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A Discussion of related models

A.1 Bordalo et al. (2023)

Bordalo et al. (2023) feature the following data generating process of dividend growth:

gt+1 = µgt + νt+1

νt+1 = ηt + τt+1

The dividend growth rates’ AR(1) residuals consist of ηt, the intangible news, and τt+1, the

tangible news. Notice ηt is revealed one period before τt+1. The stock market excess return

is1:

rt+1 = −1− αρ

1− αµ
ϵt +

1 + αµθ

1− αµ
τt+1 +

α + αθ

1− αµ
ηt+1

Here α is the AR constant in Campell-Shiller decomposition (around 0.97); θ is the parameter

between 0 and 1 capturing the degree of diagnostic belief; ρ is the persistence of subjective

growth; ϵt is an exponentially weighted moving average of a linear combination of past η and

τ , multiplied by θ. The surprise in cash flow growth relative to survey expectation is:

τt+1 − ϵt

In this setting, η is a key component that determines the contemporaneous correlation

stock market return and cash flow surprise. If η is not disperse relative to τ , then rt+1’s

movements are mainly driven by − 1−αρ
1−αµ

ϵt +
1+αµθ
1−αµ

τt+1, which appears to correlate highly

with survey based cash flow surprise τt+1− ϵt and/or AR based cash flow surprise gt+1−µgt.

If η is very disperse relative to τ— the view of Bordalo et al. (2023) —then i) rt+1 is mainly

driven by − 1−αρ
1−αµ

ϵt +
α+αθ
1−αµ

ηt+1, and ii) gt+2 − µgt+1, the next period cash flow growth’s AR

1This comes from equation (8) of Bordalo et al. (2023). There appears to be a minor typo in equation
(8) itself which we correct here.
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surprise, is mainly driven by ηt+1. At the first glance, this η component appears to function

similarly to the v component in our model, in that they both drive contemporaneous return

and valuation without appearing in contemporaneous cash flow growth. However, the key

difference is that η is still part of the contemporaneous cash flow shock that drives the

cash flow growth next period. Therefore, in the event that η is very disperse relative to τ ,

Bordalo et al. (2023) would predict a high correlation between this period’s return and next

period’s AR-based cash glow growth surprise. In contrast, in our model, v captures random

shocks that are not attached to realized cash flow. Consequently, the correlation between

this period’s return and next period’s cash flow growth surprise is close to 0.

To summarize, it seems that Bordalo et al. (2023)’s model features a high correlation

between either i) contemporaneous market return and AR/survey based cash flow surprise

or ii) market return this period and AR-based cash flow surprise next period, or both.

In the data, these correlations are positive, lending qualitative support to Bordalo et al.

(2023). However, the economic scale and statistical strength of these correlations are not

high. It is around 0.3 contemporaneously and 0.27 between this year’s market return and

next year’s AR1 residual in cash flow growth.2 Even with a correlation of 0.3, only 9% of the

variation in market return is explained. Since Bordalo et al. (2023) do not calibrate their

model’s parameters, it is hard to determine these correlations in their model. But given the

economic scale of these correlations in data, at least quantitatively, it seems that Bordalo

et al. (2023) could really benefit from the addition of a component like our random shock v.

A.2 Nagel and Xu (2022)

The same distinction applies to Nagel and Xu (2022) as well. In the illustrative model of

Nagel and Xu (2022), the realized market return in period t+ 1 is:

2The correlation is slightly negative between this year’s market return and the AR1 residual in cash flow
growth 2 years later.
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rt+1 = (1 +
ρν

1− ρ
)(∆dt+1 − µ̃d,t) + θ + rf

Here ρ is as in the Campbell-Shiller decomposition, ν is a constant gain parameter, and

∆dt+1 − µ̃d,t is surprising dividend growth. This comes from equation (2). In the formal

model, the intuition appears very similar (e.g. equation B.3 and D.25). Again, the weakly

positive correlation between contemporaneous cash flow growth surprise and market return

lends directional support to their model, but since the correlation is quantitatively small,

there is likely something else going on in the variation of valuation and returns. Our view is

that much of such variation comes from our random shock v.

At some level, if variation in valuation ratio is tied to cash flow shocks too tightly—

whether this tie comes from diagnostic expectation or experience effect—the variation is

likely insufficiently high relative to data. Notice that in Table 5 of Nagel and Xu (2022),

row σ(p − d) the number in the “Data” column is about 2 times as large as those in the

“Model” columns. It seems that our model can help Nagel and Xu (2022) better match the

stock market volatility.

A.3 Bordalo et al. (2019)

Bordalo et al. (2019) model individual stocks rather than the aggregate market. In their

model, the data generating process for individual firm i’s EPS xi,t is:

xi,t = bxi,t−1 + fi,t + ϵi,t

Here the key term fi,t represents the firm’s “fundamental”, which follows:

fi,t = αfi,t−1 + ηi,t
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Notice fi,t is a persistent component in the firm’s cash flow growth, which should there-

fore drive valuation. The authors show that under diagnostic expectation, the investors’

subjective belief of fi,t is:

f̂ θ
i,t = αf̂i,t−1 +K(1 + θ)(xi,t − bxi,t−1 − αf̂i,t−1)

Here f̂i,t−1 is the rational expectation of fi,t−1, K is rational Kalman gain parameter, and θ

represents the degree of diagnostic belief.

Since f̂ θ
i,t drives valuation, it seems that this framework, if applied to the aggregate

market, would also imply a high correlation between contemporaneous return and surprising

cash flow growth xt − bxt−1 − αf̂t−1. The implication on this particular aspect is then quite

similar to that in Nagel and Xu (2022).

