 0.31 0.32

Premium = −8% 3-yr 6.46 9.90 11.94 11.89 2.59 4.41 5.58 5.40
10-yr −4.47 −5.62 −6.32 −6.23 −1.80 −2.37 −2.68 −2.51
Stock 1.16 1.16 1.16 1.16 0.46 0.46 0.46 0.46

Panel B: Allocation to 3 Bonds and the Stock

Premium = 12% 1-yr 28.61 19.53 19.30 19.42 11.44 7.22 7.46 7.54
5-yr −15.91 −13.28 −14.33 −14.48 −6.35 −5.21 −6.21 −6.52
10-yr 8.09 7.83 8.55 8.70 3.22 3.16 3.84 4.15
Stock 0.40 0.40 0.40 0.40 0.16 0.16 0.16 0.16

Premium = 2% 1-yr 21.58 19.22 19.50 19.63 8.62 7.51 7.62 7.69
5-yr −8.25 −6.66 −6.35 −6.51 −3.29 −2.51 −2.43 −2.72
10-yr 2.29 1.75 1.61 1.77 0.90 0.65 0.73 1.02
Stock 0.77 0.77 0.77 0.77 0.30 0.30 0.30 0.30

Premium = −8% 1-yr 14.54 18.91 19.71 19.85 5.81 7.80 7.77 7.84
5-yr −0.60 −0.03 1.63 1.46 −0.22 0.19 1.36 1.08
10-yr −3.51 −4.34 −5.33 −5.16 −1.42 −1.86 −2.39 −2.11
Stock 1.13 1.13 1.13 1.13 0.45 0.45 0.45 0.45

that the 3-year bond acts as a hedge on the 10-year bond and vice versa; this
may also contribute to the positions moving in opposite directions.

When risk premia are positive but closer to zero, the optimal allocation
changes. Now the risk-return trade-offs are such that the myopic portfolio con-
sists of a positive fraction of wealth in the 3-year bond and a negative fraction
in the 10-year bond. Hedging demands also reverse in sign. For short horizons,
hedging demand is positive for the 3-year bond and negative for the 10-year
bond. At long horizons, however, hedging demand is positive for both the 10
and the 3-year bonds.
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Finally, when risk premia are negative, the investor holds a positive posi-
tion in the 3-year bond and a negative position in the 10-year bond. Hedging
demands cause these positions to become more extreme. Investment opportu-
nities deteriorate when the risk premium on the 10-year bond rises or the risk
premium on the 3-year bond falls. The investor chooses the optimal portfolio
so that wealth is higher when this occurs. That is, the investor increases her
weight in the 3-year bond and decreases her weight in the 10-year bond.

Panel B of Table VI examines the case where the investor has access to three
long-term bonds, stock, and the riskfree asset. Because the nominal market is
complete in this last case, it does not matter for the investor’s utility or wealth
which three bonds are chosen. Thus, without loss of generality, we assume that
the investor has access to 1-, 5-, and 10-year bonds. Moreover, the investment
opportunity set can be fully hedged by trading in bonds, thus hedging demand
for stock is identically zero. The caveat stated for the case where the investor
has access to two bonds applies to an even greater extent in this case. Because
the three bonds are so highly correlated, the investor can achieve (perceived)
high Sharpe ratios while taking on less risk than when he had access to fewer
bonds. This leads to a highly leveraged myopic portfolio.

When risk premia are positive, the myopic allocation consists of a positive
position in the 10-year and 1-year bonds and a negative position in the 5-year
bond. Hedging demand is non-monotonic for all three bonds. For the 1-year
bond, hedging demand is negative, but is less negative for investors with longer
horizons than for shorter horizons. For the 5-year bond, hedging demand is pos-
itive, but is also smaller in magnitude for longer horizons than shorter horizons.
For γ = 10, hedging demand switches sign for the 5-year bond and becomes pos-
itive at long horizons. For the 10-year bond hedging demand is negative at very
short horizons (1 year) but positive at long horizons.

When risk premia are negative, the myopic allocation is still positive for the
1-year bond, but the allocation to the 10-year bond is below that for the 5-year
bond.27 Hedging demand is positive for the 1- and 5-year bonds, and negative
for the 10-year bond. Hedging demand is monotonic except at very long horizons
(20 years) where it diminishes slightly. In this case, hedging demand results in
a more extreme allocation to all three bonds.

