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Abstract

After lying dormant for more than two decades, the rare disaster framework
has emerged as a leading contender to explain facts about the aggregate
market, interest rates, and financial derivatives. In this article, we survey
recent models of disaster risk that provide explanations for the equity pre-
mium puzzle, the volatility puzzle, return predictability, and other features
of the aggregate stock market. We show how these models can also explain
violations of the expectations hypothesis in bond pricing as well as the im-
plied volatility skew in option pricing. We review both modeling techniques
and results and consider both endowment and production economies. We
show that these models provide a parsimonious and unifying framework for
understanding puzzles in asset pricing.
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1. INTRODUCTION

Many asset pricing puzzles arise from an apparent disconnect between returns on financial assets
and economic fundamentals. A classic example is the equity premium puzzle, namely that the
expected return on stocks over government bills is far too high to be explained by the observed
risk in consumption. Another famous example is the volatility puzzle. Economic models trace
stock return volatility to news about future cash flows or discount rates. Yet dividend and interest
rate data themselves provide very little basis for explaining this volatility. Other puzzles can be
stated in similar ways.

In this article, we survey a class of explanations for these and other findings known as rare disas-
ter models. These models assume that there is a small probability of a large drop in consumption.
Under the assumption of isoelastic utility, this large drop is extremely painful for investors and
has a large impact on risk premia and, through risk premia, on prices. The goal of these models,
broadly speaking, is to take this central insight and incorporate it into quantitative models with a
wide range of testable predictions.

How does the risk of rare disasters differ from the risk that has already been carefully explored
in models of asset pricing over the last quarter century? What differentiates a rare disaster from
merely a large shock? Crucial to the understanding of rare disasters is to understand when they
have not occurred, namely in the postwar period in the United States. A central contention of the
rare disaster literature is that the last 65 years of US data have been a period of calm that does
not represent the full spectrum of events that investors incorporate into prices. This already says
something about the probabilities of rare disasters. For example, if the probability were 10% a
year, then the probability of having observed no disasters would be 0.9065, or 0.001. Although
we may be very lucky in the United States, and although there may be survival bias in the fact
that most finance scholars find themselves situated in the United States and studying US financial
markets, assuming this much luck and thus this much survival bias would be unrealistic. Thus, the
historical time series says that disasters, if they exist, must be rare.

A second aspect of rare disasters is that they must be large, so that their size essentially rules out
the normal distribution, just as the discussion above essentially rules out disasters that occur with
probability 10%. Thus, allowing for rare disasters is akin to rejecting the assumption of normality
but still allowing for the fact that data might appear to be normal over a 65-year time span.

This rejection of normality sounds like a technical result, divorced from underlying economics.
However, it is of fundamental importance to understanding why one obtains qualitatively different
results from incorporating rare disasters into economic models. Under the normal distribution,
risk is easy to measure because the normal distribution implies that small (and thus frequently
observed) changes in the process of interest can be used to make inferences about large (and thus
infrequently observed) changes in prices and fundamentals. Stated in econometric terms, normality
is a strong identifying assumption. If one seeks to measure risk and if the object of interest has the
normal distribution, then a small amount of data (65 years is more than enough) can be used to
obtain a very accurate estimate of the risk. The assumption of normality, although not universal, is
ubiquitous in finance. For example, the diffusion process is the standard model used in continuous-
time finance. Yet a diffusion is nothing more than a normal distribution with parameters that may
themselves vary according to normal distributions. And although the assumption of the normal
distribution is often clearly stated, its consequence, that small changes in a process are informative
of larger changes, is not.

In contrast to the situation in standard models, risk in rare disaster models is difficult to measure.
Small variations in a process of interest are not informative of large variations. Thus, investors
may rationally believe a disaster is within the realm of possibility, even after many years of data
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to the contrary. This insight leads to a rethinking of the connections between stock prices and
fundamentals, as shown by the models that we survey.

The rest of this review proceeds as follows. Section 2 presents a general result on risk premia in
models of disaster risk. This result is a building block for many other results that follow. Section 3
presents a model of consumption disasters that focuses on the equity premium puzzle. Section 4
discusses dynamic models that explain the volatility puzzle. Section 5 discusses extensions to fixed
income and to options. Section 6 reviews the literature on disaster risk in production-based models.
These models endogenize consumption and cash flows and offer a deeper understanding of the
links between stock prices and the real economy. Section 7 concludes.

2. DISASTER RISK PREMIA

Most asset pricing puzzles, in one way or another, arise from a difference between a modeled
and an observed risk premium (the expected return on a risky asset above a riskless asset). This
is obvious when the puzzle refers to the mean of a return. When the puzzle refers to a volatility
or covariance, it is also true, as time variation in risk premia appears to be a major determinant
of stock price variation. For this reason, we begin our review with a theorem on risk premia in
models of disaster risk.1

Consider a stochastic process driven by normal risk, modeled as a vector of Brownian (or
diffusive) shocks Bt , and by rare event risk, modeled as a Poisson process N t . The Poisson process
has intensity λt , meaning that it increments by 1 with probability λt .2 This basic jump-diffusion
model was introduced by Merton (1976) for the purpose of calculating option prices when stock
prices are discontinuous.

We assume a process for state prices. This process can be interpreted either as the marginal
utility of the representative agent (as is the case in the models that follow) or simply as the process
that is guaranteed to exist as long as there is no arbitrage (Harrison & Kreps 1979). The state-price
density is given by πt and follows the process

dπt

πt−
= μπ dt + σπ dBt + (e Zπ − 1) dN t . (1)

The parameters μπ and σπ could be stochastic (here and in what follows, we assume Bt is a row
vector, so that whatever multiplies it, in this case σπ , is a column vector). The ratio of πt to itself
at different points of time is commonly referred to as the stochastic discount factor. The change
in logπt , should a rare event occur, is Zπ , a random variable that we assume has a time-invariant
distribution. We model the change in logπt rather than πt to ensure that prices remain positive.
Disasters are times of low consumption, high marginal utility, and therefore high state prices.
Thus, we emphasize the case of Zπ > 0.

Consider an asset (we refer to it as a stock to be concrete, but it need not be) with price process

dSt

St−
= μS dt + σS dBt + (e ZS − 1) dN t . (2)

Again, μS and σS can be stochastic, and σS is a row vector. The change in the log stock prices in
the event of a disaster is given by the random variable ZS, which can be correlated with Zπ and

1This result unifies results already reported in the literature for, e.g., iid models of stock prices (Barro 2006), dynamic models
of stock prices (Longstaff & Piazzesi 2004, Wachter 2013), and exchange rate models (Farhi et al. 2015).
2More precisely, the probability of k increments over the course of a period τ is equal to e−λτ (λτ )k/k!. We take τ to be in
units of years.
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also has a time-invariant distribution. We use the notation Eν to denote expectations taken with
respect to the joint distribution of ZS and Zπ .

Let Dt denote the continuous dividend stream paid by the asset (this may be zero). Then the
expected return (precisely, the continuous-time limit of the expected return over a finite interval)
is defined as

r S
t = μS + λt Eν [e ZS − 1] + Dt

St
,

which includes the drift in the price, the expected change in price due to a jump, and the dividend
yield. Proposition 1 gives a general expression for risk premia under these assumptions.

Proposition 1. Assume there is no arbitrage, with state prices given by Equation 1. Consider an asset
specified with price process as in Equation 2. Let rt denote the continuously compounded risk-free rate. Then
the continuous-time limit of the risk premium for this asset is

r S
t − rt = −σπσ�

S − λt Eν
[
(e Zπ − 1)(e ZS − 1)

]
. (3)

The expected return over the risk-free rate in periods without disasters is

r S
t − rt − λt Eν [e ZS − 1] = −σπσ�

S − λt Eν
[
e Zπ (e ZS − 1)

]
. (4)

Proof. Readers are referred to Appendix A. �

Consider Equation 3, the risk premium on the asset with price St . There are two terms: The
first corresponds to the Brownian risk, and it takes a standard form (see Duffie 2001). The second
corresponds to Poisson risk. Because the Brownian shocks and Poisson shocks are independent, we
can consider the two sources separately. Both terms represent covariances. The second term is the
covariance of prices and marginal utility in the event of a disaster multiplied by the probability that
a disaster occurs.3 For an asset that falls in price when a disaster occurs, the product (e Zπ −1)(e ZS −1)
is negative. Such an asset has a higher expected return because of its exposure to disasters.

Now consider Equation 4. This is the expected return that would be observed in samples in
which disasters do not occur. It is equal to Equation 3 minus the expected price change in the
event of a disaster. Because the price falls in a disaster, Equation 4 is greater than the true risk
premium: Observing samples without disasters leads to a bias, as noted by Brown, Goetzmann &
Ross (1995) and Goetzmann & Jorion (1999).

In what follows, we quantitatively evaluate the sizes of the disaster term in the true risk premium
(Equation 3) and in the observed risk premium (Equation 4) in economies where stock prices are
determined endogenously. We also show that disasters have a role to play in the Brownian terms
σπ and σS. If, for example, the probability of a disaster varies over time, then this will be reflected
in σπ and σS.

3. CONSUMPTION DISASTERS

Two central puzzles in asset pricing are the equity premium puzzle (Mehra & Prescott 1985) and
the risk-free rate puzzle (Weil 1989). Barro (2006) shows that, when disasters are calibrated using
international GDP data, disaster risk can resolve both puzzles. Here we consider a continuous-time

3Because the expected change in both quantities over an infinitesimal interval is zero, the expected comovement between
these quantities is in fact the covariance.
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equivalent of Barro’s model in which we make use of a now-standard extension of time-additive
isoelastic utility that separates risk aversion from the inverse of the elasticity of intertemporal
substitution (EIS) (Epstein & Zin 1989, Duffie & Epstein 1992; for a solution to a general class of
models of which this model is an example, see Martin 2013.) This extension, because it is based
on isoelastic utility, implies that risk premia and risk-free rates are stationary even as consumption
and wealth grow, just as in the actual economy. This scale-invariance makes calibration possible.
In what follows, the parameter β refers to the rate of time preference, γ to relative risk aversion,
and ψ to the EIS. Details of the utility specification are contained in Appendix B.

3.1. The Model

Consider the following model for aggregate consumption:

dCt

Ct−
= μ dt + σ dBt + (e Zt − 1) dN t . (5)

As in Section 2, Bt is a standard Brownian motion and N t is a Poisson process with constant
intensity λ. Zt is a random variable whose time-invariant distribution ν is independent of N t

and Bt . A disaster is represented by dN t = 1, and e Zt is the change in consumption should a
disaster occur. Thus, disasters are represented by Zt < 0. In this model, consumption growth is
independently and identically distributed (iid) over time. One advantage of this model is that it
allows for long periods of low volatility and thin tails (such as the postwar period in the United
States) along with large consumption disasters (such as the Great Depression).

The model is not complete without a specification for the dividend process for the aggregate
market. The simplest assumption is that dividends equal consumption. However, it is sometimes
convenient to allow the aggregate market to differ from the claim to total wealth. We will follow
Abel (1999) and Campbell (2003) in assuming

Dt = Cφ
t , (6)

although for much of the discussion in this section, φ is restricted to 1. The parameter φ is
sometimes referred to as leverage. The specification in Equation 6 allows us to take into account the
empirical finding that dividends are procyclical in normal times and fall far more than consumption
in the event of a disaster (Longstaff & Piazzesi 2004). Ito’s Lemma for jump-diffusion processes
(Duffie 2001) then implies

dDt

Dt−
= μD dt + φσ dBt + (eφZt − 1) dN t, (7)

where μD = φμ+ 1
2φ(φ − 1)σ 2.