B Analysis of the source of volatility

We address the question of the volatility decomposition in (17). In the main text, we claimed

that nearly all the volatility in returns arises from the volatility in expected dividends, as

represented by b2n−1σ
2
v . Here we explain why this is so. First note that σ2

u is the volatility of

realized dividends. This 0.072 per annum in postwar data. On the other hand, the volatility

of shocks to xt, σv, and the unconditional volatility of xt, σx, are unobserved. To understand

the magnitude of the remaining terms, we turn to the prices of dividend claims, normalized

by current dividends. These are denoted by Φn(xt) and given in (7) and (8).

Recall that the price-dividend ratio on the market is a sum of these component price-

dividend ratios. Furthermore, even if the persistence ϕ is high, decay is geometric, and so

for n sufficiently large, bn ≈ (1−ϕ)−1. If we let σ2
pd be the variance of the log price-dividend
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ratio on the market, roughly speaking,3

σ2
pd ≡ lim

n→∞
Var(log Φn(xt)) =

σ2
x

(1− ϕ)2

Then, for long-maturity equity strips (which, due to the properties of geometric decay, best

represents the return on the market) the decomposition (17) takes the form

lim
n→∞

Var(log(1 +Rnt)) = σ2
x +

σ2
v

(1− ϕ)2
+ σ2

u

≈ (1− ϕ)2σ2
pd + (1− ϕ2)σ2

pd + σ2
u. (B1)

While σu ≈ 0.07, σpd ≈ 0.42. The persistence ϕ will equal the persistence of the price-

dividend ratio. At ϕ = 0.92, the first term in (B1) equals (0.08× 0.42)2, whereas the second

term equals (0.39 × 0.42)2. The second term, representing the effect of innovations to xt is

thus roughly 25 times larger than the term representing xt itself, and roughly 5 times larger

than the term representing dividend volatility.4 Finally note that these terms add up to

(0.18)2, thus (roughly) accounting for the annual volatility in stock returns.

C Disaster risk model

We now show that a realistic equity premium can be incorporated into the model above.

Assume a representative agent who maximizes a time-additive utility function with constant

3Note that the log price-dividend ratio equals

pd = log

∞∑
n=1

Φn(xt) ≈
∞∑

n=1

an + bnxt = a∗ + b∗xt.

Because of geometric decay, b∗ ≈ (1− ϕ)−1.
4This will also be true in a rational model with prices driven by discount rate variation. Most of the

variation in realized returns comes from innovations in the discount rate, which are unpredictable. Very
little comes from the variation in the discount rate itself.
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relative risk aversion:

E
∞∑
t=0

δt
C1−γ

t − 1

1− γ
,

where γ is relative risk aversion and δ remains the time discount factor. The agent holds the

following beliefs about the consumption and dividend growth processes:

∆ct+1 = µ+ ut+1 + wt+1, (C2)

∆dt+1 = µ+ xt + ut+1 + wt+1, (C3)

where xt is as in (2) above, with shocks ut+1 and vt+1 distributed as in (3). We further

assume, following Barro (2006), that

wt
iid∼

 ξ with probability p

0 with probability = 1− p

(C4)

where ξ is a constant and wt is independent of ut and vt.
5

In equilibrium, the aggregate market and the riskfree rate are priced using the represen-

tative investor’s Euler equation. That is, if we let Pnt be the price of an n period ahead

equity strip, then Pnt satisfies the recursion

Pnt = E∗
t

[
δ

(
Ct+1

Ct

)−γ

Pn−1,t+1

]
,

where E∗ denote expectations taken with respect to the subjective distribution, and where

5Given the process for consumption and dividends, the agent should be able to back out xt. We assume
that the agent does not do this; alternatively we could make the standard assumption that dividends contain
an additional shock relative to consumption so that one cannot be perfectly inferred from the other.
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P0t = Dt. Defining Φn(xt) = Pnt/Dt, as in the previous section, we have

Φn(xt) = E∗
t

[
δ

(
Ct+1

Ct

)−γ

Φn−1(xt+1)
Dt+1

Dt

]
(C5)

with boundary condition F0(xt) = 1. The solution is again

Φn(xt) = ean+bnxt , (C6)

where an follows the modified recursion

an = an−1 + log δ + (1− γ)µ+
1

2
b2n−1σ

2
v +

1

2
(1− γ)2σ2

u + log(pe(1−γ)ξ + (1− p)) (C7)

with a0 = 0. The recursion for bn is the same.

The riskfree asset is also priced using the investor’s Euler equation. Let Rf be the

one-period riskfree rate. Then:

E∗

[
δ

(
Ct+1

Ct

)−γ

(1 +Rf )

]
= 1,

implying

log(1 +Rf ) = − log δ + γµ− 1

2
γ2σ2

u − log(pe−γξ + (1− p)). (C8)

We assume that the investor has correct beliefs about the consumption distribution (C2).

Moreover, the investor correctly assumes that dividends are equally subject to disasters as

are consumption. However, the investor believes that dividends are predictable, when in

reality they are not. We parsimoniously capture these assumptions by setting the physical

distribution of ∆dt+1 equal to ∆ct+1.
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Defining Rn,t+1, as in the previous section, as the return on the n-period dividend claim:

log(1 +Rn,t+1) = an−1 − an + µ− xt + bn−1vt+1 + ut+1 + wt+1.

We therefore have, under the physical measure,

logEt [1 +Rn,t+1] = an−1 − an + µ− xt +
1

2
b2n−1σ

2
v +

1

2
σ2
u + log(peξ + (1− p)),

and, for the expected excess return under the physical measure:

logEt

[
(1 +Rn,t+1)/(1 +Rf )

]
= −xt + γσ2

u+

log(peξ + (1− p)) + log(pe−γξ + (1− p))− log(pe(1−γ)ξ + (1− p)).