C. Utility Costs of Suboptimal Strategies

In order to assess the economic importance of the failure of the expectations
hypothesis, we calculate utility costs under strategies that fail to take it into
account. Three suboptimal strategies are considered. For the first (and least)
suboptimal strategy, the investor times the bond-market optimally (the mean-
variance efficient portfolio varies over time) and optimally hedges the real in-
terest rate. However, the investor does not hedge time-varying risk premia. As

27 For the parameter values we consider, they are both negative. When risk premia become more
negative, however, the allocation to the 10-year bond is negative and the allocation to the 5-year
bond is positive.
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discussed in Section A, the optimal portfolio rule when the investor follows this
strategy takes the form

ŵ(t) = α0 + α1 X (t), (48)

where

α0 = 1
γ

(σσ�)−1σλ∗
1 + γ − 1

γ
(σσ�)−1(σσ�




) + 1
γ

(σσ�)−1(σσ�
X

)
B∗

2(τ )�

α1 = 1
γ

(σσ�)−1σλ∗
2,

where B∗
2(τ ) is given by (B8) in the case of complete nominal markets and (C2)

in the case of incomplete nominal markets, with λ∗
2 set equal to zero. Note that

B3(τ ) = 0 if λ∗
2 = 0. For this strategy, myopic demand is a function of the state

variables, but hedging demand is non-stochastic.
For the second strategy we consider, the investor fails to hedge both time-

varying risk premia and the time-varying riskfree rate, but follows the optimal
myopic strategy. This strategy also takes the form (48), where

α0 = 1
γ

(σσ�)−1σλ∗
1 + γ − 1

γ
(σσ�)−1(σσ�




)

α1 = 1
γ

(σσ�)−1σλ∗
2.

We refer to this as the conditional myopic strategy.
Finally, we consider a static mean-variance investor. This investor’s allocation

equals the unconditional mean-variance portfolio, namely (48), with

α0 = 1
γ

(σσ�)−1σλ∗
1 + γ − 1

γ
(σσ�)−1(σσ�




)
α1 = 03×3.

This investor neither hedges time-variation in the investment opportunity
set nor times the bond market. We refer to this as the unconditional myopic
strategy.

To calculate utility costs, we solve for indirect utility (38) when the investor
follows a strategy of the form (48). Because indirect utility is an expectation of
future direct utility, it is a martingale and thus has zero drift. From the Markov
property, it is a function of W(t), 
(t), X(t), and the horizon. Thus, indirect utility
corresponding to the strategy ŵ(t) must satisfy the partial differential equation:

Jt + LJ = 0, (49)
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where LJ is the infinitesimal generator of J given by

LJ = JWW (ŵ�(µ − rι) + r) + JX µX + J

π

+ JWX WσX σ�ŵ(t) + JW
W
ŵ�σσ�

 + JX 

σX σ�




+ 1
2

JWWW 2ŵ�σσ�ŵ + 1
2

J


2σ
σ�

 + 1

2
tr

(
JX X σX σ�

X

)
. (50)

For the cases where the allocation is linear in X(t), the solution of (49) takes
the same form as indirect utility when an investor follows an optimal strategy.
Namely, when γ > 1:28

Ĵ (W (t), 
(t), X (t), t, T ) = 1
1 − γ

(
W (t)

(t)

)1−γ

Ĥ(X (t), t, T ),

where Ĥ(X (t), t, T ) is exponential quadratic. When γ = 1, indirect utility is
quadratic. More details can be found in Appendix D.

We measure the utility costs of following a suboptimal strategy by calculating
the percent of wealth the suboptimal investor would be willing to give away in
return for being “allowed” to follow the optimal strategy. In other words, we
solve for the quantity ℘ such that

1
1 − γ

(
W (0)

(0)

)1−γ

Ĥ(X (0), 0, T )

= 1
1 − γ

(
W (0)(1 − ℘(X (0), 0, T ))


(0)

)1−γ

H(X (0), 0, T ). (51)

The left-hand side is the time-zero indirect utility of the investor who follows
a suboptimal strategy and starts with wealth W(0). The right-hand side is the
time-zero indirect utility of the investor who follows an optimal strategy and
starts with wealth W(0)(1 − ℘). Note that while ℘ measures utility cost, the
units are fractions of wealth, not utils.

It follows from (51) that

℘(X (0), 0, T ) = 1 −
[

H(X (0), 0, T )
Ĥ(X (0), 0, T )

] 1
γ−1

.

When γ > 1, H < Ĥ, implying that the investor would be willing to give up a
positive percent of wealth in order to follow the optimal strategy. Because H
and Ĥ are positive, ℘ lies between zero and one. The closer ℘ is to one, the more
wealth the investor would be willing to give up to follow the optimal strategy,
and thus the greater the cost to following the suboptimal strategy.