Let St denote the price of the dividend claim. In this iid model, the price–dividend ratio St/Dt

is a constant. Note that a constant price–dividend ratio implies that the percent decline in prices
is equal to the percent decline in dividends, so the process St is given by

dSt

St−
= μS dt + φσ dBt + (eφZt − 1) dN t, (8)

for a constant μS that we leave unspecified for now.
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Because the model is iid, the form of the utility function implies that πt is proportional to C−γ
t ,

where γ represents relative risk aversion.4 Thus, by Ito’s Lemma,

dπt

πt−
= μπ dt − γ σ dBt + (e−γ Zt − 1) dN t . (9)

Again, we leave the constant μπ unspecified for the moment. Thus, marginal utility jumps up if a
disaster occurs. The greater is the risk aversion, the greater the jump.

3.2. The Equity Premium

Using Proposition 1 we can derive the equity premium in the model:

r S − r = γφσ 2 − λEν
[
(e−γ Zt − 1)(eφZt − 1)

]
. (10)

Equation 10 contains two terms. The first, γφσ 2, is the basic consumption capital asset pricing
model (CCAPM) term (Breeden 1979). The second, as explained in Section 2, is due to the
presence of disasters and is positive because a disaster is characterized by falling consumption (and
thus rising marginal utility) and falling prices.

For the remainder of this section, we follow Barro (2006) and Rietz (1988) and specialize to
the unlevered case of φ = 1. Thus, our target for the equity premium is the unlevered premium,
which can reasonably be taken to be 4.8% per year (Nakamura et al. 2013). Note that thus far,
only risk aversion appears in Equation 10, and this equation is identical to what we would find in
the time-additive utility case.

In writing down the process for consumption (Equation 5), we have split risk into two parts, a
Brownian part and a rare disaster part. The equation for the risk premium (Equation 10) reflects this
separation. Consider two ways of interpreting US consumption data from 1929 to the present.5

First assume that consumption growth is lognormally distributed as in Equation 5, with the
jump component set to zero. We can then compute σ 2 based on the measured volatility of this
series, which is about 2.16% per year. With an unlevered equity premium of 4.8%, γ would
have to be about 102 to reconcile the equity premium with the data. This is the equity premium
puzzle.

Now consider a different way to view the same data. In this view, the Great Depression rep-
resents a rare disaster. Consumption declined about 25% in the Great Depression. Assuming a
1% probability of such a disaster occurring (and, for the moment, disregarding the first term),
explaining an equity premium of 4.8% only requires γ = 10.5. This is the point made by Rietz
(1988) in response to Mehra & Prescott (1985). Many would say that a risk aversion of 10.5 is still
too high, and in fact more recent calibrations justify the equity premium with a lower risk aversion
coefficient, but without a doubt, this simple reconsideration of the risk in consumption data has
made a considerable dent in the equity premium.

Which way of viewing the consumption data is more plausible? Given the low volatility of
consumption over the 65-year postwar period (1.25%), a constant volatility of 2.16% is virtually
impossible, as can be easily seen from Monte Carlo simulations of 65 years with normally dis-
tributed shocks. If consumption were normally distributed with a volatility of 2.16%, a sample
65 years long with a volatility of 1.25% occurs with probability less than one in a million.

4For convenience, we provide a proof of this standard result in Supplemental Appendix A (follow the Supplemental
Materials link in the online version of this article or at http://www.annualreviews.org).
5The numbers in this section refer to real per capita annual consumption growth, available from the Bureau of Economic
Analysis.
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What about the rare disaster model? Here, Mehra & Prescott (1988) and, more recently,
Constantinides (2008) and Julliard & Ghosh (2012) argue that this too is improbable. The problem
is that consumption did not decline by 25% instantaneously in the Great Depression, but rather
there were several years of smaller declines. Our equations, however, assume that the declines
are instantaneous. Does this matter? An interesting difference between jump, or Poisson, risk and
Brownian, or normal, risk is that it might matter. Normally distributed risk (assuming iid shocks)
is the same regardless of whether one measures it over units of seconds or of years. Not so in the
case of Poisson risk. As the Great Depression took 4 years to unfold, suppose instead of a 1%
chance of 25% decline, we had a 4% chance of a 7% decline.6 In this case, the population equity
premium would only be 0.31%, whereas the observed equity premium would be 0.59%, in other
words, an order of magnitude lower. These authors argue that an all-at-once 25% decline, given
US consumption history, is too unlikely to be worth considering.

As we see below, however, this results depend on the iid assumption, and whether utility is time
additive. Time-additive utility is a knife-edge case, in which the only source of risk that matters
in equilibrium is instantaneous shocks to consumption growth. When the agent has a preference
over early resolution of uncertainty and when shocks are not iid but rather cluster together, the
model once again produces equity premia of similar magnitude as if the decline happened all at
once. We show this in a simple model in Section 3.7.

Clearly, calibration of the disaster probability λt and the disaster distribution Zt is key to
evaluating whether the model can explain the equity premium puzzle. We now turn to calibration
of these parameters.

3.3. Calibration to International Macroeconomic Consumption Data

Following the work of Rietz (1988), rare disasters as an explanation of the equity premium puzzle
received little attention for a number of years (exceptions include Veronesi 2004 and Longstaff &
Piazzesi 2004). This changed with the work of Barro (2006), who calibrates the model above to
data on GDP declines for 35 countries over the last century (the original data are from Maddison
2003). A disaster is defined as a cumulative decline in GDP of over 15%. Altogether Barro finds 60
occurrences of cumulative declines of over 15% in the 35-country, 100-year sample. This implies
a probability of a disaster of 1.7%. These declines also give a distribution of disaster events. This
size distribution puts the Great Depression in a different light. The average value is 29%, about
the same as the 25% decline assumed above. However, the presence of much larger declines in the
sample, as large as 64%, combined with isoelastic utility, implies that the model behaves closer to
the case of a 50% average decline.

Barro (2006) uses GDP data; consumption data are closer to aggregate consumption in the
model. In normal times, GDP is considerably more volatile than consumption, so calibrating
a consumption-based economy to GDP data makes puzzles (artificially) easier to solve. Barro
& Ursúa (2008) build a dataset consisting of consumption declines across these and additional
countries. They also broaden and correct errors in the GDP dataset of Maddison (2003). They find
that it matters little for the equity premium whether consumption or GDP is used. This is because
the largest disasters, which drive the equity premium result, occur similarly in consumption and
GDP. In fact, in wars, GDP tends to decline by less because it is buffered by wartime government
spending.

6A total decline of 25% implies Z = −0.288. For this exercise, we divide Z by 4 to find Z = −0.072. This implies a percent
decline of 6.9%.
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Figure 1
Histograms showing distributions of large consumption declines (1 − e Z). (a) Data for 24 countries, 17 of which are countries in the
Organisation for Economic Co-operation and Development (OECD) and 7 of which are not; (b) data for the subsample of OECD
countries. The cut-off for the definition of a disaster is 15%. Data are from Barro & Ursúa (2008).

Figure 1a shows a histogram of consumption declines across the full set of countries of Barro
& Ursúa (2008); Figure 1b shows the same, but only for the countries in that set that are part
of the Organisation for Economic Co-operation and Development (OECD). There is significant
mass to the right of 25%; it is these larger disasters that make it possible to account for the equity
premium with risk aversion as low as 4. The large numbers to the right represent the effects of
World War II in Europe and Asia.7 The rare disaster model embeds into US equity prices a
positive probability (albeit very small) of a consumption decline of this magnitude.

The disasters observed in these data are not independent, of course: Most of the events, par-
ticularly in OECD countries, can be associated with World War I, World War II, or the Great
Depression. This would be an important consideration if we were calculating standard errors.
Otherwise, it may not be. A 2% probability seems reasonable if one takes the view that there were
three worldwide disasters in the course of 100 years. Ideally, we might look at a wealth-weighted
consumption decline across all the countries for the three major disasters. Leaving aside the dif-
ficulty of constructing such a measure, we are still left with essentially three observations, which
do not seem enough to rule out the histograms in Figure 1.8 One view of these data is that they
discipline the choice of disaster distribution, a distribution for which we have little knowledge.
Nakamura et al. (2013) estimate and solve a model in which independence of disasters, duration,
and partial recovery from disasters are taken into account; they find that the model can still explain
the equity premium puzzle for moderate values of risk aversion.

7These histograms are not exhaustive of the misfortunes that have befallen humankind relatively recently that might be priced
into equity returns. For example, the data include neither the experience of the American South following the Civil War nor
the experience of Russia throughout this century.
8A related question is whether it is appropriate to apply these international data to the United States. Given our assumed
parameters, the US experience is far from an anomaly, as Nakamura et al. (2013) discuss. Available data neither prove nor
disprove that the United States is subject to disasters; this is a matter for prior beliefs.
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Table 1 Rates of return for the independent and identically distributed model

No disaster No default Default
Treasury bill returns
ψ = 1

4 (time-additive utility) 10.64 −3.36 −0.25

ψ = 1 4.89 −2.87 0.23
ψ = 2 3.93 −2.79 0.31
Equity premium, population
ψ = 1

4 , 1, 2 0.06 7.22 4.36

Equity premium, observed
ψ = 1

4 , 1, 2 0.06 7.82 4.72

This table shows the rate of return on Treasury bills, the population equity premium, and the equity premium that would be
observed in a sample without disasters. Parameters (in annual terms) are as follows: disaster probability, λ = 0.0218;
discount rate, β = 0.03; risk aversion, γ = 4; consumption growth and volatility in normal times, μ = 0.0195 and
σ = 0.0125, respectively; leverage, φ = 1; and (when applicable) default probability conditional on disaster, q = 0.4. For
Treasury bill returns in the case of default, we report the yield (equivalently, the return if default is not realized). All results
are in terms of annual percentages.

3.4. Interest Rates

We now return to the model of Section 3.1 and consider the interest rate. The presence of disasters
also affects agents’ desire to save. The instantaneous risk-free rate implied by investor preferences
and the consumption process in Equation 5 is

r = β + 1
ψ
μ− 1

2

(
γ + γ

ψ

)
σ 2 + λEν

[(
1 − 1

θ

)(
e (1−γ )Zt − 1

)
−
(

e−γ Zt − 1
)]
. (11)

This risk-free rate is perhaps comparable to the real return on Treasury bills (more on this below),
so the left-hand side is about 1.2% in the data. From the point of view of traditional time-additive
utility (γ = 1/ψ and θ = 1) with no disasters, this is a puzzle. Postwar consumption growth is
about 2% per year; combined with a reasonable level of risk aversion, say, 4, the second term in
Equation 11 is about 8%. The third term is negligible for reasonable parameter values because
σ 2 is extremely small. Thus β, the rate of time preference, would have to be significantly negative
to explain the Treasury bill rate in the data (Weil 1989). Unlike with the equity premium puzzle,
the separation between the EIS and risk aversion can be helpful here, though it is questionable
whether it can completely resolve the puzzle (Campbell 2003).

The term multiplying λ in Equation 11 represents the effect of disasters. Even a small proba-
bility of a disaster can lead to a much lower risk-free rate because disaster states are very painful for
agents, and in this model at least, savings in the risk-free asset offer complete insurance.9 Table 1
reports risk-free rates implied by a risk aversion of 4 for various values of the EIS. Investors who
are more willing to substitute over time are less sensitive to the presence of disasters, all else equal.
However, for all values we consider, the presence of disasters implies that the risk-free rate is
actually negative.

This discussion implies that investors can completely insure against disasters by purchasing
Treasury bills. Historically, some consumption disasters have coincided with default on govern-
ment debt, either outright or through inflation. That this was not the case in the Great Depression

9Disasters always decrease the risk-free rate. The term 1 − 1/θ is bounded above by γ /(γ − 1), and properties of the expo-
nential imply that (1/γ )(e−γ Zt − 1) > (1/(γ − 1))(e−γ Zt − 1).
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does not mean that investors are ruling it out. Following Barro (2006), we can account for default
by introducing a shock to government debt in the event of a disaster.10

To introduce default, let Lt denote the price process resulting from rolling over short-term
government claims. The only risk associated with this claim is default in the event of a disaster, so

dLt

Lt−
= rL dt + (e ZL,t − 1) dN t, (12)

where rL is the return on government bills if there were no default. We capture the relation
between default and consumption declines in disasters as follows:

ZL,t =
{

Zt with probability q ,
0 otherwise.