For small p (or, as the time interval shrinks):

logEt

[
(1 +Rn,t+1)/(1 +Rf )

]
≈ −xt + γσ2

u − p(1− e−γξ)(1− eξ), (C9)

where we have used, e.g., log(peξ + (1− p)) = log(1 + p(eξ − 1)) ≈ p(eξ − 1). The expected

excess return has its usual unconditional component, γσ2
u−p(1−e−γξ)(1−eξ), the first term

of which represents the normal risk, and the second term of which represents the risk of

disasters. This term captures the negative covariance between returns and marginal utility

during disaster periods. These components represent a risk premium, namely a return to

bearing the risk of equity, which might go down during a disaster. The first term, xt, does

not represent a return to bearing risk, but rather is mispricing.6

Our assumption that the agent correctly assesses disaster risk is purely for parsimony.

We would find nearly the same equity premium if the agent were pessimistic. If the agent

6As described in the previous section, the variance of xt is relatively small. Thus the wedge between the
unconditional expectation of (C9) and the true unconditional equity premium is small as well.
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were optimistic (namely, disasters should have occurred with probability greater than 2%),

then we were lucky and that the equity premium is not as much of a puzzle as believed.

Moreover, time-additive CRRA utility implies flat average term structures of equity and

interest rates, rather than a counterfactual upward-sloping term structure of equities and a

downward-sloping term structure of interest rates.

Finally, in this disaster risk model, we assume that agents do not believe they can forecast

consumption growth. Empirical work suggests that growth in consumption of non-durables

and services is less forecastable than growth in other types of cash flows such as dividends and

GDP (Cochrane, 1994; Lettau and Ludvigson, 2005; Beeler and Campbell, 2012). However,

we acknowledge that it would not be unreasonable for agents who believed they could forecast

dividend growth to also believe they could forecast consumption growth. This raises a

possible problem. If, in the disaster risk model, agents were to believe that consumption

growth was forecastable with the same mean as dividend growth, then for γ > 1, expected

growth would lead to lower valuations, whereas for γ = 1 it would have no effect. While γ < 1

would produce the required effect, such knife-edge dependence on an unknown parameter

(combined with the fact that γ < 1 makes the equity premium very hard to explain) is

undesirable.7

Agents’ first-order conditions states that consumption growth forecasts enter directly into

the interest rate. As described in Appendix E, we obtain data on interest rate forecasts from

Blue Chip Financial Forecasts. We test for a relation between earnings growth forecasts and

interest rate forecasts; if we were to find a positive relation then it would be natural to assume

that xt entered into consumption growth. We would want to specify the relation between

consumption and dividend growth (and perhaps preferences), to match the finding shown in

7The tradeoff between expected growth and the interest rate is modulated by the elasticity of intertem-
poral substitution (EIS). This is the inverse of γ in the model of Appendix C, a more general model would
allow for a separation and thus could explain the equity premium while allowing the cash flow effect to
dominate. One is still left, however, with the undesirable dependence on whether the EIS is above or below
one.
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Figure 5, namely that price-earnings ratios are very highly correlated with expectations.

Asset pricing models predict a link between contemporaneous consumption growth ex-

pectations and the interest rates that prevail over the interval that the consumption growth

occurs (see, e.g. Campbell (2003)). To make sure that the results are not sensitive to timing,

we correlate earnings forecasts each period both with the lagged interest rate forecast (what

the model says we should do), and the contemporaneous interest rate forecast. Both corre-

lations are slightly negative, which is the opposite direction from what theory would predict

(Figure E1 in the Supplemental Appendix), though the result is insignificant. It appears

that whatever is the primary driver of earnings forecasts is significantly separated from the

aggregate economy that the assumptions of Appendix C are accurate; or alternatively what-

ever drives interest rates is separated from the aggregate economy (this could be understood

as the model of Section 2.1 in which the interest rate is exogenous). One might view either

disconnect as its own puzzle and an interesting direction for future work.

We also simulate the disaster model and match the data. We follow Barro (2006) and

choose risk aversion γ to be 3, the average growth rate of consumption µ to be 2%, the

annual disaster probability p to be 2%, and the size of the disaster to be 33%. We set the

time-discount factor δ to match the average return on the riskfree asset, which we set at

the average annual (real) return on three-month Treasury bills. These parameter values are

listed in Table C1. When computing statistics across simulated samples, we consider only

those with no realized disasters.

Table C2 shows that including rare disasters in the model, which account for a high

equity premium and low riskfree rate, have little impact on the second moments. While

there is a slight reduction in the standard deviation of the divided-price ratio (due to the

duration effect; the equity premium causes a down-weighting of long-horizon claims which

are the most sensitive to changes in expectations), the data value remains well-within the

10% confidence bounds. Similarly, Tables C3 and C4 show that the disaster model generates

return and dividend growth predictability comparable to those in the risk-neutral model.
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Table C1: Parameter values for the aggregate market simulation

Parameter Disaster
Shock to realized log dividend growth σu 0.07
Shock to expected log dividend growth σv 0.01
Subjective persistence in expected log dividend growth ϕ 0.95
Time-discount factor δ 0.95
Expected dividend growth µ 0.02
Relative risk aversion γ 3.00
Disaster probability p 0.02
Disaster size 1− eξ 0.33

The table shows parameters used in the simulation of the disaster model for the aggregate
market. The agent has constant relative risk aversion with parameter γ. The physical
distribution of aggregate consumption growth is the same as that of dividends growth and
is not subject to bias. The model is simulated at an annual frequency.