Figure 9 plots the percent of wealth (100 × ℘) an investor following a subop-
timal strategy would be willing to give up in order to follow an optimal strategy
when a 5-year bond, the stock, and the nominal riskfree asset are available.

28 The form of the value function for γ = 1 is discussed in Appendix D.
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Figure 9. Utility costs as a function of horizon, when the investor has access to a 5-year
bond, a stock, and a nominal riskfree asset. Utility costs are measured as the percent of wealth
an investor following a suboptimal strategy would be willing to give up in order to follow an optimal
strategy. The top panel shows the cost of following the unconditional myopic strategy. The middle
panel shows the cost of following the conditional myopic strategy. The bottom panel shows the cost
of following the conditional myopic strategy and hedging only the riskfree rate. The variable γ

refers to relative risk aversion.
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Utility costs are plotted for risk aversion equal to 1, 4, 10, and 25. The top panel
plots the cost of following the unconditional myopic strategy, the middle panel
the cost of following the conditional myopic strategy, and the lower panel the
cost of hedging only the riskfree rate. For γ > 1, the costs fall as the strategies
come closer to the optimum; the unconditional myopic strategy is more costly
than the conditional myopic strategy, which is in turn more costly than only
hedging the riskfree rate. For the log utility investor (γ = 1), it is optimal to do
no hedging at all. Therefore, the costs of the conditional myopic strategy and
the strategy of hedging only the riskfree rate are zero.

The cost of following the unconditional myopic strategy is very high. For
γ = 1, an investor with a horizon of 20 years is willing to give up nearly 100%
of wealth in order to follow the optimal strategy. The cost of this strategy falls
as risk aversion rises. However, even the investor with risk aversion of 25 is
willing to give up 40% of wealth in order to follow the optimal strategy. Failure
to time and to hedge the bond market clearly results in a large utility loss for
the investor.

Failure to hedge time-variation in investment opportunities is also costly. A
highly risk averse investor (γ = 25) with a horizon of 20 years is willing to give
up 20% of wealth in order to switch from the conditional myopic strategy to the
optimal strategy. The cost of failing to hedge is lower, the lower is risk aversion.
An investor with risk aversion equal to four is willing to give up 6% of wealth.
Switching from a strategy that hedges only the riskfree rate to the fully optimal
strategy is worth 6% of wealth for the investor with risk aversion of 25, and
4% of wealth for the investor with risk aversion of four. The cost of failing to
hedge risk premia falls off more slowly with risk aversion than the overall cost
of failing to hedge. This is because less risk averse investors allocate a greater
percentage of their wealth to the long-term bond so they are more exposed to
time-variation in risk premia.

Figure 10 shows the utility cost of suboptimal strategies when the investor
has access to a 3-year and a 10-year bond, the stock, and the nominal riskfree
asset. The utility costs of suboptimal strategies when two long-term bonds are
available are higher than those when one long-term bond is available for all
strategies and all investors. In particular, the costs of failing to hedge are much
higher than before, and are no longer increasing in risk aversion. The investor
with γ = 4 and a horizon of 20 years would give up 26% of wealth to switch
from the conditional myopic strategy to the optimal strategy. The investor with
γ = 25 would be willing to give up 24% of wealth to switch. Failure to hedge
risk premia is nearly as costly as failure to hedge completely. The investor with
γ = 4 is willing to give up 24% of wealth to switch from the strategy of hedging
only the riskfree rate to the fully optimal strategy. In the case of two long-term
bonds, there is greater scope for taking advantage of time-variation in risk
premia. Because time-variation in risk premia is a more important component
of hedging demand, and because less risk averse investors are particularly
affected by time-variation in risk premia, the failure to hedge is costly even for
investors with low risk aversion. It is also possible to compute utility costs of
suboptimal strategies when the investor has access to three long-term bonds.
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Figure 10. Utility costs as a function of horizon, when the investor has access to two
long-term bonds, a stock, and a nominal riskfree asset. Utility costs are measured as the
percent of wealth an investor following a suboptimal strategy would be willing to give up in order
to follow an optimal strategy. The top panel shows the cost of following the unconditional myopic
strategy. The middle panel shows the cost of following the conditional myopic strategy. The bottom
panel shows the cost of following the conditional myopic strategy and hedging only the riskfree
rate. The variable γ refers to relative risk aversion.
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Results available from the authors show that in this case, the costs are larger
still. Moreover, the cost of failing to hedge risk premia is even closer to the cost
of failing to hedge at all.