(13)

This implies that in the event of a disaster, there is a probability q of default, and if this happens,
the percent loss is equal to the percent decline in consumption. We can then apply Proposition 1
to write down the instantaneous risk premium on this security:

rb − r = −λq Eν
[
(e−γ Zt − 1)(e Zt − 1)

]
. (14)

Finally, by definition, we have rb = rL + λq Eν [e Zt − 1], so the observed premium on government
debt in samples without disasters is given by

rL − r = −λq Eν
[
e−γ Zt (e Zt − 1)

]
. (15)

If we restrict to the case with no leverage, comparing Equation 14 with Equation 10 implies an
equity premium of

r S − rb = γ σ 2 − (1 − q )λEν
[
(e−γ Zt − 1)(e Zt − 1)

]
. (16)

Furthermore, in samples without disasters, the observed equity premium equals

observed r S − rL = γ σ 2 − (1 − q )λEν
[
e−γ Zt (e Zt − 1)

]
. (17)

The next section combines the results so far to discuss the implications for interest rates and the
equity premium in a calibrated economy.

3.5. Results in a Calibrated Economy

Table 1 puts numbers to the equity premium and Treasury bill rate using the international
consumption data of Barro & Ursúa (2008). As already discussed, the presence of disasters has
dramatic effects on the level of the risk-free rate. Introducing default actually helps the model
explain the level of the Treasury bill rate in the data.

Table 1 also shows that the international distribution of disasters, combined with a risk aversion
of only 4, implies an equity premium relative to risky government debt of 4.4%, close to the target
of 4.8%. The equity premium that would be observed in samples without disasters is 4.7%. Most
of the model’s ability to explain the equity premium comes from the higher required return in
the presence of disasters, as opposed to the bias in observations of returns over a sample without

10In this case, the assumption of complete markets still implies that there exists a risk-free rate; it just is not comparable to
the government bill rate. What happens if markets are incomplete and there is no risk-free rate? This is a hard question to
answer because the representative investor framework no longer applies, and we are not aware of any work that addresses it.
Intuition suggests that this would make the required compensation for disasters higher rather than lower.
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disasters. In summary, disaster risk can explain the equity premium and risk-free rate puzzles even
if risk aversion is as low as 4 and even if default on government bills is taken into account.

3.6. Disaster Probabilities and Prices

We now turn to the question of how disaster probability affects stock prices. Because this model
is iid and the disaster probability is constant, we answer this question using comparative statics.
The comparative statics results nonetheless lay the groundwork for the dynamic results to come.

The price–dividend ratio is given by
St

Dt
= Et

∫ ∞

t

πs

πt

Ds

Dt
ds (18)

=
⎛
⎝β − μD + 1

ψ
μ− 1

2

(
γ + γ

ψ
− 2φγ

)
σ 2

+ λ Eν

[(
1 − 1

θ

)(
e (1−γ )Zt − 1

)
−
(

e (φ−γ )Zt − 1
)]

︸ ︷︷ ︸
Effect of disaster probability on DP ratio

⎞
⎠−1

,
(19)

where the last line is shown in Supplemental Appendix A. It is the term multiplying the disaster
probability, labeled “Effect of disaster probability on DP ratio,” that interests us. As in Campbell
& Shiller (1988), we can decompose this term as follows:

Effect of disaster probability on DP ratio

= Eν

[
−
(

e−γ Zt − 1
)

+
(

1 − 1
θ

)(
e (1−γ )Zt − 1

)]
︸ ︷︷ ︸

risk-free rate

+ Eν
[(

e−γ Zt − 1
)(

1 − eφZt
)]

︸ ︷︷ ︸
equity premium

− Eν
[
eφZt − 1

]
︸ ︷︷ ︸

expected dividend growth

. (20)

Note that the terms for the risk-free rate and the equity premium are taken from Equations 11
and 10, respectively. The last term is the direct effect of a disaster on the cash flows to equity.

Intuitively, an increase in the risk of a rare disaster should lower prices because it raises the
equity premium and lowers expected cash flows. Equation 20 shows that there is an opposing
effect coming from the risk-free rate. An increase in the risk of a disaster lowers the risk-free rate,
raising the price of any asset that is a store of value, including equities. Thus, the net effect on
the dividend–price ratio depends on which is greater, the risk-free rate effect or the (total) equity
premium and cash flow effect. The answer is complicated in that it depends on γ , ψ , and φ. We
consider three special cases of interest to the literature. To fix ideas, assume that risk aversion γ
is greater than 1.

3.6.1. No leverage. This is the case we have been considering thus far in this article, and it has
the appeal of parsimony, as we have not yet introduced a theory for why dividends would respond
more than consumption in the event of a disaster. The term inside the expectation in Equation 19
is positive if and only if θ < 0, that is, if and only if the EIS, ψ , is greater than 1.
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3.6.2. Time-additive utility. In this case, θ = 1. The term inside the expectation is positive if
and only if φ > γ , that is, if and only if the responsiveness of dividends in the event of a disaster
exceeds risk aversion.

3.6.3. EIS = 1. In this case, 1 − 1/θ = 1. The term inside the expectation is positive if and only
if φ > 1, that is, if and only if dividends are more responsive to disasters than consumption.

Note that, although we use the same parameter φ to determine the responsiveness of dividends
to disasters and to normal shocks, it is in fact only the responsiveness of dividends to disasters
that determines the direction of the effect. Note too that this effect is independent of government
default. Government default changes the decomposition of the discount rate into a government
bill rate (higher than the risk-free rate) and an equity premium relative to the government bill
rate (lower than the equity premium relative to the risk-free rate). It does not change the total
discount rate, which is what matters for the discussion above.

Generally, the higher is the EIS, the lesser the risk-free rate response to a change in the
probability, and the lower the precautionary motive. The greater is the responsiveness of dividends,
the greater the equity premium and cash flow effects combined. Sections 3.7 and 4 introduce
dynamic models that differ in their details. However, in each of these models, prices are subject
to the same economic forces outlined here.

What happens empirically when the probability of a disaster increases? Using a political science
database developed for the purpose of measuring the probability of political crises, Berkman,
Jacobsen & Lee (2011) show that an increase in the probability of a political crisis has a large
negative effect on world stock returns, with the effect size increasing in the severity of the crisis.
Thus, the data clearly favor parameter values that imply a negative relation between prices and
the risk of a disaster.

3.7. Multiperiod Disasters

We now return to a question raised in the previous section. In the model of Section 3.1, disasters
occur instantaneously. In the data, they unfold over several years.11 How does this affect the
model’s ability to explain the equity premium puzzle?

One simple way to model multiperiod disasters is to assume disasters are in expected rather
than realized consumption:

dCt

Ct
= μt dt + σ dBt, (21)

with

dμt = κμ(μ̄− μt) dt + Zt dN t . (22)

In this model, consumption itself is continuous, and the normal distribution describes risks over
infinitesimal time periods. However, over a time period of any finite length, consumption growth
exhibits fat tails. If the model in the previous section represents one extreme, this represents
another. Most likely, reality is somewhere between the two in that some part of the disaster is
instantaneous, whereas another part is predictable.12 Economically, this model seems quite similar

11The average duration of the disasters in Barro & Ursúa (2008), measured as the number of years from consumption peak
to trough, is 4.3 years. The size and duration of the disaster have a negative correlation of −0.40.
12An alternative way to produce disaster clustering is to assume that the disaster probability follows a self-exciting process, in
which an occurrence of a disaster raises the probability of future disasters. Such a model is solved in closed form by Nowotny
(2011). Even if such a clustering is not a property of the physical process of disasters (as it appears to be), it occurs endogenously
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to the one in Section 3.1, and we see that the basic similarity does carry through to the conclusions,
with some twists.

An important statistic in this model is the cumulative effect of a disaster on consumption,
equal to Zt/κμ (see Appendix C). Longer disasters can be captured by lowering κμ; to match the
consumption data, one would then lower Zt to keep Zt/κμ the same. Asset pricing results remain
largely unaffected by changes in the calibration that preserve the key quantity Zt/κμ.13

The state-price density in this model has an approximate analytical solution that is exact when
the EIS is equal to one and (in a trivial sense) when utility is time-additive (for details, see Tsai &
Wachter 2014a):

dπt

πt−
= μπ dt − γ σ dBt +

(
e (i1+κμ)−1(1/ψ−γ )Zt − 1

)
dN t . (23)

Here we introduce i1 = e E[c −w], where c −w is the log consumption–wealth ratio. When the EIS
is equal to one, i1 = β. Under time-additive utility, we have 1/ψ = γ , and thus the shocks to
the state-price density are the same as if there were no disasters. In a typical calibration, where
disasters unfold over years rather than decades, κμ is two orders of magnitude greater than i1.
Thus, the term multiplying the Poisson shock is well approximated by e (1/ψ−γ )(Zt/κμ) − 1. This
term, which determines the risk premium for bearing disaster risk, is approximately invariant to
changes in the consumption process that leave Zt/κμ unchanged.

To solve for the equity premium, we first find the process for stock prices:

St

Dt
= Et

∫ ∞

t

πs

πt

Ds

Dt
ds . (24)

We can solve the expectation to find

St

Dt
= G(μt) =

∫ ∞

0
eaφ (τ )+bφ (τ )μt dτ,

where bφ(τ ) takes a particularly simple form:

bφ(τ ) = φ − 1/ψ
κμ

(
1 − e−κμτ

)
. (25)

In fact, because κμ is on the order of 1, we have bφ(τ ) ≈ (φ − 1/ψ)/κμ, which does not depend
on τ . Therefore, from Proposition 1 it follows that the equity premium can be approximated by

r S − r ≈ γφσ 2 − λEν
[(

e (1/ψ−γ )(Zt/κμ) − 1
)(

e (φ−1/ψ)(Zt/κμ) − 1
)]

(26)

(for the full solution to the model, see Appendix C). Note the similarity to the equity premium in
the model we previously considered (keeping in mind that Zt/κμ represents the total size of the
disaster and is comparable to Zt in that model). The difference is that in the disaster premium
term, risk aversion is replaced by the difference between risk aversion and the inverse of the EIS,
γ − 1/ψ , and leverage is replaced by the difference between leverage and the inverse of the EIS,
φ − 1/ψ . The presence of the EIS in these terms reflects the response of the risk-free rate when

through learning, as shown by Gillman, Kejak & Pakoš (2015). Multifrequency processes can produce dynamics that resemble
disasters (Calvet & Fisher 2007). One can also assume that, rather than a one-time event, a disaster represents a state in which
there is some probability of entry and exit as in Nakamura et al. (2013). The conclusions we draw are robust to alternative
specifications.
13This statement holds provided that κμ is large in a sense that is made more precise as we go along. In effect, what is required
is that we look at disasters that last for several years rather than several decades.
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Table 2 The equity premium (EP) in the multiperiod disaster model

Consumption claim (φ = 1) Dividend claim (φ = 3)

Population EP Observed EP Population EP Observed EP
ψ = 1

4 (time-additive utility) 0.06 −6.13 0.19 −0.73

ψ = 1 0.06 0.06 4.19 5.15
ψ = 2 2.69 3.01 6.94 8.05

The EP for the consumption and dividend claim in the multiperiod disaster model. Shown are the population EP and EP that would be observed in a
sample without disasters for the consumption claim (φ = 1) and those for the dividend claim (φ = 3). Parameters are as follows: disaster probability,
λ = 0.0218; discount rate, β = 0.01; risk aversion, γ = 4; normal time consumption and dividend growth, μ = μD = 0.0195; volatility, σ = 0.0125; and
mean-reversion parameter, κμ = 1. All results are in terms of annual percentages.

disasters are not instantaneous. Upon the onset of a multiperiod disaster, the risk-free rate falls.
This offsets the effect of the decline in expected cash flows.