Table C2: Empirical and simulated moments for the aggregate market

Data Model: Disaster
1948-2019 5 50 95

σ(Rm) 0.17 0.14 0.16 0.19
AC of Rm -0.09 -0.21 -0.02 0.17
σ(d− p) 0.42 0.20 0.31 0.51
AC of d− p 0.92 0.76 0.90 0.97
σ(∆d) 0.07 0.06 0.07 0.08
AC of ∆d 0.24 -0.22 -0.01 0.17
E(Rm) 0.09 0.04 0.06 0.09
E(rf ) 0.01 0.03 0.03 0.03

We simulate 4000 samples each consisting of 72 years of data from the model with risk-
averse investors and rare disasters. The table reports moments from the 1948–2019 sample
(second column), and medians, 5th percentile values, and 95th percentile values (remaining
columns). Rm denotes the net return on the market, d− p the log dividend-price ratio, ∆d
log dividend growth, and Rf the riskfree rate. AC refers to the first-order autocorrelation
and σ(·) the standard deviation. The model is simulated at an annual frequency.
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Table C3: Predictability of stock market excess return

Horizon in Years
1 2 4 6 8 10

Panel A: Data 1948-2019
β 0.10 0.19 0.27 0.38 0.47 0.56
t-stat [2.30] [2.60] [2.75] [2.73] [2.60] [2.67]

R2 0.06 0.12 0.15 0.20 0.23 0.27
Panel B: Disaster Model

β 0.12 0.24 0.45 0.64 0.78 0.90
5th percentile 0.05 0.10 0.19 0.26 0.33 0.36
95th percentile 0.28 0.51 0.88 1.13 1.34 1.49

R2 0.07 0.13 0.24 0.33 0.40 0.45

This table reports predictive coefficients and R2-statistics from regressions of the form

H∑
i=1

rmt+i − rft+i = β0 + β(dt − pt) + ϵt+H ,

where rmt+i = log(1+Rm
t+i) is the continuously-compounded aggregate market return between

t + i − 1 and t + i, rft+i = log(1 + Rf
t+i) is the continuously-compounded Treasury Bill

return between t + i − 1 and t + i, and dt − pt = logDt/Pt is the aggregate dividend-price
ratio. Panel A reports results from the 1948–2019 sample. Panel B reports medians and
5th and 95th percentile values from simulated data for predictive regressions, and medians
for R2-statistics as described in Table 2. For the data panel, t-statistics are adjusted for
heteroskedasticity and autocorrelation.
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Table C4: Predictability of aggregate dividend growth

Horizon in Years
1 2 4 6 8 10

Panel A: Data 1948-2019
β -0.02 -0.02 -0.05 -0.09 -0.12 -0.13
t-stat [-0.68] [-0.38] [-0.82] [-1.17] [-1.11] [-1.03]

R2 0.01 0.00 0.02 0.05 0.07 0.07
Panel B: Disaster Model

β 0.00 0.00 0.00 -0.00 -0.01 -0.01
5th percentile -0.05 -0.09 -0.16 -0.23 -0.30 -0.38
95th percentile 0.05 0.10 0.18 0.26 0.33 0.40

R2 0.01 0.01 0.03 0.04 0.05 0.06

This table reports predictive coefficients and R2-statistics from regressions of the form

H∑
i=1

∆dt+i = β0 + β(dt − pt) + ϵt+H ,

where ∆dt+i is the change in log aggregate dividends between t+ i−1 and t+ i and dt−pt =
logDt/Pt is the aggregate dividend-price ratio. Panel A reports results from the 1948–2019
sample. Panel B reports medians and 5th and 95th percentile values from simulated data for
predictive regressions, and medians for R2-statistics as described in Table 2. For the data
panel, t-statistics are adjusted for heteroskedasticity and autocorrelation.
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D Could investors believe dividends were predictable?

A possible objection to our model is that, over time, investors would learn that dividends

are in fact unpredictable. If investors did learn the correct distribution, prices would remain

volatile, but return predictability would dissipate. In this section, we confront the hypoth-

esized beliefs with data. We consider an investor whose prior beliefs include the possibility

of dividend growth predictability. The agent updates these beliefs given the historical time

series, seen through the lens of the likelihood implied by equation (1)-(3) in the main paper.

Our evidence speaks to the difficulty of learning the true process for dividend growth.

We assume, as in our model, the agent believes that dividend growth contains a pre-

dictable component. Should this predictable component exist, it follows from the reasoning

in our model that it should be captured by the price-dividend ratio.8 The agent therefore

considers the predictive system:

∆dt+1 = βx̂t + ut+1 (D1)

x̂t+1 = ϕ̂x̂t + v̂t+1, (D2)

where x̂t = pt − dt, the log price-dividend ratio, and where ut

v̂t

 iid∼ N

0,

 σ2
u 0

0 σ̂2
v

 . (D3)

We refer to the predictor variable as x̂t in contrast to xt. Up to linearization error, the

assumptions in Section 2 imply that x̂ and x differ only by a scale factor, approximately

equal to 1/(1− ϕ). For convenience, we de-mean both variables.9

8To the extent that the price-dividend ratio fails to capture this component, we are biased against finding
dividend growth predictability, and therefore proving the beliefs to be less justifiable than otherwise.

9De-meaning the variables simplifies the analysis, and only affects the conclusions through a degree-of-
freedom adjustment that becomes negligible as the same size grows.

15



It suffices to consider a prior on the parameters of the dividend process and the marginal

likelihood for the dividend process, taking observations on x̂t as given. That is, the time-

series regression (D1) for dividend growth is, in this case, equivalent to standard OLS in

which the regressor is strictly exogenous.

We assume a prior inverse-gamma distribution for σ2
u and, conditional on σ2

u, a normal

distribution for the predictive coefficient β:

β |σu ∼ N(β0, g
−1σ2

uΛ
−1
0 ) (D4)

σ2
u ∼ IG(a0, b0). (D5)

We set parameters a0 and b0 so that the prior on σ2
u is diffuse.10 Equation D5 implies a

conjugate prior on β (?). As explained below, Λ0 is a scale factor that will allow us to

interpet g as indexing the strength of the prior.

Given the priors (D4) and (D5), and the likelihood defined by (D1–D3), the agent forms

a posterior. Let x̂t = {x̂0, . . . , x̂t}, namely the set of observations on x̂s, up to and including

time t. Let yt = {∆d1, . . .∆dt} be the dividend growth observations up to and including

time t. The agent calculates

p(β, σu | x̂t,yt) ∝ L(yt | x̂t, β, σu)p(β, σu), (D6)

where p(β, σu) is the prior specified in (D4) and (D5) and L(yt | x̂t, β, σu) is the likelihood

of observing the dividend growth data given the predictor variable and the parameters.