This section has shown that following the unconditional myopic strategy,
while optimal in the case where investment opportunities are constant, carries
high utility costs when they are time-varying. The utility costs are large even
when the investor allocates wealth between the nominally riskfree asset, one
long-term bond, and the stock; the effect does not rely on the investor taking
large offsetting positions in bonds of different maturities. Moreover, following
a conditional myopic strategy is also costly, as is following a conditional my-
opic strategy but hedging only the riskfree rate (rather than both the riskfree
rate and the risk premia). Thus, the failure of the expectations hypothesis is
important for long-term investors: Treating risk premia as if they are constant
results in economically significant costs.

V. Conclusion

We have shown that the failure of the expectations hypothesis has potentially
important consequences for the portfolios of long-term investors. For an investor
who allocates wealth between a long and a short-term bond, time-variation in
risk premia induces hedging demand that is large and positive. We find that
long horizon investors should hold a greater fraction of their portfolio in the
long-term bond—an effect that persists out to a horizon of 20 years. When the
investor has access to multiple long-term bonds, hedging demands generally
make the optimal allocation more extreme. We find that failing to hedge time-
variation in return predictability carries large utility costs for the long-term
investor.

We establish these results by extending the affine term structure literature
to account for expected inflation. Jointly estimating a process for inflation and
bond prices produces a series for expected inflation that can account for a large
portion of the variance of realized inflation, even though it is constructed from
bond yields alone.

Our framework is rich enough to include time-variation in the real interest
rate, in risk premia on stock returns, and in expected inflation, but at the same
time admits explicit solutions in near-to-closed form. Multiple extensions of our
model are possible. For example, it is possible to extend our empirical results
to allow for state variables other than those extracted from bond yields. We
could examine the relative importance of these state variables, as in Ait-Sahalia
and Brandt (2001). We could also modify our model to allow for parameter
uncertainty, as in Barberis (2000), or learning, as in Xia (2001). Clearly, there
are important aspects of the portfolio choice problem that we do not address.
Transaction costs, parameter uncertainty, and non-expected utility preferences
have all been fruitfully explored in the context of stock-return predictability.
Bonds present a similar, yet richer framework to explore these same issues.
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Appendix A: Bond Prices

Following Cox, Ingersoll, and Ross (1985), we assume that bond prices are
smooth functions of the state variables X(t) and of time. No-arbitrage implies
that P satisfies

PX K (θ − X (t)) + 1
2

tr
(
PX X σX σ�

X

) + Pt − r(t)P = PX σX �̄(t) (A1)

with boundary condition P(X(t), t, t) = 1. Equation (A1) follows from equating
the instantaneous expected excess return to the volatility multiplied by the
price of risk.

Conjecture that

P (X (t), t, T ) = exp{A2(τ )X (t) + A1(τ )}, (A2)

where τ = T − t. Substituting back into (A1) and matching coefficients on X(t)
and the constants produce the following system of ordinary differential equa-
tions for the row vector A2(τ ) and the scalar A1(τ ):

A′
2(τ ) = −A2(τ )(K + σX λ̄2) − δ (A3)

A′
1(τ ) = A2(τ )(K θ − σX λ̄1) + 1

2
A2(τ )σX σ�

X A2(τ )� − δ0. (A4)

The boundary conditions are A2(0) = 01×m and A1(0) = 0.

Appendix B: Optimal Portfolio Allocation

Proof of Theorem 1: It follows from the Markov property of (
, Z ν∗ , X ) that
wealth under the optimal policy may be written as

W (t) = G(
(t), Z ν∗ (t), X (t), t, T )

for some function G. Define a function F such that

G(
(t), Z ν∗ (t), X (t), t, T ) = 
(t)Z ν∗ (t)
1
γ F (X (t), t, T ).

Because wealth is an asset, it satisfies a no-arbitrage differential equation
analogous to that of bonds. Applying Ito’s lemma to G and matching the instan-
taneous expected excess return on wealth to its volatility times the price of risk
produces:29

LG + Gt − rG = (
GZ ν∗ Z ν∗

(
(�∗ + ν∗)� − σ


) + G

σ
 + GX σX
)
(�∗ + ν∗), (B1)

29 From Ito’s lemma, we can write

dZν∗ (t) = µZν∗ dt + σZν∗ dz

with

µZν∗ =
(
r(t) − π (t) + (�∗ + ν∗)�(�∗ + ν∗) + σ
σ�


 − σ
(�∗ + ν∗)
)