Table 2 shows the values of the equity premium and of the observed excess returns, assuming
risk aversion equal to 4, for three cases for the EIS: time-additive utility (corresponding to an
EIS of 1

4 in this case), unit EIS, and EIS equal to 2. We show results for the consumption claim
(φ = 1) and for a levered claim (φ = 3). We simplify our calibration by considering κμ = 1, which
approximately matches the duration of disasters in the data. Thus, Zt remains the cumulative effect
of disasters in this model, just as in Section 3.1. Time-additive utility implies a population equity
premium that is the same as the CCAPM; disasters do not contribute anything in this model. The
observed average excess return in a sample without disasters is actually negative. That is because
equity prices rise at the onset of a disaster in the time-additive utility model (with leverage below
risk aversion). Investors factor this price increase into their equity premium, and thus when it does
not occur, the observed return is in fact lower. In contrast, for EIS equal to 1, the premium on
the consumption claim is the same as in the CCAPM in samples with and without disasters. For
an unlevered claim with EIS equal to 1, there is no price change when a disaster occurs, and no
risk premium (other than for normal Brownian risk). For a reasonable value of leverage (φ = 3),
the model implies an equity premium of 5.15% in samples without disasters when ψ = 1. When
ψ = 2, this equity premium is 8.05%. In the data, the equity premium is 7.69%. To conclude,
the model can still explain the equity premium puzzle, even if disasters take several years to
unfold.

4. TIME-VARYING RISK PREMIA

The previous sections focused on the question of whether agents’ beliefs about rare disasters
could explain the equity premium puzzle. Another important puzzle in asset pricing is the high
level of stock market volatility. The CCAPM fails to explain this volatility: Assuming (for the
moment) that stock returns are not levered, consumption growth volatility and return volatility
should be equal. However, in postwar data consumption growth volatility is 1.3%, whereas stock
return volatility is 18%. Dividends are more volatile than consumption, though not enough to
account for the difference between the volatility of consumption and volatility of returns. This
striking difference between the volatility of cash flows and the volatility of returns is known as the
equity volatility puzzle (Shiller 1981, LeRoy & Porter 1981, Campbell & Shiller 1988).14 Closely

14Some have pointed out that total payouts to stockholders are themselves very volatile, and that this may be a better measure
of cash flows than dividends (Boudoukh et al. 2007, Larrain & Yogo 2008). Although interesting, this fact does not lead to a
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connected with the volatility puzzle is the fact that excess stock returns are predictable by the
price–dividend ratio (among other, subsequent studies, see Cochrane 1992, Fama & French 1989,
Keim & Stambaugh 1986). The reason is that, in a rational, stationary model, returns are driven
by realized cash flows, expected future cash flows, and discount rates. Empirical evidence points
strongly to discount rates and, in particular, to equity premia as being the source of this variation;
if equity premia vary, this should be apparent in a predictive relation between the price–dividend
ratio and returns (Campbell 2003).

The models shown so far do not help explain the equity volatility puzzle. In the iid model
of Section 3.1, disaster volatility and consumption volatility (or dividend volatility in the levered
model) are the same. Depending on the calibration, this model might have a much greater volatility
of stock returns than the consumption CAPM. However, this volatility arises entirely from the
behavior of stock returns and consumption during disasters. It says nothing about why stock
return volatility would be high in periods where no consumption disaster has occurred. In the
multiperiod disaster model of Section 3.7, stock prices fall by more than consumption upon the
onset of a disaster. In this sense, the model does have some excess volatility. However, like the iid
model, it cannot explain the volatility of stock returns during normal times.15

To account for the evidence discussed above, a model must have time variation in risk premia.
The disaster risk framework offers a natural mechanism by which this can occur. An increase in
the risk of a disaster leads to an increase in the equity premium and, under reasonable parameter
specifications, a decline in the price–dividend ratio. This reasoning suggests that such a model
could account for stock market volatility through variation in the disaster probability, as well as
for the predictability in stock returns.

4.1. Time-Varying Probability of a Disaster

A dynamic model that captures this intuition is described in Wachter (2013). Consumption and
dividends are as in Section 3.1, except that the probability of a disaster is time-varying:

dλt = κλ(λ̄− λt) dt + σλ
√
λt dBλ,t, (27)

where Bλ,t is also a standard Brownian motion, assumed (for analytical convenience) to be inde-
pendent of Bt . The distribution of Zt is also assumed to not depend on λt . This process has the
desirable property that λ never falls below zero; the fact that it is technically an intensity rather
than a probability implies that the probability of a disaster can never exceed 1.16

Wachter (2013) assumes a unit EIS. Here we generalize to any positive EIS; as in Section 3.7,
our solutions are exact in the time-additive and unit EIS cases and approximate otherwise. As we

solution to the volatility puzzle. A model should be able to explain both the behavior of the dividend claim and the behavior
of the cash flow claim, as both represent cash flows from a replicable portfolio strategy. Moreover, as explained further above,
excess returns are predictable by price–dividend ratios, implying that part of return volatility comes from time-varying equity
premia. Price-to-cash flow measures imply even greater evidence of return predictability than the traditional price–dividend
ratio. For the same reason, variation in expected dividend growth cannot, on its own, explain the volatility puzzle.
15Time variation in consumption growth can be used to explain the equity premium and normal-times equity volatility (Bansal
& Yaron 2004). However, this mechanism by itself does not explain return predictability, and it implies that consumption
growth is predictable by the price–dividend ratio, which it does not appear to be (Beeler & Campbell 2012). The multiperiod
disaster model in Section 3.7 also implies that consumption growth is predictable by the price–dividend ratio, but only in
samples in which a disaster takes place.
16As in Wachter (2013), we abstract from the multiperiod nature of disasters described in Section 3.7. In other work (Tsai &
Wachter 2014b), we consider multiperiod disasters that occur with time-varying probability.
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show in Tsai & Wachter (2014a), the state-price density for this model is

dπt

πt−
= μπ dt − γ σ dBt +

(
1 − 1

θ

)
bσλ

√
λt dBλ,t + (e−γ Zt − 1) dN t, (28)

where b is an endogenous preference-related parameter given by

b = κλ + i1

σ 2
λ

−

√√√√(κλ + i1

σ 2
λ

)2

− 2
Eν [e (1−γ )Zt − 1]

σ 2
λ

, (29)

for i1 = e E[c −w] (i1 = β in the case of unit EIS). Note that b > 0 when γ > 1. If utility is
time-additive (θ = 1), the pricing kernel does not depend on b . Otherwise, shocks to λt are priced,
even though they are uncorrelated with shocks to consumption. An agent’s preference for the
early resolution of uncertainty determines how shocks to the disaster probability are priced, just
as it determines pricing of the multiperiod disaster shocks in Section 3.7. Consider γ > 1. Then
a preference for early resolution of uncertainty (γ > 1/ψ) implies 1 − 1/θ > 0. Assets that fall
in price when the disaster probability rises require an additional risk premium to compensate for
disaster probability risk. The case of γ < 1 works in a similar fashion.

The risk-free rate in this economy is equal to

rt = β + 1
ψ
μ− 1

2
γ

(
1 + 1

ψ

)
σ 2

︸ ︷︷ ︸
CCAPM

− 1
2

1
θ

(
1
θ

− 1

)
b2σ 2

λ λt + λt Eν

[(
1 − 1

θ

)(
e (1−γ )Zt − 1

)
−
(

e−γ Zt − 1
)]

︸ ︷︷ ︸
constant disaster risk︸ ︷︷ ︸

time-varying disaster risk

. (30)

Relative to the iid model (Equation 11) in Section 3.4, there is an additional term that reflects
precautionary savings due to time variation in λt itself. This term is zero for both time-additive
utility and unit EIS (notice it is multiplied by both 1/θ and 1/θ − 1). If there is a preference for
an early resolution of uncertainty, and if γ > 1 and ψ > 1, then θ < 0 and this term lowers the
risk-free rate relative to what it would be in a model with constant disaster risk.

We now turn to equity pricing. The price–dividend ratio satisfies the general pricing equation
(Equation 24). Solving the expectation (for details, see Tsai & Wachter 2014a) results in a similar
form to that in Section 3.7:

St

Dt
= G(λt) =

∫ ∞

0
eaφ (τ )+bφ (τ )λt dτ, (31)

where aφ(τ ) and bφ(τ ) are functions available in closed form (for more details, see Appendix D).
As in Section 3.7, the value of the aggregate market is the integral of the values of zero-coupon
equity claims (or equity strips), that is, assets that pay the aggregate dividend at a specific point
in time and at no other time (see Lettau & Wachter 2007). For a zero-coupon claim of maturity
τ , bφ(τ ) determines how that claim responds to a change in the disaster probability. The same
trade-offs that govern the comparative statics results in Section 3.6 determine how prices respond
to changes in disaster probabilities, as explained in Appendix D. We focus on the cases where
prices decline with disaster probability, that is, where the risk premium and expected cash flow
effects outweigh the risk-free rate effect.
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Allowing the probability of disaster to vary has implications for both the average (long-run)
equity premium and the variability of the equity premium. Putting Equation 31 together with
Equation 28 and Proposition 1 implies that the equity premium is given by

re
t − rt = φγσ 2︸ ︷︷ ︸

CCAPM

− λt
G′(λt)
G(λt)

(
1 − 1

θ

)
bσ 2

λ + λt Eν
[(

e−γ Zt − 1
)(

1 − eφZt
)]

︸ ︷︷ ︸
constant disaster risk︸ ︷︷ ︸

time-varying disaster risk

. (32)

The expression for the equity premium has two components from the iid model (Equation 10),
plus a term that reflects the compensation for disaster probability risk. The quantity (1 − 1/θ )b is
positive in the case where there is a preference for early resolution of uncertainty. Because we are
considering preference parameters such that the aggregate market goes down in price when the
disaster probability rises, the equity premium is higher than in the iid model of Section 3.1.

To quantitatively assess the model, we simulate 600,000 years of data to obtain population
moments, and also 100,000 samples of 65 years to represent the postwar data. We separately report
statistics for those samples that do not contain disasters, as these form the relevant comparison.
Table 3 shows the expected bond return, bond return volatility, equity premium, stock return
volatility, and Sharpe ratio on the market for six calibrations: We consider three values of the EIS
(ψ = 1

3 , 1, and 2) and, for each of these cases, consider both constant and time-varying disaster
probabilities. We set risk aversion γ = 3; thus ψ = 1

3 refers to time-additive utility. Parameter
values are reported in the footnote of Table 3.17

When ψ = 1 or 2 and when disaster risk is time-varying, the model is capable of matching the
high equity premium, high equity volatility, and low and smooth Treasury bill rate in the data.18

To understand where these results come from, we first discuss the constant disaster risk case and
the time-additive utility case for comparison.

The constant disaster risk case is the model discussed in Section 3.1, though the parameter
values are slightly different. As before, we see that this model is capable of generating a low Treasury
bill rate and a reasonable equity premium. However, this model cannot generate reasonable stock
return volatility because the volatility of stock returns is the same as the volatility of dividends.