We fix time T as the last data point observed. We stack the observations on x̂t and ∆dt

10Because our focus will be on the posterior mean of β, these play no further role in our analysis.
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into vectors:

Y =


∆d1
...

∆dT

 , X =


x̂0

...

x̂T−1

 .

Note that the OLS estimate of β equals

β̂ = (X⊤X)−1X⊤Y,

and that (D1) implies

Y = βX + U,

where U ∼ N(0, σ2
uI), and I is the T × T identity matrix. It follows that the posterior (D6)

is given by

p(β, σu |, x̂T ,yT ) ∝ σ−n
u exp

{
− 1

2σu

(Y −Xβ)⊤(Y −Xβ)

}
σ−1
u exp

{
−gΛ0(β − β0)

2

2σ2
u

}

where ∝ means up to a proportionality factor that does not depend on β and σu. Completing

the square implies

p(β, σu |, x̂T ,yT ) ∝ σ−1
u exp

{
−(X⊤X + gΛ0)(β − β̄)2

2σ2
u

}
× p(σu | x̂T ,yT ), (D7)

where

β̄ = (gΛ0 +X⊤X)−1(gΛ0β0 +X⊤Y )

= (gΛ0 +X⊤X)−1(gΛ0β0 + (X⊤X)β̂),

and where p(σu | x̂T ,yT ) is a term that does not depend on β and is therefore the marginal

posterior of σu (see (?, Chapter 8) for more detail). It is clear from (D7) that the posterior
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of β conditional on σu is normal with posterior mean β̄. Note also that β̄ is a weighted

average between the prior mean β0 and the sample mean β̂, with the weights determined by

the precisions of the prior and of the sample respectively.

If we, ex post, set Λ0 = X⊤X, then g corresponds to the weight on β0 as a percent of

the weight on β̂, so that g = 0.1 implies that the prior receives 1/10 of the weight of the

sample, and g = 0.01 means it receives 1/100 of the weight. We set the prior mean of β to

a value consistent with the agent’s beliefs in Section 2. For comparability with Tables 4–7,

which show regressions on the dividend-price ratio, Figure D1 shows the negative of the

posterior mean of β. We consider an informative prior, with g = 0.10, and a diffuse prior,

with g = 0.01.

Figure D1 shows that the agent does indeed revise her prior beliefs, at least at first. She

revises it to imply more, not less predictability of dividend growth. Indeed, from the 1930s to

the 1970s, it appears that dividend growth was more predictable than later in the sample.11

Only when nearly the full sample is used, namely around 2000, does the posterior mean

converge to the sample estimate, which happens to be close to, though implying slightly

more predictability than, the prior. Note that the convergence implies that the prior does

not matter when the full sample is used.

Thus an agent, viewing the evidence on annual dividend growth rates in isolation, would

be justified in maintaining a belief that dividend growth rates are predictable. In fact, as

Table D1 shows, dividend growth is predictable at short horizons. This agent, however, is

not fully rational, incorrectly extrapolating the predictability from the one-year horizon to

long horizons – note that Table D1 shows that R2 statistics flatten rather than grow, as

would be expected from an ARMA model. Moreover, the agent fails to notice that excess

returns are also predictable.12

11Jagannathan and Liu (2019) also show that dividend growth predictability features striking instability
over the sample, declining after 1970.

12While we do not model reinforcement learning (which is a feature of Skinner (1948)), these results
suggest that the agent would have received positive reinforcement, throughout the sample, in the sense that
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Figure D1: Predicting dividend growth using the dividend-price ratio
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This figure shows the posterior mean of the predictive coefficient in a regression of one-year
ahead dividend growth on the dividend-price ratio. The posterior mean is calculated using
Bayesian methods, assuming an informative prior, where g indexes the degree of informa-
tiveness. For each year in the sample, the agent uses all available data to form a posterior
for the predictive coefficient. Data begin in 1927. A prior parameter of g = 0.1 implies that
the prior mean of the coefficient receives a weight of 10% relative to the sample estimate,
whereas a prior parameter of g = 0.01 implies that the prior mean receives a weight of 1%.
Shaded areas denote plus and minus 2 posterior standard deviations.
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Table D1: Predictability of aggregate dividend growth, full sample

Horizon in Years
1 2 4 6 8 10

Panel A: Data 1927-2019
β -0.08 -0.11 -0.12 -0.15 -0.17 -0.15
t-stat [-2.18] [-1.60] [-1.79] [-1.98] [-1.69] [-1.35]

R2 0.10 0.08 0.06 0.08 0.10 0.08
Panel B: Risk Neutral Model

β 0.00 0.00 0.00 0.00 0.00 0.00
5th percentile -0.04 -0.09 -0.17 -0.24 -0.31 -0.38
95th percentile 0.04 0.09 0.17 0.25 0.32 0.39

R2 0.01 0.01 0.02 0.03 0.04 0.05
Panel C: Disaster Model

β 0.00 0.00 0.00 0.00 0.00 -0.00
5th percentile -0.07 -0.13 -0.25 -0.36 -0.46 -0.56
95th percentile 0.07 0.14 0.27 0.38 0.49 0.59

R2 0.01 0.01 0.02 0.03 0.04 0.05

This table reports predictive coefficients and R2-statistics from regressions of the form

H∑
i=1

∆dt+i = β0 + β(dt − pt) + ϵt+H ,

where ∆dt+i is the change in log aggregate dividends between t + i − 1 and t + i and
dt − pt = logDt/Pt is the aggregate dividend-price ratio. Panel A reports results from the
1927–2019 sample. Panel B and Panel C report medians and 5th and 95th percentile values
from simulated data for predictive regressions, and medians for R2-statistics as described in
Table 2. For the data panel, t-statistics are adjusted for heteroskedasticity and autocorrela-
tion.
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E Predictability of Treasury bond excess returns and

survey data

Campbell and Shiller (1991) show that periods of high term spreads are followed by high

excess returns on Treasury bonds. The question is: are investors anticipating these high

expected returns? Or, do they avoid Treasury bonds during times of high spreads because

they believe (incorrectly) that interest rates are likely to rise? When such an increase fails

to occur, bonds exhibit positive returns.