Z ν∗ (t)

σZν∗ =
(
(�∗ + ν∗)� − σ


)
Z ν∗ (t).
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where

LG = GZ ν∗ µZ ν∗ + G

π + GX K (θ − X ) + GZ ν∗ X σX σ�
Z ν∗ + 
G
X σX σ�




+ 
G
Z ν∗ σ
σ�
Z ν∗ + 1

2
(
GZ ν∗ Z ν∗ σZ ν∗ σ

�
Z ν∗ + 
2G

σ
σ�


 + tr
(
GXXσX σ�

X

))
,

with boundary condition

G(
(T ), Z ν∗ (T ), X (T ), T , T ) = 
(T )Z ν∗ (T )
1
γ .

Note that the no-arbitrage relationship for G only holds for the minimax pricing
kernel φν∗ , while the bond pricing equation (A1) holds for any pricing kernel.
Substituting (34) into (B1) results in the partial differential equation for F given
in the text.

In order for optimal wealth to satisfy the dynamic budget constraint (25), the
diffusion terms from the two processes must match. Therefore, the price of risk
and the optimal portfolio must jointly satisfy:

1
γ

(�∗ + ν∗)� + γ − 1
γ

σ
 + FX

F
σX = w�σ, (B2)

where w is the N × 1 vector of portfolio weights. The lefthand side follows from
Ito’s lemma applied to G. Inflation risk σ
 is not spanned by the row vectors of
σ ; thus, for general ν, this equation does not have a solution.

We need to find ν∗ so that the unhedgeable part of σ
 drops out.30 This is
equivalent to setting the demand on the nontraded assets to zero. Rewrite σ


as

σ
 = (
σ
σ�)

(σσ�)−1σ + (
σ
 − (

σ
σ�)
(σσ�)−1σ

)
. (B3)

The first term is the projection of σ
 onto the traded assets. The second term
is orthogonal to the traded assets. In order for (B2) to have a solution, ν∗ must
satisfy

1
γ

(ν∗)� = 1 − γ

γ

(
σ
 − (

σ
σ�)
(σσ�)−1σ

)
.

Therefore,

ν∗ = (1 − γ )
(
σ�


 − σ�(σσ�)−1σσ�



)�
. (B4)

Because ν∗ is orthogonal to the basis assets, (�∗ + ν∗), where �∗ is given by
(15), is indeed a valid price of risk.

Substituting (B4) back into (B2) produces

1
γ

(µ − ιr)�(σσ�)−1σ + γ − 1
γ

(
σ
σ�)

(σσ�)−1σ + 1
F

FX
(
σX σ�)

(σσ�)−1σ = w�σ.

30 The variable ν∗ does not have to cancel out the unhedgeable parts of �∗ because the columns
of �∗ are spanned by the rows of σ . In fact, this is the reason for defining �∗ as a projection of �̄

onto the available assets.
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The equation for the optimal allocation (37) follows from multiplying both sides
of the equation by σ�(σσ�)−1 and taking the transpose. Q.E.D.

Proof of Corollary 1: The argument follows that of Cox and Huang (1989),
generalized to the case of unexpected inflation. The investor’s problem at time
0 can equivalently be written as

max
W (t)>0

E0[J (W (t), 
(t), X (t), t, T )],

subject to the static budget constraint. The first-order condition is given by

JW (t) = lφν̂(t),

where φν̂(t) is the minimax pricing kernel. We do not know a priori that φν̂ = φν∗ .
As is well known, the solution to (38) takes the form

J (W (t), 
(t), X (t), t, T ) = 1
1 − γ

(
W (t)

(t)

)1−γ

H(X (t), t, T ). (B5)

Our goal is to prove the relationship between the functions H and F.
Define Ẑ analogously to (32) as

Ẑ (t) = (lφν̂(t)
(t))−1.

Then the investor’s first-order condition can be re-written as

JW (t) = Ẑ (t)−1
(t)−1.

Substituting in from (B5) implies that

W (t) = Ẑ (t)
1
γ 
(t)H(X (t), t, T )

1
γ . (B6)

Because W(t) is an asset, it must satisfy partial differential equation (B1). Com-
paring (B6) with (34), it follows that H

1
γ and ν̂ must jointly satisfy the partial

differential equations (36) and (B2). Therefore, ν̂ must equal ν∗, and H
1
γ must

equal F. Q.E.D.