Now consider the time-varying disaster risk case under time-additive utility. Even though dis-
aster risk varies over time, equity returns are no more volatile in this case than in the constant

17Details of the calibration are as follows: Normal-times consumption parameters μc and σc are set to match the postwar data.
Leverage φ is set to 3, a standard value in the literature (Bansal & Yaron 2004). Rather than assuming Dt = Cφ

t , we follow
Bansal & Yaron in assuming the more realistic specification dDt/Dt− = μD dt + φσ dBt + σi dBit , where Bit is a Brownian
motion independent of Bt . We choose μD = 0.04 to match the average price–dividend ratio in the data (note that share
repurchases suggest that expected dividend growth in the data may not accurately measure investors’ long-term expectations
of dividend growth). We choose idiosyncratic dividend volatility σi = 0.05 so that measured dividend volatility in no-disaster
samples in the model equals dividend volatility in postwar US data. We assume that there is a 40% probability of default on
government bills in the case of a disaster. The time-varying disaster risk parameters κλ and σλ are, of course, not directly
observable. The existence of the likelihood function imposes tight constraints on these parameters, so in practice there is a
single free parameter that must do its best to match the volatility of stock returns, the persistence of the price–dividend ratio,
and the volatility of Treasury bill returns.
18One concern about high values of the EIS is that they generate a counterfactual relation between the risk-free rate and
consumption growth in Hall (1988) regressions (see the discussion in Beeler & Campbell 2012). These regressions use two-
stage least squares to identify the EIS, and thus require some predictability in consumption growth. In the model above,
there is no predictability in consumption growth, and thus, running regressions in samples without disasters replicates the
data finding of a small and insignificant EIS. Of course, this should not be taken as license to make the EIS arbitrarily high,
as such a model might deliver counterfactual predictions in a realistic extension with a small amount of consumption growth
predictability.
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Table 3 Return moments in the time-varying disaster probability model

Time-varying disaster probability Constant disaster probability

No-disaster simulations No-disaster simulations

Data 0.05 0.50 0.95 Pop. 0.05 0.50 0.95 Pop.
Values for ψ = 1/3 (time-additive utility)
E[Rb ] 1.24 0.08 3.55 5.26 1.79 1.93 1.93 1.93 1.69
σ (Rb ) 2.57 1.51 3.03 6.00 6.00 0.00 0.00 0.00 2.89
E[Re −Rb ] 7.69 1.51 3.79 7.40 4.15 3.98 5.35 6.73 4.25
σ (Re ) 17.72 5.71 6.68 7.69 11.58 5.72 6.68 7.68 11.65
Sharpe ratio 0.44 0.23 0.57 1.13 0.36 0.59 0.80 1.04 0.36
Values for ψ = 1
E[Rb ] 1.24 −0.04 1.48 2.22 0.58 0.81 0.81 0.81 0.56
σ (Rb ) 2.57 0.65 1.31 2.65 3.78 0.00 0.00 0.00 2.90
E[Re − Rb ] 7.69 4.74 7.04 10.65 7.17 3.93 5.28 6.63 4.13
σ (Re ) 17.72 10.75 15.05 21.34 19.73 5.65 6.60 7.61 11.58
Sharpe ratio 0.44 0.35 0.47 0.61 0.36 0.59 0.80 1.04 0.36
Values for ψ = 2
E[Rb ] 1.24 −0.80 0.61 1.29 −0.27 0.53 0.53 0.53 0.28
σ (Rb ) 2.57 0.60 1.20 2.45 3.68 0.00 0.00 0.00 2.88
E[Re − Rb ] 7.69 5.50 7.91 11.83 8.19 3.91 5.26 6.64 4.16
σ (Re ) 17.72 12.04 17.13 24.60 22.07 5.64 6.58 7.57 11.48
Sharpe ratio 0.44 0.36 0.47 0.59 0.37 0.59 0.80 1.04 0.36

The table reports population statistics (Pop.) and percentiles from no-disaster simulations. All values are annual. Data are from 1948 to 2013. Parameters
are as follows: average disaster probability, λ̄ = 0.0218; discount rate, β = 0.01; risk aversion, γ = 3; consumption growth during normal times,
μ = 0.0195; consumption growth volatility, σ = 0.0125; dividend growth, μD = 0.04; idiosyncratic volatility, σi = 0.05; leverage, φ = 3; and
mean-reversion, κλ = 0.12. Volatility is σλ = 0.08 in the case of time-varying disaster probability and σλ = 0 in the case of constant disaster probability.

disaster risk case, and in fact the equity premium is slightly lower. Equity returns are not more
volatile because, under this calibration (leverage equals risk aversion), the risk-free rate, risk pre-
mium, and cash flow effects exactly cancel. Even if risk aversion were to slightly exceed leverage,
equity returns would still not be sufficiently volatile, and if risk aversion were lower than leverage,
the model would generate return predictability of the incorrect sign.19

Finally, consider the time-varying disaster probability and EIS ≥ 1. In these cases, equity
volatility is greater than in the constant disaster risk cases because the risk premium and cash flow
effects exceed the risk-free rate effect. Indeed, the Treasury bill return is less volatile in these cases
than in the time-additive utility case. Meanwhile, the equity premium is higher because of the
extra compensation required for assets that fall in times when the disaster probability is high.

Given that the mechanism is through a time-varying risk premium, the model also explains the
ability of price–dividend ratios to predict future excess stock returns (Wachter 2013). Moreover,
consumption growth is not predictable, as in the data. One limitation of this model is that it does
not predict as much volatility of the price–dividend ratio as in the data. The model can come close

19For time-additive utility, the median equity premium in samples without disasters is lower in the time-varying case than in
the constant case. This is because these samples have lower than average levels of the disaster probability.
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to matching this volatility in population, and in the full set of simulations, but the volatility is lower
(0.21 versus 0.43 in the data) in the simulations without rare disasters. This arises in part from the
particular functional form imposed above, which imposes tight restrictions on the volatility of the
disaster process. Richer models for the disaster probability process can overcome these problems
(Seo & Wachter 2013).

The key claim of this model is that asset prices during normal times are driven by the time-
varying tail behavior. Investor expectations about this tail behavior are of course hard to capture,
but recent work has made progress in this regard. Bollerslev & Todorov (2011) use option prices
and high-frequency data to determine beliefs that investors hold about tail risk and premia that
investors assign to tail events. Their model-free measures find that the risk premia that can be
attributed to tail events are a large fraction of the total equity premium, and that this premium
is strongly varying over time. Kelly & Jiang (2014) assume that tails of individual asset returns
follow a power law, with parameters determined by overall market tail behavior. This structure
allows them to estimate the probability of an overall market disaster from individual stock returns.
They show that their disaster measure captures risk premia, in that it has strong predictive power
for excess stock returns. They also show that tail risk determines the cross section, that is, stocks
that covary more with the time-varying tail risk measure have high expected returns. Chabi-Yo,
Ruenzi & Weigert (2014) use high-frequency data to measure disaster risk and come to similar
conclusions, as do Gao & Song (2013) and Gao, Song & Yang (2014), who use data on a wide cross
section of options to construct a disaster risk measure. Disaster risk can also be measured by news
articles using text-based analysis (Manela & Moreira 2013) and using data on credit default swaps
(Seo 2014). These empirical findings offer direct confirmation of the mechanism in the model
above. A related finding is that investors’ lifetime experience of disasters affects their allocation of
stocks years later (Malmendier & Nagel 2011). Though technically outside of this representative
agent framework, this finding is very much in the spirit of the model in that it shows the strong
hold that rare events can have on investor expectations.20

4.2. Time-Varying Resilience

An alternative mechanism for generating time-varying risk premia is to allow the sensitivity of
cash flows to a disaster to vary. This mechanism is introduced by Gabaix (2012), who makes use
of linearity-generating processes, defined in Gabaix (2008), to obtain simple and elegant solutions
for prices.

Following Gabaix (2012), consider the discrete-time equivalent of Equation 5, except with the
Gaussian shock set to zero:

log
Ct+1

Ct
= μ+

{
0 if there is no disaster at t + 1,
Zt+1 if there is a disaster at t + 1.

(33)

Assume the following process for dividends:

log
Dt+1

Dt
= μD + log

(
1 + εD

t+1

)
+
{

0 if there is no disaster at t + 1,
Zd ,t+1 if there is a disaster at t + 1,

(34)

20Studies that take heterogeneity in beliefs into account include Chen, Joslin & Tran (2012), Dieckmann (2011), and Piatti
(2015). Challenges in modeling disagreements about rare events include counterparty risk (whether optimistic agents can
commit to insuring pessimistic ones in the event of a disaster) and the well-known problem in heterogeneous-agent models
of nonstationary equilibria (optimistic agents, over time, take over the economy).
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where Zd ,t+1 is the response of dividends to the disaster and εD
t+1 > −1 has mean zero and is

independent of the disaster event.21 Assume that the pricing kernel is given by

log
πt+1

πt
= −β − γ log

(
Ct+1

Ct

)
,

which is equivalent to assuming time-additive utility. The distribution for Zd ,t+1 and the disaster
intensity are jointly specified using a quantity H t , called resilience:

H t = λt Eν
[
e−γ Zt+1+Zd ,t+1 − 1

]
, (35)

where λt is the disaster probability and the expectation is taken over the disaster distributions.
The process for H t is given by

H t = H ∗ + Ĥ , (36)

where

Ĥ t+1 = 1 + H ∗
1 + Ĥ t

e−φH Ĥ t + εH
t+1, (37)

where εH
t+1 has mean zero and is uncorrelated with εD

t+1 and the disaster event. These assumptions
imply that the price–dividend ratio on the market is linear in the state variable H t :

St

Dt
= 1

1 − e−δ

(
1 + e−δ−h∗ Ĥ t

1 − e−δ−φH

)
, (38)

where h∗ = log(1 + H ∗) and δ = β −μD − h∗. The assumptions in Equations 34–37 are designed
to ensure this linearity. Comparing this model with the previous one, one sees an example of the
general principle that there is a trade-off in the complexity of assumptions versus the complexity
of conclusions. The model in Section 4.1 has relatively simple assumptions on economic funda-
mentals, and results in prices that are an integral of exponential functions. This model has more
complex processes for fundamentals but implies that prices are linear functions.22

Like the model in Section 4.1, this model also implies that risk premia vary over time, and thus
that excess stock returns are predictable. Because utility is time-additive, however, time variation
in the probability of a disaster will most likely not help much in generating this result, and may
hurt because the risk-free rate effect is large in comparison to the risk premium effect and cash
flow effect. For this reason, Gabaix (2012) assumes a constant probability in Equation 35, so his
model is equivalent to one with time-varying exposure. Low market values correspond to periods
of high exposure to a constant level of disaster risk. Because disaster exposure is high, risk premia
are high. Thus, excess stock returns are predictable as in the data.

21Gabaix (2012) allows for the possibility that dividends are completely wiped out in a disaster; for notational convenience we
can allow for this possibility by formally setting e Zd = 0.
22Which one is preferable as a modeling strategy will likely depend on the application. One issue is the utility function:
Although linearity-generating processes can be generalized to non-time-additive utility functions, this comes at the cost of
much greater complexity. A second question is whether evaluating the model involves simulation and what quantities are
necessary to calculate; it is more convenient to calculate prices as linear functions, but more convenient to simulate from the
model in Section 4.1. Stability and the absence of arbitrage require conditions on the shocks εH

t+1 and εD
t+1. Provided that these

conditions are met, the distribution of prices is not affected by the distributional assumptions on these shocks. However, any
quantity that is not a price (such as a return) is affected. Thus, to simulate quantities other than prices from this model, one
must take a stand on the distribution for these shocks; simple distributional assumptions are generally not sufficient because
of the required conditions.
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5. OTHER ASSET CLASSES

The previous sections focused on the implications of disaster risk on stock returns and short-term
bonds, while briefly touching on the literature linking disaster risk to the cross section. Here, we
discuss models that account for puzzles in other asset classes.