In this section, we first write down a model that formalizes this intuition. Investors

believe that changes in interest rates are more forecastable than they are in reality. This

model matches the data in that, in the model, term spreads predict returns with a positive

sign.

Next, we test the model in survey data. Data from both Blue Chip Financial Forecasts,

and from the Survey of Professional Forecasters confirm that high term spreads forecast rising

interest rates. Moreover, as the model predicts, high term spreads correlate significantly with

analyst forecasts of rising interest rates. The difficulty is that, for a given increase in the

term spread, the analyst forecasts rise less than the realization. The model predicts that

they should rise by more.

This one-factor model has an additional testable implication: high interest rates today

forecast declining interest rates in the future. This again, is true across datasets, and for

both analyst forecasts, and realizations. However, once again, a given change in the interest

rates has a much greater impact on the realization than on the forecast. The model predicts

the opposite: that when interest rates are high, investors believe that interest rates will mean

revert but in fact they follow a process that is closer to a random walk. The survey data

he or she would have predicted cash flow growth with relative accuracy. While returns would have been
different than expect, the low R2 in return predictability regressions suggests that reinforcement learning
through this channel would not have been significant.
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therefore reject the model.

E.1 Model and simulation

Assume that investors believe that the continuously-compounded short-term interest rate rt

follows a first-order autoregressive process, so that

∆rt+1 = (ϕ− 1)(rt − r̄) + vt+1 (E1)

where ∆rt+1 = rt+1 − rt, |ϕ| < 1, r̄ is the unconditional mean of rt, and vt+1
iid∼ N(0, σ2

v).

Note that ϕ is the first-order autocorrelation of rt.
13

As with dividend growth, investors believe that changes in interest rates are more fore-

castable than they are in reality. That is, while (E1) represent beliefs, the true process is

governed by

∆rt+1 = (ζ − 1)(rt − r̄) + vt+1, (E2)

with

|ζ − 1| < |ϕ− 1|. (E3)

We focus on the case where ζ, ϕ ∈ [0, 1] so that (E3) implies ζ > ϕ. In forecasting next

period’s interest rate, (E3) implies that investors put more weight on previous values of the

interest rate than they should. Alternatively stated, interest rates are closer to a random

13The analysis in this section takes the short-term interest rate rt as a given. Perhaps the simplest way to
micro-found variation in this rate is to consider a risk-neutral investor with discount rate δ and an exogenous
inflation process ∆πt+1 such that

∆πt+1 = π̄ + zt + ut+1

and
zt+1 = ϕzt + vt+1,

with ut+1 and vt+1 distributed as in (3). The interest rate rt then solves

Et

[
δe−∆πt+1+rt

]
= 1.

Under these assumptions, the analysis proceeds exactly as described.
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walk (they mean revert more slowly) in the data than investors believe (ζ > ϕ).

We consider risk-neutral pricing for bonds. The dynamics thus far define a discrete-time

? model.14 Let Bn(rt) denote the price of the n-period bond as a function of the riskfree

rate between periods t and t+ 1. Then bond prices satisfy the recursion

Bn(rt) = E∗
t

[
e−rtBn−1(rt+1)

]
, (E4)

with B0(rt) = 1 and B1(rt) = e−rt . It follows that

logBn(rt) = −an − bnrt (E5)

with

an = an−1 + bn−1(1− ϕ)r̄ − 1

2
b2n−1σ

2
v

bn = 1 + bn−1ϕ

(E6)

and a0 = b0 = 0. Note that a1 = 0 and b1 = 1, so that B1(rt) = e−rt . The solution for bn is

again

bn =
1− ϕn

1− ϕ
. (E7)

Defining the continuously compounded yield on the n-period bond as

ynt = − 1

n
logBn(rt)

It follows from (E7) that the yield spread equals

ynt − y1t = constant +

(
1

n

1− ϕn

1− ϕ
− 1

)
rt (E8)

14A substantial literature on latent factor models strongly rejects a single-factor model in favor of multi-
factor alternatives (??). ? show how subjective expectations can be incorporated into a model with richer
dynamics. For the purpose of illustrating our mechanism, however, this simple model suffices.
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(recall that y1t = rt). The (continuously compounded) holding period return on the n-period

bond is given by

rn,t+1 = logBn−1(rt+1)− logBn(rt)

(note that r1,t+1 = rt). Substituting in for (E5), (E7), and for the physical evolution of rt,

(E2), we find the following equation for continuously-compounded excess returns:

rxn,t+1 = rn,t+1 − r1,t+1 = constant + (ζ − ϕ)
bn−1

1− (1/n)bn
(ynt − y1t) + bn−1vt+1.

When ζ = ϕ, we recover the equilibrium with correct beliefs in which excess returns are

unpredictable. However, when ζ > ϕ, the yield spread will predict excess returns with a

positive sign, as in the data.

The economic intuition is similar to that of predictability of stock returns by the price-

dividend ratio. Long-term bond yields fluctuate due to changing forecasts of future short-

term interest rates. When long-term yields are high relative to short-term yields, it is because

(in this model), investors expect short-term yields to rise. However, short-term yields are

not as predictable as investors believe, and thus on average, short-term yields will rise less

than anticipated (or even fall). This leads to a positive excess return on the long-term bond.