Proof of Corollary 3: To solve for F, we conjecture the form of it and then we
verify. Our conjecture is that

F (X (t), t, T ) = exp
{

1
γ

(
1
2

X �
t B3(τ )X t + B2(τ )X t + B1(τ )

)}
,

where τ = T − t, B3(τ ) is a matrix, B2(τ ) is a row vector, and B1(τ ) is a scalar.
Substituting the hypothesized solution back into the PDE (36) and matching
coefficients on X(t)�[ · ]X(t), X(t), and the constant terms lead to a system of
ordinary differential equations:
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B′
3(τ ) = (

B3(τ ) + B3(τ )�
) [(

1
γ

− 1
)

σX λ∗
2 − K

]

+
(

1
4γ

(
B3(τ ) + B3(τ )�

)
σX σ�

X

(
B3(τ ) + B3(τ )�

) +
(

1
γ

− 1
)

λ∗
2
�
λ∗

2
(B7)

B′
2(τ ) = B2(τ )

[(
1
γ

− 1
)

σX λ∗
2 − K + 1

2γ
σX σ�

X

(
B3(τ ) + B3(τ )�

)]

+ 1
2

[
θ�K � +

(
1
γ

− 1
)

λ∗
1
�
σ�

X +
(

1 − 1
γ

)
σ
σ�

X

] (
B3(τ ) + B3(τ )�

)

+ (1 − γ )(δ − ζ ) +
(

1
γ

− 1
) (

λ∗
1 − σ�




)�
λ∗

2 − (γ − 1)σ
λ∗
2 (B8)

B′
1(τ ) = B2(τ )

[
K θ +

(
1
γ

− 1
)

σX λ∗
1 +

(
1 − 1

γ

)
σX σ�




]

+ 1
2γ

B2(τ )σX σX
�B2(τ )� + 1

4
tr

((
B3(τ ) + B3(τ )�

)
σX σX

�)

+ 1
2

(
1
γ

− 1
) [(

λ∗
1 + ν∗)� − σ


][(
λ∗

1 + ν∗)� − σ


]�

+ (1 − γ )σ


(
λ∗

1 + ν∗) + (1 − γ )(δ0 − ζ0). (B9)

Q.E.D.

Appendix C: Optimal Portfolio Allocation under
Incomplete Nominal Markets

This Appendix modifies the results above to the case where the investor has
fewer bonds than state variables. In this case, nominal markets are incomplete.
To determine the minimax price of risk in this case, we project σ
 and σX on
the available assets

σ
 = (
σ
σ�)

(σσ�)−1σ + (
σ
 − (

σ
σ�)
(σσ�)−1σ

)
σX = (

σX σ�)
(σσ�)−1σ + (

σX − (
σX σ�)

(σσ�)−1σ
)
.

It is useful to define the residual of the projections as(
σ⊥




) = σ
 − (
σ
σ�)

(σσ�)−1σ(
σ⊥

X

) = σX − (
σX σ�)

(σσ�)−1σ.

Equation (B2) and the same reasoning as in Appendix B implies that ν∗ takes
the form

ν∗ = (1 − γ )
(
σ
 − (

σ
σ�)
(σσ�)−1σ

)� − γ
(
σX − (

σX σ�)
(σσ�)−1σ

)� F �
X

F
.
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Conjecturing that the functional form for F is given by (43) in Corollary 3, we
derive the following ODE’s from (36):

B′
3(τ ) = { } + 1

4

(
1 − 1

γ

) (
B3(τ ) + B3(τ )�

)(
σ⊥

X

)(
σ⊥

X

)�(
B3(τ ) + B3(τ )�

)

−
(

1
γ

− 1
) (

1
2

(
B3(τ ) + B3(τ )�

)
σX

(
σ⊥

X

)�(
B3(τ ) + B3(τ )�

))
(C1)
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2(τ ) = { } + 1
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) (
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(
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X

)(
σ⊥

X
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B3(τ ) + B3(τ )�

)

− B2(τ )σX
(
σ⊥

X

)�(
B3(τ ) + B3(τ )�

))

+
(

1
γ

− 1
) (

1
2

(
B2(τ )

(
σ⊥

X

) − (1 − γ )
(
σ⊥




))(
σ⊥

X

)�(
B3(τ ) + B3(τ )�

))

+ γ − 1
2

σ


(
σ⊥

X

)(
B3(τ ) + B3(τ )�

) (C2)

B′
1(τ ) = { } + 1
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)
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(
σ⊥

X
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+ 1
2

1 − γ

γ
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−
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σ⊥
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)�

+ (γ − 1)σ


(
σ⊥

X

)�
B2(τ )�.