5.1. Fixed Income

Like excess stock returns, excess returns on long-term bonds over short-term bonds are also
predictable (Campbell & Shiller 1991, Stambaugh 1988, Cochrane & Piazzesi 2005). Moreover,
excess bond returns are positive on average, leading to an upward-sloping yield curve. Gabaix
(2012) and Tsai (2014) write models explaining these results. Inflation, and thus low realized
returns on bonds, occurs frequently in disasters. Thus, by the logic of Proposition 1, nominal
bonds carry a disaster premium because of their inflation exposure. If this premium varies over
time because of time-varying inflation exposure (as Gabaix assumes) or because the probability
of an inflation disaster varies (as Tsai assumes), then bond returns are predictable. Moreover, as
Tsai shows, bond and stock risk premia need not move together, because fears of an inflation
disaster need not coincide with a disaster affecting stock returns. This lack of comovement poses
a puzzle for preference-based theories of time-varying risk premia (see discussions in Duffee 2013
and Lettau & Wachter 2011). Rare disasters can also help account for the puzzling size of the
default spread compared to actual defaults, as shown in models of capital structure choice in the
presence of rare disasters (Bhamra & Strebulaev 2011, Gourio 2013).

5.2. Options

By making use of the tight connection between the Merton (1976) model and the iid disaster
model in Section 3.1, Backus, Chernov & Martin (2011) show how to derive the distribution
of consumption disasters implied by the prices of equity index options. Their method uses the
fact that, in an iid model, stock returns and consumption returns move one-to-one. Moreover,
because of their nonlinear payoff structure, options provide a means of determining the risk-
neutral distribution of stock returns. Finally, by assuming a representative agent with constant
relative risk aversion and choosing risk aversion to match the equity premium, Backus et al. can
create a mapping from the risk-neutral distribution to the physical distribution.

The distribution of consumption growth implied by options, according to this method, looks
very different from the distribution assumed in Section 3.1. Specifically, Backus, Chernov & Martin
(2011) show that options imply declines in consumption that are much smaller, and also much
more likely. A normal distribution for consumption growth is still clearly rejected, yet the distribu-
tion looks nothing like the distribution of macroeconomic disasters. Moreover, the consumption
distribution in Section 3.1 implies unrealistic prices for options. Backus et al. suggest that their
option-implied consumption distribution can be seen as an alternative to that in Section 3.1. How-
ever, for the same reason that consumption growth cannot be normally distributed with a volatility
of 2.16%, given the 65 years of postwar data, it is also not possible for consumption to be subject
to frequent, small declines; such declines would have been observed and are inconsistent with the
measured volatility of consumption growth. One is thus forced to conclude that the findings of
Backus et al. are a serious challenge to the model in Section 3.1.

However, these results do not necessarily pose a challenge to the models in Section 4.1.23 Seo &
Wachter (2013) solve for option prices in the model in Section 4.1 and in a multifactor extension.

23Du (2011) also shows that an iid disaster risk model has difficulty accounting for options data, but a model with both disaster
risk and external habit formation utility as in Campbell & Cochrane (1999) can account for these data.
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They show that, contrary to the model in Section 3.1, these models can reconcile international
macro data, and hence the disaster risk explanation of the equity premium, with option prices.
This is surprising because allowing disaster risk to vary changes conditional, but not unconditional,
moments of the consumption distribution. Previous work has shown that the implied volatility
smile is mainly driven by unconditional moments. Why, then, does allowing disaster risk to vary
make a difference?

The reason is that the model in Section 4.1 can explain the volatility of stock returns outside
of disasters, whereas the model in Section 3.1 cannot. Unlike reduced-form models, in which the
volatility of stock returns is an exogenous input, disaster risk models produce volatility endoge-
nously. The level as well as the slope of the implied volatility curve reflects the fact that stock
returns have high volatility in normal times, as well as a nonlognormal distribution. Given smooth
consumption and dividend data, this is not consistent with an iid model.

Finally, a large and growing literature assesses the impact of disaster risk on the carry trade in
foreign currency and in currency option returns. Theoretical models include Du (2013), Farhi &
Gabaix (2015), and Martin (2015). Empirical work includes Brunnermeier et al. (2009), Burnside
et al. (2011), Chernov et al. (2015), Farhi et al. (2015), and Jurek (2014).

6. PRODUCTION ECONOMIES

The endowment economies above jointly specify agent preferences and endowments. It is more
realistic to consider consumption as a choice variable, however. Thus, an important question in
considering representative agent models is whether the hypothesized consumption (and dividend)
process is consistent with the deeper notion of general equilibrium defined by a model with pro-
duction. Consideration of production economies also offers the promise of explaining correlations
between the stock market and real variables such as investment and unemployment.

In this section of our review, we follow the literature and assume a discrete-time model. The
discrete-time equivalent of the utility function (considered above) is

Vt =
[

(1 − e−β )C1−1/ψ
t + e−β

(
Et

[
V 1−γ

t+1

])(1−1/ψ)/(1−γ )
]1/(1−1/ψ)

(39)

(Epstein & Zin 1989, Weil 1990). Here it is more convenient to define the stochastic discount
factor rather than the state-price density:

M t+1 = e−β
(

Ct+1

Ct

)−1/ψ(
Vt+1

Et[V
1−γ

t+1 ]1/(1−γ )

)1/ψ−γ

, (40)

so that for an asset with return Rt+1 from 1 to t + 1, the agent’s first-order condition (or, equiva-
lently, no arbitrage) implies

Et[Mt+1 Rt+1] = 1. (41)

6.1. Constant Disaster Risk Models

Two models with endogenous consumption choice are considered by Barro (2009). In the first
model, output is a function of productivity At and labor Lt :

Y t = At Lαt , (42)

where α is between 0 and 1. In this model, assumptions on the endowment process are replaced
by assumptions on productivity, so that At is given by

log
At+1

At
= μ+ εt+1 +

{
0 if there is no disaster at t + 1,
Zt+1 if there is a disaster at t + 1,

(43)
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where εt+1 is an iid normal shock. We modify Equation 39 by replacing Ct with period utility that
allows for preferences over leisure:

Ut = Ct(1 − Lt)χ . (44)

This modification is not without consequence. When consumption is replaced by Equation 44,
ψ can no longer be interpreted as the EIS. However, the EIS is still greater than 1 if and only if
ψ > 1 (Gourio 2012).

In this model with no investment, consumption Ct is equal to output Yt . The wage is equal to
the marginal product of labor,

wt = αYt/Lt = αCt/Lt . (45)

Setting marginal benefit equal to marginal cost leads to the labor supply function24

Lt = 1 − χCt/wt . (46)

Moreover, by Equation 45,

Ct

wt
= 1
α

Lt .

Substituting into Equation 46 implies that, in equilibrium, Lt = α/(α + χ ). Perhaps surprisingly,
hours worked are constant, despite the fact that productivity fluctuates. A disaster leads to a fall in
productivity, which leads to lower consumption and lower wages. These two effects exactly offset,
so that hours worked remain the same. Equation 42 implies that consumption behaves exactly as
in the model of Section 3.1. Dividends are given by

Dt = Yt − wt Lt = Yt − αCt = (1 − α)Ct,

where we have substituted in from the labor supply function. Thus, dividends are proportional
to consumption and also fall by the same percentage in a disaster. Furthermore, because Lt is a
constant, the stochastic discount factor is still given by Equation 40.

It then follows from the Euler equation that the equity premium in this model is exactly the
same as the equity premium on the consumption claim in the model of Section 3.1 (for details, see
Supplemental Appendix B). Moreover, because the consumption process and stochastic discount
factor are the same, the risk-free rate is the same as well. Thus, the model’s ability to explain the
equity premium is preserved under this model with endogenous consumption.

Barro (2009) presents a second model with endogenous consumption where, rather than labor
choice, there is capital and investment. Output is given by

Yt = AKt, (47)

where Kt is the capital stock. Unlike the model above, productivity, A, is constant. Consumption
satisfies

Ct = Yt − It = AKt − It,

where It is investment, and capital evolves according to

Kt+1 = Kt + It − δt+1 Kt,

24Specifically, taking partial derivatives in Equation 44 leads to Ctχ (1−Lt )χ−1 = wt (1−Lt )χ .Rearranging yields Equation 46.
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where δt+1 is stochastic depreciation. In this model, disasters are represented by destruction of
capital, modeled as a shock to depreciation:

δt = δ +
{

0 if there is no disaster at t,

1 − e Zt if there is a disaster at t.
(48)

The link between disasters and capital destruction seems most direct in the case of wars. However,
one could also interpret capital more broadly as including intangibles such as employee or customer
value. Moreover, economic crises may lead to reallocations that make certain kinds of capital
worthless (see the discussion in Gourio 2012).

Because output can be either consumed or costlessly reinvested, a standard formula applies for
the gross return to capital:

RS
t+1 = 1 + A − δt+1. (49)

In this model, the expected return on unlevered equity is the same as the expected return on capital
and is determined by Equation 49. Consumption, and thus investment, is determined by the Euler
equation (Equation 41).

In this model, investment is determined by the disaster probability. Let ζ be the fraction of
capital that is invested. Based on the resource constraint Ct = (A − ζ )Kt and the Euler equation,
one can show that

ζ = ψ

(
1/ψ − 1
γ − 1

)
λE
[
e (1−γ )Zt − 1

]
+ terms that do not depend on λ

(see Supplemental Appendix B). Recall that Zt < 0, so the term inside the expectation is positive
when γ > 1 and negative when γ < 1. On the one hand, a greater probability of disaster lowers
wealth and leads agents to invest more (the income effect). On the other hand, there is now a greater
chance that any investment will be lost in a disaster; this depresses investment (the substitution
effect). When ψ > 1, it is the latter effect that dominates, and a greater probability of disaster
lowers investment (in a comparative static sense). When ψ < 1, the former effect dominates.

Note that the constant investment ratio implies that Ct suffers the same percent decline as
capital in the event of a disaster. It follows from Equation 48 that the first-order implications of
this model for consumption, and therefore the risk-free rate, are the same as in the iid endowment
economy model of Section 3.1. Furthermore, the first-order implications for the equity premium
are also the same (Equation 49).

What happens when there is both capital and labor? Gabaix (2011) and Gourio (2012) consider
the following model for output:

Yt = K α
t (At Lt)1−α. (50)

If a disaster affects capital Kt and productivity At by the same percentage amount, then the risk
premium on the consumption claim is the same as that in the endowment economy with constant
disaster risk. Consumption and the risk-free rate are also the same (also, hours worked do not
change in a disaster). During normal times, macro quantities follow the same dynamics as in a
model without disasters, although the levels of investment and consumption relative to capital are
different.

These results demonstrate that the insights of the iid model in Section 3.1 are not dependent
on the assumption of the endowment economy. That is, the basic mechanism linking disasters to
the equity premium survives a model of endogenous consumption; in this sense, this explanation
is more robust than competing explanations of the equity premium (Kaltenbrunner & Lochstoer
2010, Lettau & Uhlig 2000).
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6.2. Time-Varying Disaster Risk Models

As Section 4 shows, many interesting questions in asset pricing lie outside the reach of iid models.
Can the insights of dynamic endowment economies be extended to models with production?
The literature on dynamic production economies without disasters (e.g., Jermann 1998; Boldrin,
Christiano & Fisher 2001; Kaltenbrunner & Lochstoer 2010) illustrates the many challenges that
this research agenda faces. For example, mechanisms that lead to procyclical investment lead to
countercyclical dividends, and thus imply a very low equity premium. Indeed, one of the reasons
that constant disaster risk models with production in Section 6.1 are successful in explaining
the equity premium is that they do not rely on dynamics in productivity or preferences. Yet
extending the insights of dynamic endowment economies to production economies is a crucial
step in understanding of links between finance and the macroeconomy and in obtaining a deeper
understanding of financial markets themselves.