The ability of the yield spread to forecast excess bond returns was first noted in the

data by Campbell and Shiller (1991). According to the expectations hypothesis of interest

rates, yields on long-term bonds should reflect forecasts of future short-term interest rates.15

Indeed, the recursion (E4) implies

ynt = − 1

n
logE∗

t

[
e−

∑n−1
τ=0 rt+τ

]
.

If investors correctly anticipate yields, then bond returns will be unpredictable. However,

Campbell and Shiller (1991), ? and a large subsequent literature show that excess bond

15There are slight differences depending on whether this hypothesis is articulated in logs or levels (?).
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returns are strongly forecastable. We replicate this finding in Table E1, which reports co-

efficients from regressing bond returns on yield spreads using the Fama-Bliss data set for

zero-coupon bonds.
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Table E1: Moments of Bond Yields

Maturity in Years
1 2 3 4 5
Panel A: Data 1952-2019

βn 1.58 2.09 2.33 2.44
t-stat [2.90] [3.46] [3.73] [3.52]

σ(yn) 3.08 3.04 2.97 2.93 2.87
AC(yn) 0.88 0.90 0.91 0.91 0.92
σ(yn − y1) 0.33 0.53 0.69 0.81
AC(yn − y1) 0.41 0.46 0.52 0.55

Panel B: Model
βn 1.48 1.31 1.19 1.10

σ(yn) 2.83 2.05 1.56 1.23 1.01
AC(yn) 0.86 0.86 0.86 0.86 0.86
σ(yn − y1) 0.78 1.27 1.60 1.82
AC(yn − y1) 0.86 0.86 0.86 0.86

Panel A of the table reports the volatility and the first-order autocorrelation of zero-coupon
bond yields and yields spread, as well as the regression coefficients βn as in rxn,t+1 = αn +
βn(ynt − y1t) + ϵt+1, where rxn,t+1 is the return of n-year bond in excess of y1 over period
t + 1. The t-statistics adjust for heteroskedasticity. Panel B report the percentiles of those
moments computed over 1000 simulations, each with 66 years of length. Data are from 1952
to 2019.
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As an illustrative calculation, we calibrate σv and ϕ to jointly match the volatility and

first-order autocorrelations of yields. This implies σv = 1.5% per annum and an annual

autocorrelation ζ of (roughly) 0.90. Given these parameters, ϕ = 0.45 gives us roughly the

amount of predictability in the data.

Table E1 shows results from historical data and from simulating 1000 samples of length

70 years. We run the regression

rxn,t+1 = αn + βn(ynt − y1t) + ϵt+1

for zero-coupon bonds for maturities ranging from 2 to 5 years. Bond excess returns are

strongly predictable in both data and model.

In addition to the moments in Table E1, the model makes predictions that can be tested

with survey data. In the subsection below we describe the survey data and then perform the

tests.

E.2 Survey data

Our primary survey data soruce is interest rate forecasts from Blue Chip Financial Forecasts

(BCFF). This data source contains survey forecasts for a variety of interest rates in the US,

in particular the Treasury rates. Behind each Treasury rate consensus are forecasts provided

by tens of major banks and financial institutions, e.g. J.P. Morgan and S&P Global. This

data source goes back to Q4 of 1982.

An alternate data source of interest rate forecasts to Blue Chip Financial Forecasts

(BCFF) is Survey of Professional Forecasters (SPF). This is a quarterly survey contains

a large number of economic variables, including the 3-month Treasury rates. The contribu-

tors to these surveys are economists of a variety of backgrounds. The interest rate forecast

data go back to Q3 of 1981, which is similar to BCFF. While SPF is not a specialized in-

terest rate data source and contains only the 3-month Treasury rate forecasts, it is useful as
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a robustness check on top of the BCFF data. Here, the correlations between interest rate

forecasts and earning growths forecasts computed with BCFF data, as shown in Figure E1

are very similar to those computed with the SPF data in Figure E2.

E.3 Results

Equation E1, E2, and E8 predict that the term spread be very positively associated with

forecasted change of interest rate and less positively associated with its realization. Column

1-2 and 4-5 of Table E2 show that this does not hold in the survey data. Contrary to the

model’s prediction, we see that the term spreads are more positively associated with realized

interest rate changes in the future. Similar results are seen also in the SPF data, shown in

Table E3.

A counterfactual aspect of the model is that the level of the interest rate and the term

spread are perfectly negatively correlated. It therefore also predicts that the level of the

interest rate should be very negatively associated with forecasted interest rate change and

less negatively associated with its realization. Column 3 and 6 of Table E2 and E3 show

that this is also not the case either. The model is therefore soundly rejected by the survey

data.

While one could, for example, consider more complicated models for the term structure

(Campbell et al. (2020) consider a model in which the interest rate follows an ARMA(1,1)

rather than an AR(1) process), it is not clear how model complexity would reconcile the

model with the data. One would want such a model to generate predictability of excess

bond returns by the term spread. Times of high term spreads should forecast higher than

average excess bond returns, in the model, to be consistent with the data. Assuming that

the model is in the same spirit as ours (namely, risk premia are constant or zero), then excess

returns could only be higher because investors are surprised by lower interest rates. However,

this is exactly what is counterfactual in the data: while a term spread does predict rising

28



Figure E1: Forecasted earnings growth versus forecasted interest rates (BCFF data)

Panel A: Contemporaneous forecasts of interest rates
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Panel B: Lagged forecasts of interest rates
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This figure plots log forecasted 1-year earnings growth against forecasted 3-month Treasury
bill rate 4 quarters away. Data are quarterly from 1982–2018.
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Figure E2: Forecasted earnings growth versus forecasted interest rates (SPF data)

Panel A: Contemporaneous forecasts of interest rates
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Panel B: Lagged forecasts of interest rates
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This figure plots log forecasted 1-year earnings growth against forecasted 3-month Treasury
bill rate 4 quarters away. Data are quarterly from 1981–2019.
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interest rates, and is correlated with higher forecasts, the forecasts respond less (investors

are surprised by higher rates, not lower).