(C3)

The terms { } represent the quantity on the right-hand side of equations (B7),
(B8), and (B9), respectively.

Note that when markets are complete, the new terms on the right-hand side
of (C1), (C2), and (C3) reduce to zero. In particular, (σ⊥


 )σ�
X = 0 because σ�

X is
now within the span of σ .

Appendix D: Indirect Utility for Suboptimal Strategies

It follows from the partial differential equation (49) that indirect utility takes
the form

J (W (t), 
(t), X (t), T ) = 1
1 − γ

(
W (t)

(t)

)1−γ

H(X (t), t, T ),
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where H(X(t), t, T) satisfies the partial differential equation

Ht + (1 − γ )H
(

w(t)�(µ(t) − ιr(t)) + r(t) − π (t)

− γ
1
2

w(t)�σσ�w(t) − (1 − γ ) w(t)�σσ�

 − γ − 2

2
σ
σ�




)

+ HX
(
K (θ − X (t)) + (1 − γ )σX σ�w(t) − (1 − γ )σX σ�




) + 1
2

tr
(
HX X σX σ�

X

) = 0.

(D1)

Suppose that the strategy of interest can be expressed as

w(t) = α0 + α1 X (t), (D2)

for some constant scalar α0 and vector α1. When the trading strategy can be ex-
pressed as (D2), it follows from (D1) that H(X(t), t, T) is exponential quadratic:

H(X (t), t, T ) = exp
{

1
2

X (t)��3 X (t) + �2 X (t) + �1

}
,

where �3, �2, and �1 satisfy the following system of ordinary differential
equations:

�′
3 = (

�3 + ��
3

)[
(1 − γ )σX σ�α1 − K

] + �3 + ��
3

2
σX σ�

X
�3 + ��

3

2
+ 2(1 − γ )α�

1 σλ∗
2 − γ (1 − γ )α�

1 σσ�α1 (D3)

�′
2 = �2

[
(1 − γ )σX σ�α1 + σX σX

� �3 + ��
3

2
− K

]
+ [

θ�K � + (1 − γ )α�
0 σσ�

X − (1 − γ )σ
σ�
X

]�3 + ��
3

2

+ (1 − γ )
[
α�

0 σλ∗
2 + δ − ζ + (

λ∗
1

)�
σ�α1

] − (1 − γ )2σ
σ�α1 − γ (1 − γ )α�
0 σσ�α1

(D4)

�′
1 = �2

[
K θ + (1 − γ )σX σ�α0 − (1 − γ )σX σ�




] + 1
2

�2σX σX
���

2

+ (1 − γ )
(
α�

0 σλ∗
1 + δ0 − ζ0

) − (1 − γ )2σ
σ�α0 − γ (1 − γ )
2

α�
0 σσ�α0

− (1 − γ )(γ − 2)
2

σ
σ�

 + 1

2
tr

(
�3 + ��

3

2
σX σ�

X

)
. (D5)

For γ = 1, the indirect utility function takes the form

J (W (t), 
(t), X (t), T ) = log
(

W (t)

(t)

)
+ Q(X (t), t, T ),
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where Q(X(t), t, T) satisfies the partial differential equation

Qt + (w(t)�(µ(t) − ιr(t)) + r(t) − π (t)) − 1
2

w(t)�σσ�w(t) + 1
2

σ
σ�



+ Q X (K (θ − X (t))) + 1
2

tr
(
QXXσX σ�

X

) = 0. (D6)

It follows from (D6) that Q(X(t), t, T) is quadratic:

Q(X (t), t, T ) = 1
2

X (t)��3 X (t) + �2 X (t) + �1,

and that �3, �2, and �1 satisfy:

�′
3 = −(

�3 + ��
3

)
K + 2α�

1 σλ∗
2 − α�

1 σσ�α1

�′
2 = −�2K + θ�K � �3 + ��

3

2
+ α�

0 σλ∗
2 + δ − ζ + (

λ∗
1

)�
σ�α1 − α�

0 σσ�α1

�′
1 = �2K θ +

(
α�

0 σλ∗
1 + δ0 − ζ0 − 1

2
α�

0 σσ�α0

)
+ 1

2
σ
σ


�

+ 1
2

tr
(

�3 + ��
3

2
σX σ�

X

)
.

Appendix E: Estimation

This section extends the results of Duffee (2002) to include inflation and stock
return data in the estimation of bond yields. For convenience, it is assumed
that the state variables are Gaussian (as in the body of the paper). Duffee’s
quasi-maximum likelihood results for square-root models can be extended in
a similar fashion. In what follows, let eM denote the matrix exponential of M,
let (xi)i denote the diagonal matrix with diagonal elements xi, and let (xi, j)i, j
denote the matrix with the (i, j) element equal to xi, j. It is assumed that K is
diagonalizable.