Gourio (2012) presents a production-based model with adjustment costs in which the proba-
bility of a rare disaster varies over time. In Gourio’s model, output is determined by Equation 50,
with disasters still having the same proportional effect on capital and productivity. Gourio assumes
an EIS of 2 and a risk aversion of 3.8. Because the EIS is greater than 1, the substitution effect
dominates the income effect, and because of the preference for early resolution of uncertainty,
assets exposed to the risk of disaster carries an additional risk premium (Section 4.1).

The main implication of Gourio’s (2012) model is that investment falls when the probability
of a rare disaster rises. Gourio has two mechanisms that combine to achieve this result. First,
investment declines as a fraction of output, as described in the comparative statics analysis of
Section 6.1. Second, adjustment costs create a wedge between the value of a unit of investment
within the firm and outside the firm. This wedge is smaller when the disaster probability is high,
so there is less incentive to invest. Gourio’s model explains why investment and output are more
volatile than consumption and why these variables are imperfectly correlated. Furthermore, equity
prices decline when the probability of a disaster increases, as in the model of Section 4.1. Thus,
the model can explain empirical correlations between investment and stock prices.

One real-world aspect of recessions that is missing from Gourio’s (2012) model is unemploy-
ment. The model does produce variation in hours worked. However, this is not because agents
cannot find jobs, but rather because consumption rises, and consumption and leisure are comple-
ments. Although agents are not happy when the disaster probability rises (it is a high marginal
utility state), they are working their optimal number of hours.

A second limitation of this model is its implications for stock market volatility. When the
disaster probability rises, investment and profits fall, and because investment falls by more than
profits, dividends also fall. This increase in dividends offsets the decrease in prices due to time
variation in the disaster probability. Thus, the volatility on the unlevered claim is very low—lower
than the volatility of output itself. For this reason, Gourio (2012) assumes a high degree of leverage:
Firms issue debt in proportion to capital stock, and there is default in the event of disaster with a
low recovery rate. The levered claim in the model is realistically volatile. However, the leverage
required to achieve this result appears to be unrealistically high (50% versus 30% in the data).
Moreover, data suggest that the unlevered claim is also volatile (Larrain & Yogo 2008).

Petrosky-Nadeau, Zhang & Kuehn (2013) also present a production model with a time-varying
probability of disasters. They assume a production function with labor only, as in the first model
in Section 6.1 but with α = 1. Unlike in that model, hiring is subject to search frictions, as in
Diamond (1982) and Mortensen & Pissarides (1994). Their model has the appealing feature that
consumption disasters arise even though shocks to productivity are normally distributed. Thus,
their model provides a mechanism through which ordinary shocks can endogenously lead to
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disasters. Their model also explains the volatility of unemployment and job vacancies. Moreover,
their model implies that labor market tightness is driven by the probability of a disaster, and thus
should predict stock returns. This is borne out in the data.

Three assumptions lie behind the ability of Petrosky-Nadeau, Zhang & Kuehn’s (2013) model
to produce endogenous disasters. First, wages are high and rigid, so a decline in output leads to
a greater-than-proportional decline in dividends (in contrast to the investment-based model of
Gourio 2012). Second, Petrosky-Nadeau et al. assume a high separation rate and, third, a fixed
component in the marginal cost of vacancies. In effect, it costs more to post a vacancy when labor
conditions are slack (and thus when output is low). As a result, firms do not hire, and output falls
still more. Thus, a sequence of small shocks to output can lead, through this mechanism, to a large
drop in output that resembles a disaster.

Although it is advantageous to have a model that explains disasters, the reliance of the Petrosky-
Nadeau, Zhang & Kuehn (2013) model on these three assumptions is a limitation. In particular, the
last two assumptions are nonstandard. The assumption that posting a vacancy is more expensive in
bad times than in good times does not appear to have empirical support, and is difficult to interpret
economically. The assumption of a high separation rate is contradicted by the data (in the data,
the separation rate is 3% rather than 5%). A second limitation of this model, like that of Gourio
(2012), lies in the implications for stock market volatility. The volatility of stock returns in the
model is 11%, compared to an unlevered volatility of 13%. However, this is in simulated data that
include disasters. As shown in Table 3, stock return volatility tends to be higher in samples with
disasters than in samples without. This raises the question of whether their model can account for
the combination of low volatility of consumption and output and high volatility of stock returns
that characterizes the postwar period.

The models discussed in this section incorporate a time-varying probability of disaster risk to
help resolve deep puzzles in macroeconomics, such as the level of volatility during normal times in
investment and in unemployment. Although the level of stock market volatility remains a puzzle,
the rate of progress shown in these articles suggests that changing expectations of disasters have
an important role in our understanding of the stock market, the macroeconomy, and the links
between the two.

7. CONCLUSION

We argue in this review that disaster risk offers a coherent and parsimonious framework for un-
derstanding asset pricing puzzles. These include the equity premium, risk-free rate, and volatility
puzzles, as well as puzzles in fixed income and option markets. We also show that the disas-
ter risk framework survives a transfer from endowment models to production models, which
endogenize the consumption and dividend processes that are taken as given in the endowment
framework.

One question that frequently arises in the setting of rare events is the appropriateness of the
assumption of a rational expectations equilibrium. A rational expectations equilibrium assumes
that agents know the probabilities with which all events can occur and can also forecast prices in
all states of the world. This has always been somewhat of a heroic assumption in economics, and
never more so than in the case of rare events. Some authors relax this assumption (for example,
Weitzman 2007; Collin-Dufresne, Johannes & Lochstoer 2013); a theme that emerges from this
literature is that the uncertainty and learning strengthen the results that we report.

Disaster risk explanations involve a certain amount of technical modeling, but they are intuitive.
For example, the equity premium puzzle amounts to a question about why investors do not desire
to hold more equities; according to the disaster risk explanation, it is because they are concerned
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about equity performance in what might be a second Great Depression. Another question is why
time-varying risk premia (and thus excess volatility) persist when investors can simply hold more
equities in response to greater risk premia. According to the disaster risk explanation, this is when
investors most fear disasters. Thus, disaster risk is part of a broader class of models (see Hansen
2007) whose goal is endowing agents with something like the uncertainty faced by actual agents
making real-world decisions. Although the rare disaster literature is not alone in this goal, it
accomplishes this in a simple and powerful way.

APPENDIX

A. Proof of Proposition 1

Proof of Proposition 1. Let S be the price of the asset that pays a continuous dividend stream
Dt . Then by no arbitrage,

St = Et

[∫ ∞

t

πs

πt
Ds ds

]
. (A.1)

Multiplying each side of Equation A.1 by πt implies

πt St = Et

[∫ ∞

t
πu Du du

]
. (A.2)

The same equation must hold at any time s > t:

πs Ss = Et

[∫ ∞

s
πu Du du

]
. (A.3)

Combining Equations A.2 and A.3 implies

πt St = Et

[
πs Ss +

∫ s

t
πu Du du

]
. (A.4)

Adding
∫ t

0 πu Du du to both sides of Equation A.4 implies

πt St +
∫ t

0
πu Du du = Et

[
πs Ss +

∫ s

0
πu Du ds

]
. (A.5)

Therefore, πt St + ∫ t
0 πu Du du is a martingale. By Ito’s Lemma,

πt St +
∫ t

0
πu Du du =π0S0 +

∫ t

0
πu Su

(
μπ,u + μS,u + Du

Su
+ σπ,uσ

�
S,u

)
du

+
∫ t

0
πu Su(σS,u + σπ,u)dBu +

∑
0<ui ≤t

(
πui Sui − πu−

i
Su−

i

)
,

(A.6)
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where ui = inf{u : N u = i}. Adding and subtracting the jump compensation term from Equation
A.6 yields

πt St +
∫ t

0
πu Du du =π0S0 +

∫ t

0
πu Su

(
μS,u + μπ,u + Du

Su
+ σπ,uσ

�
S,u + λu Eν

[
(e Zπ+ZS − 1)

])
du

+
∫ t

0
πu Su(σS,u + σπ,u) dBu

+
( ∑

0<ui ≤t

(
πui Sui − πu−

i
Ss −

i

)
−
∫ t

0
πu Suλu Eν

[
(e Zπ+ZS − 1)

]
du

)
.

(A.7)
The second and third terms on the right-hand side of Equation A.7 have zero expectation. There-
fore, the first term in Equation A.7 must also have zero expectation, and it follows that the integrand
of this term must equal zero:

μπ,t + μS,t + Dt

St
+ σπ,tσ

�
S,t + λ�

t Eν
[
e Zπ+ZS − 1

]
= 0. (A.8)

It also follows from no-arbitrage thatμπ,t = −rt−λt Eν [e Zπ −1]; substituting this into Equation A.8
and rearranging implies

μS,t + Dt

St
− rt = −σπ,tσ�

S,t − λt

(
Eν [(e Zπ+ZS − 1)] − Eν [e Zπ − 1]

)
.

Adding λt Eν [e ZS − 1] to both sides and using the definition of r S, we get

r S
t − rt = −σπ,tσ�

S,t − λt

(
Eν [(e Zπ+ZS − 1)] − Eν [e Zπ − 1] − Eν [e ZS − 1]

)
= −σπ,tσ�

S,t − λt Eν [(e Zπ − 1)(e ZS − 1)].
(A.9)

B. Utility

We specify the preferences of the representative agent using a non-time-additive generalization
of constant relative risk aversion. The form of the utility function that we use is from Epstein &
Zin (1989), developed for continuous time by Duffie & Epstein (1992). Utility can be represented
by

V t = Et

∫ ∞

t
f (Cs ,V s ) ds , (B.1)

where

f (C,V ) = β

1 − 1/ψ
C1−1/ψ − ((1 − γ )V )1/θ

((1 − γ )V )1/θ−1
(B.2)

and θ = (1−γ )
(1−1/ψ) . For ψ = 1, we assume

f (C,V ) = β(1 − γ )V

(
log C − 1

1 − γ
log((1 − γ )V )

)
. (B.3)

When 1/ψ = γ , the recursion is linear and these equations collapse to time-additive utility. The
expression for the state-price density in this economy is given by

πt = exp

{∫ t

0

∂

∂V
f (Cs ,V s ) ds

}
∂

∂C
f (Ct,Vt). (B.4)
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C. Details for the Multiperiod Model (Section 3.7)

In this model, aggregate consumption growth is assumed to follow the process

dCt

Ct
= μt dt + σ dBt, (C.1)

with

dμt = κμ(μ̄− μt) dt + Zt dN t, (C.2)

for κμ > 0. By Ito’s Lemma,

Et[log Ct+τ − log Ct] = −1
2
σ 2τ +

∫ τ

o
μt+s ds . (C.3)

To calculate the long-run impact of a shock Zt , we assume that N t = 1, μt = μ̄ and that there
are no other shocks before some future time t + τ . Then μs evolves according to

dμs = κμ(μ̄− μs ) ds, t < s ≤ t + τ,

or dut = κμ(μ̄ − μt)dt with boundary condition μt = μ̄ + Zt . The solution to this differential
equation is μt+τ = μ̄ + Zte−κμτ . It follows that the difference in expected consumption growth
with and without the disaster equals:

Et

[
log Ct+τ − log Ct

∣∣∣ N s = 0, s < t + τ
]

−
(
μ̄− 1

2
σ 2
)
τ = Zt

∫ τ

0
e−κμs ds

= Zt

κμ
(1 − e−κμτ ).

Taking the limit as τ goes to infinity implies that Zt/κμ is the long-run impact of a shock on
consumption.

As in any dynamic model, returns are potentially sensitive to the timing of dividend payments.
For this reason, we do not assume Dt = Cφ

t (which implies a mean of dividend growth that is
significantly higher than in the data), but rather that dividends follow the process

dDt

Dt
= (μ̄D + φ(μt − μ̄)) dt + φσ dBt .