It is important to note what these results do not demonstrate. They do not reject a role

for expectational errors in bond return volatility. It is possible that bond returns can be

predicted by expectational errors (Cieslak, 2018; Wang, 2020). However, they do suggest that

that documented predictability by the yield spread is not driven by investor’s mis-specified

beliefs. The fact that neither the yield spread nor the short rate forecasts errors in forecasts

is evidence against the model. Rather, investors do not shift portfolios into long-term bonds

when yield spreads are high, not because they predict (incorrectly) that rates will rise. They

understand the higher returns offered by the long-term bonds, but do not take advantage of

them because they correspond to greater risk.
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Table E2: Term Spreads, Short Rates, and Forecasted Changes in Short Rates—BCFF

(1) (2) (3) (4) (5) (6)

Êt[r3,t+4]− r3,t r3,t+4 − r3,t

y60,t − r3,t 0.315*** 0.425*
[4.36] [1.68]

y120,t − r3,t 0.269*** 0.357**
[5.10] [2.12]

r3,t -0.105*** -0.139**
[-3.81] [-2.47]

constant -0.076 -0.153 0.726*** -0.743* -0.836** 0.327
[-0.60] [-1.12] [5.68] [-1.97] [-2.18] [1.37]

N 145 145 145 145 145 145

Column 1 of this table reports results of the follow quarterly time-series regression:
Êt[r3,t+4] − r3,t = α + β(y60,t − r3,t) + ϵt. Here Êt[r3,t+4] − r3,t is the forecasted change
of 3-month Treasury bill rates. r60,t − r3,t is the 5-year Treasury bond rate subtracting 3-
month Treasury bill rate in quarter t. Column 2 instead uses the 10-year/3-month term
spread as the independent variable. Column 3 instead uses the 3-month Treasury bill rate as
the dependent variable. Column 4-6 are analogous regressions with the dependent variables
changed to realized short rate changes. Data are quarterly from 1982Q4-2018Q4. T-stats
calculated using Newey-West standard errors with 6 lags are reported in the square brackets.
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Table E3: Term Spreads, Short Rates, and Forecasted Changes in Short Rates—SPF

(1) (2) (3) (4) (5) (6)

Êt[r3,t+4]− r3,t r3,t+4 − r3,t

y60,t − r3,t 0.329*** 0.477**
[3.94] [2.38]

y120,t − r3,t 0.228*** 0.463**
[3.17] [2.53]

r3,t -0.051** -0.212***
[-2.50] [-3.29]

constant -0.181 -0.161 0.482*** -0.958** -1.184** 0.552*
[-1.26] [-1.00] [5.10] [-2.44] [-2.53] [1.91]

N 150 150 150 150 150 150

Column 1 of this table reports results of the follow quarterly time-series regression:
Êt[r3,t+4] − r3,t = α + β(y60,t − r3,t) + ϵt. Here Êt[r3,t+4] − r3,t is the forecasted change
of 3-month Treasury bill rates. y60,t − r3,t is the 5-year Treasury bond rate subtracting 3-
month Treasury bill rate in quarter t. Column 2 instead uses the 10-year/3-month term
spread as the independent variable. Column 3 instead uses the 3-month Treasury bill rate as
the dependent variable. Column 4-6 are analogous regressions with the dependent variables
changed to realized short rate changes. Data are quarterly from 1981Q4-2018Q4. T-stats
calculated using Newey-West standard errors with 6 lags are reported in the square brackets.
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F Additional results for equities

In our model of the cross section of equities, the value spread is the absolute value of zt.

The return to a HML strategy is −sign(zt)vz,t+1. The aggregate valuation ratio is xt. With

the addition of stochastic volatility, because the value spread and HML returns are both

driven by the same set of shocks, their volatilities should be highly correlated. However, the

aggregate valuation ratio is driven by xt and thereby vx,t+1. Our model therefore predicts

weak correlations between the volatility of aggregate valuation and those of the value spread

and HML returns.

Panel A of Figure F1 plots quarterly volatility of aggregate E/P ratio versus that of the

value spread. They have a low correlation of 0.17. Panel B plots quarterly volatility of

aggregate E/P ratio versus that of the HML return. They have a low correlation of 0.22.

Panel C plots quarterly volatilites of the HML returns and the value spread we constructed.

They have a reasonably high correlation of 0.53. These results are broadly consistent with

the model’s predictions.

In our model, the value spread is the absolute value of zt, and aggregate valuation ratio is

xt. Because xt and zt are based on difference iid Gaussian shocks, the model predicts a cor-

relation of 0 between these two measures. Also, return to a HML strategy is −sign(zt)vz,t+1.

That to a market timing strategy trading on the aggregate valuation ratio is−xtvx,t+1. Again,

because they are driven by two different sets of iid Gaussian shocks, our model predicts that

they are uncorrelated.
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Figure F1: Relation between market risk and risk to a value strategy

Panel A: Volatility of aggregate E/P versus volatility of value spread
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Panel B: Volatility of aggregate E/P versus volatility of HML returns
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Panel C: Volatility of HML returns versus volatility of the value spread
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Notes: HML is a portfolio that is long the high E/P ratio quintile and short the low E/P
ratio. The value spread is defined as the difference of E/P ratio of bin 5 and bin 1 scaled by
the aggregate E/P ratio. Data are quarterly from 1971–2020.
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Figure F2: Relation between the value anomaly and aggregate valuations

Panel A: Value spread versus deviation of aggregate dividend-to-price from its mean
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Panel B: Returns to timing the market versus HML returns
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Notes: The value spread is defined as the difference between the D/P ratio of bin 5 in a
value sort and that of bin 1, scaled by the aggregate D/P ratio. Data are monthly from
1926–2020.
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