Let Y(t) denote the vector of perfectly observed yields at time t. Namely

Y (t) =




y(X (t), t, τ1)
...

y(X (t), t, τm)




for maturities (τ1, . . . , τm), where y is defined in (6). Let Ỹ denote the vector
of yields which are observed imperfectly. From (5), it follows that the perfectly
observed yields can be inverted to find the state variables

X (t) = L−1
1 (Y (t) − L0),

where L1 is an m × m matrix with row i given by −A2(τi)/τi, and L0 is a vector
with elements −A1(τi)/τi. Let f (· | ·) denote (with slight abuse of notation), the
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conditional likelihood function. Then the likelihood function for yields can be
related to the likelihood function for the state variables by

f (Y (t + 1), S(t + 1), 
(t + 1) | Y (t), S(t), 
(t))

= 1
det[L1]

f (X (t + 1), S(t + 1), 
(t + 1) | X (t), S(t), 
(t)). (E1)

Let ε(t) denote the observation errors on the yields that are not perfectly ob-
served. We assume that ε(t) is independent of innovations to the state variables
or to inflation. Under this assumption, the full likelihood is given by

lt = log f (Y (t), S(t), 
(t) | Y (t − 1), S(t − 1), 
(t − 1))

+ log f (Ỹ (t) | Y (t), S(t), 
(t))

= log f (Y (t), S(t), 
(t) | Y (t − 1), S(t − 1), 
(t − 1)) + log f (ε(t) | Y (t)).

It therefore suffices to specify f (X(t + 1), S(t + 1), 
(t + 1) | X(t), S(t), 
(t)).
We show that f (X(t + 1), log S(t + 1), log 
(t + 1) | X(t), log S(t), log 
(t)) is

multivariate normal, and calculate the mean and variance. Consider the aug-
mented state vector

X̂ (t) =

 X (t)

log S(t)
log 
(t)


 .

The continuous time dynamics of this vector are defined by

dX̂ (t) = (κ1 X̂ + κ2) dt + σX̂ dz, (E2)

where

κ1 =




−K 03×1 03×1

η + δ 0 0
ζ 0 0


 , κ2 =




K θ

η0 + δ0 − 1
2σSσ�

S

ζ0 − 1
2σ
σ�





 , σX̂ =




σX

σS

σ



 .

Applying Ito’s lemma to the process e−κ1t X̂ t , it follows that

X̂ (T ) = eκ1(T−t) X̂ t +
∫ T

t
eκ1(T−s)κ2 ds +

∫ T

t
eκ1(T−s)σX̂ dw(s), (E3)

which shows that X̂ T is normally distributed conditional on X̂ t .
Assume that κ1 is diagonalizable. Let U be such that

κ1 = UDU−1, D diagonal.

From the definition of the matrix exponential and (E3), it follows that

Et(X̂ (T )) = eκ1(T−t) X̂ (t) +
(∫ T

t
UeD(T−s)U−1 ds

)
κ2.
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Note that eD(T−t) = (
edi (T−t)

)
i. Performing the integration element-by-element

produces

Et(X̂ (T )) = eκ1(T−t) X̂ t + U ( f (di, T − t))iU−1κ2,

where

f (di, T − t) =




− 1
di

(
1 − edi (T−t)) di �= 0

T − t di = 0.

This completes the derivation of the conditional mean.
From (E3), the conditional variance satisfies

Vart(X̂ (T )) = Et

[(∫ T

t
eκ1(T−u)σX̂ dwu

) (∫ T

t
eκ1(T−u)σX̂ dwu

)�]

= Et

[∫ T

t
eκ1(T−u)σX̂ σ�

X̂ eκ1(T−u)�du
]

=
∫ T

t
eκ1(T−u)σX̂ σ�

X̂

(
eκ1(T−u))� du.

Let � = U−1σX̂ σ�
X̂

(U−1)�. Integrating the above equation element-by-element
produces

Vart(X̂ (T )) =
∫ T

t
UeD(T−u)�eD(T−u)U� du

= U [g (di, d j , T − t)�i, j ]i, j U�,

where

g (di, dj , T − t) =
{− 1

di+d j

(
1 − e(di+d j )(T−t)

)
di �= 0 or d j �= 0

T − t di = d j = 0.

This completes the derivation of the conditional variance–covariance matrix.
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