The full solution for the price–dividend ratio (which is exact in the case of time-additive utility
and unit EIS and approximate otherwise) is given by

St

Dt
= G(μt) =

∫ ∞

0
eaφ (τ )+bφ (τ )μt dτ,

where

bφ(τ ) = φ − 1/ψ
κμ

(1 − e−κμτ ) (C.4)

and

aφ(τ ) =
⎛
⎝μ̄D + 1

ψ
μ̄− β + 1

2
γ

(
1 + 1

ψ

)
σ 2 − γφσ 2

+ λEν

[(
1
θ

− 1

)(
e (i1+κμ)−1(1−γ )Zt − 1

)
+
(

e (bφ (u)+(i1+κμ)−1(1/ψ−γ ))Zt − 1
)]⎞⎠τ − bφ(τ )μ̄.
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In this model, the response of equity to a disaster is equal to

ZS,t = log

(
G(μt + Zt)

G(μt)

)

= log

(
1

G(μt)

∫ ∞

0
eaφ (τ )+bφ (τ )(μt+Zt ) dτ

)
.

(C.5)

This expression seems complicated, but conceptually it is relatively simple. Equity value is a
integral (sum) of discounted future dividends, as in Equation 24. The total decline is a weighted
average of the decline in each of the terms in the integral. Equity prices fall at the onset of a
disaster if and only if each term in the integral falls, which occurs if and only if φ > 1/ψ .25 That
is, leverage must exceed the inverse of the EIS. For κμ relatively large, Equation C.4 is nearly
constant in τ and the equity response to a disaster can be approximated by

ZS,t ≈
(
φ − 1

ψ

)
Zt

κμ
. (C.6)

This result combined with Proposition 1 implies the results in the main text.

D. Details for the Model with Time-Varying Probability
of Disaster (Section 4.1)

In this model, the price–dividend ratio on the aggregate market satisfies

St

Dt
= G(λt) =

∫ ∞

0
eaφ (τ )+bφ (τ )λt dτ.

These functions satisfy ordinary differential equations

a ′
φ(τ ) =μD − 1

ψ
μ− β +

(
1
2

(
1 + 1

ψ

)
− φ

)
γ σ 2 + κλ̄bφ(τ ), (D.1)

b ′
φ(τ ) = 1

2
σ 2
λ bφ(τ )2 +

((
1 − 1

θ

)
bσ 2

λ − κ

)
bφ(τ ) + 1

2
1
θ

(
1
θ

− 1

)
b2σ 2

λ

+ Eν

[(
1
θ

− 1

)(
e (1−γ )Zt − 1

)
+ e (φ−γ )Zt − 1

]
,

(D.2)

with boundary conditions aφ(0) = bφ(0) = 0. This system (Equations D.1 and D.2) has a closed-
form solution (see Wachter 2013).

Note that if the last two terms in this differential equation (Equation D.2) were zero, then
bφ(τ ) would be identically zero, the price–dividend ratio would be a constant, and there would
be no excess volatility or return predictability. We therefore seek to understand when the sum of
these terms is negative, the empirically relevant case. We can recover these terms by evaluating

25Note that equity prices fall if and only if∫ ∞

0
eaφ (τ )+bφ (τ )(μt +Zt ) dτ <

∫ ∞

0
eaφ (τ )+bφ (τ )μt dτ.

Each term on the left-hand side is lower than the corresponding term on the right-hand side if and only if bφ (τ ) > 0, that is,
if and only if φ > 1/ψ .
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the derivative of bφ(τ ) at zero:26

b ′
φ(0) = 1

2
1
θ

(
1
θ

− 1

)
b2σ 2

λ + Eν

[(
1
θ

− 1

)(
e (1−γ )Zt − 1

)
+ e (φ−γ )Zt − 1

]
. (D.3)

We now decompose the term inside the expectations as in Section 3.6:

b ′
φ(0) = 1

2
1
θ

(
1
θ

− 1

)
b2σ 2

λ − Eν

[(
1 − 1

θ

)(
e (1−γ )Zt − 1

)
−
(

e−γ Zt − 1
)]

︸ ︷︷ ︸
risk-free rate

− Eν
[
(e−γ Zt − 1)(1 − eφZt )

]
︸ ︷︷ ︸

equity premium

+ Eν
[
eφZt − 1

]
︸ ︷︷ ︸

expected dividend growth

. (D.4)

Equation D.4 shows that for time-additive utility and for ψ = 1, the trade-offs determining
whether prices rise or fall in response to changes in the disaster probability are exactly the same as
the comparative statics result in Section 3.6 (For ψ 	= 1 and ψ 	= 1/γ , there is a slight difference
arising from the additional term in the risk-free rate expression.)

This closed-form analysis illustrates the features of a calibration that are likely to explain stock
market data. First, it almost goes without saying that some risk aversion will be necessary to
achieve an equity premium. In order to generate sufficient stock market volatility along with a
low and stable risk-free rate, it is helpful to have dividends that are more responsive to disasters
than consumption (φ > 1), a relatively high EIS (ψ ≥ 1), and, separately, a preference for early
resolution of uncertainty (γ > 1/ψ).
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Barro RJ, Ursúa J. 2008. Macroeconomic crises since 1870. Brookings Pap. Econ. Act. 1:255–350
Beeler J, Campbell JY. 2012. The long-run risks model and aggregate asset prices: an empirical assessment.

Crit. Finance Rev. 1:141–82

26The precise connection between the sign of b ′
φ (0) and the dynamic behavior of the price–dividend ratio is discussed by

Wachter (2013).

www.annualreviews.org • Disaster Risk and Asset Pricing 249

A
nn

u.
 R

ev
. F

in
an

c.
 E

co
n.

 2
01

5.
7:

21
9-

25
2.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 b

y 
${

in
di

vi
du

al
U

se
r.

di
sp

la
yN

am
e}

 o
n 

03
/2

0/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.



FE07CH08-Wachter ARI 10 November 2015 17:6

Berkman H, Jacobsen B, Lee JB. 2011. Time-varying rare disaster risk and stock returns. J. Financ. Econ.
101:313–32

Bhamra HS, Strebulaev IA. 2011. The effects of rare economic crises on credit spreads and leverage. Work. Pap.,
Sauder Sch. Bus., Univ. B.C.

Boldrin M, Christiano LJ, Fisher JDM. 2001. Habit persistence, asset returns, and the business cycle. Am.
Econ. Rev. 149–66

Bollerslev T, Todorov V. 2011. Tails, fears, and risk premia. J. Finance 66:2165–211
Boudoukh J, Michaely R, Richardson M, Roberts MR. 2007. On the importance of measuring payout yield:

implications for empirical asset pricing. J. Finance 62:877–915
Breeden DT. 1979. An intertemporal asset pricing model with stochastic consumption and investment op-

portunities. J. Financ. Econ. 7:265–96
Brown SJ, Goetzmann WN, Ross SA. 1995. Survival. J. Finance 50:853–73
Brunnermeier MK, Nagel S, Pedersen LH. 2009. Carry trades and currency crashes. In NBER Macroeconomics

Annual 2008, ed. D Acemoglu, K Rogoff, M Woodford, pp. 313–47. Chicago: Univ. Chicago Press
Burnside C, Eichenbaum M, Kleshchelski I, Rebelo S. 2011. Do peso problems explain the returns to the

carry trade? Rev. Financ. Stud. 24:853–91
Calvet LE, Fisher AJ. 2007. Multifrequency news and stock returns. J. Financ. Econ. 86:178–212
Campbell JY. 2003. Consumption-based asset pricing. In Handbook of the Economics of Finance, Vol. 1b, ed. G

Constantinides, M Harris, R Stulz, pp. 803–81. Amsterdam: Elsevier
Campbell JY, Cochrane JH. 1999. By force of habit: a consumption-based explanation of aggregate stock

market behavior. J. Polit. Econ. 107:205–51
Campbell JY, Shiller RJ. 1988. The dividend–price ratio and expectations of future dividends and discount

factors. Rev. Financ. Stud. 1:195–228
Campbell JY, Shiller RJ. 1991. Yield spreads and interest rate movements: a bird’s eye view. Rev. Econ. Stud.

58:495–514
Chabi-Yo F, Ruenzi S, Weigert F. 2014. Crash sensitivity and the cross-section of expected stock returns. Work. Pap.,

Fisher Coll. Bus., Ohio State Univ. http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2011746
Chen H, Joslin S, Tran N-K. 2012. Rare disasters and risk sharing with heterogeneous beliefs. Rev. Financ.

Stud. 25:2189–224
Chernove M, Graveline JJ, Zviadadze I. 2015. Crash risk in currency returns. Work. Pap., Univ. Calif., Los

Angeles
Cochrane JH. 1992. Explaining the variance of price-dividend ratios. Rev. Financ. Stud. 5:243–80
Cochrane JH, Piazzesi M. 2005. Bond risk premia. Am. Econ. Rev. 95:138–60
Collin-Dufresne P, Johannes M, Lochstoer LA. 2013. Parameter learning in general equilibrium: the asset pricing

implications. NBER Work. Pap. 19705. http://www.nber.org/papers/w19705
Constantinides GM. 2008. Comment on ‘‘Macroeconomic crises since 1870.’’ Brookings Pap. Econ. Act. 1:341–

49
Diamond PA. 1982. Wage determination and efficiency in search equilibrium. Rev. Econ. Stud. 49:217–27
Dieckmann S. 2011. Rare event risk and heterogeneous beliefs: the case of incomplete markets. J. Financ.

Quant. Anal. 46:459–88
Du D. 2011. General equilibrium pricing of options with habit formation and event risks. J. Financ. Econ.

99:400–26
Du D. 2013. General equilibrium pricing of currency and currency options. J. Financ. Econ. 110:730–51
Duffee GR. 2013. Bond pricing and the macroeconomy. In Handbook of the Economics of Finance, Vol. 2b, ed.

GM Constantinides, M Harris, RM Stulz, pp. 907–68. Amsterdam: North-Holland. 2nd ed.
Duffie D. 2001. Dynamic Asset Pricing Theory. Princeton, NJ: Princeton Univ. Press. 3rd ed.
Duffie D, Epstein LG. 1992. Stochastic differential utility. Econometrica 60:353–94
Epstein L, Zin S. 1989. Substitution, risk aversion and the temporal behavior of consumption and asset returns:

a theoretical framework. Econometrica 57:937–69
Fama EF, French KR. 1989. Business conditions and expected returns on stocks and bonds. J. Financ. Econ.

25:23–49
Farhi E, Fraiberger SP, Gabaix X, Ranciere R, Verdelhan A. 2015. Crash risk in currency markets. NYU Work.

Pap. FIN-09-007, New York. http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1397668

250 Tsai ·Wachter

A
nn

u.
 R

ev
. F

in
an

c.
 E

co
n.

 2
01

5.
7:

21
9-

25
2.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 b

y 
${

in
di

vi
du

al
U

se
r.

di
sp

la
yN

am
e}

 o
n 

03
/2

0/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2011746
http://www.nber.org/papers/w19705
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1397668


FE07CH08-Wachter ARI 10 November 2015 17:6

Farhi E, Gabaix X. 2015. Rare disasters and exchange rates. Work. Pap., Harvard Univ., N.Y. Univ.
Gabaix X. 2008. Linearity-generating processes: a modelling tool yielding closed forms for asset prices. Work. Pap.,

Stern Sch. Bus., N.Y. Univ. http://pages.stern.nyu.edu/∼xgabaix/papers/linearity.pdf
Gabaix X. 2011. Disasterization: a simple way to fix the asset pricing properties of macroeconomic models.

Am. Econ. Rev. 101:406–9
Gabaix X. 2012. An exactly solved framework for ten puzzles in macro-finance. Q. J. Econ. 127:645–700
Gao GP, Song Z. 2013. Rare disaster concerns everywhere. Work. Pap., Johnson Grad. Sch. Manag., Cornell

Univ. http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2606345
Gao GP, Song Z, Yang L. 2014. Perceived crash risk and cross-sectional stock returns. Work. Pap., Stern Sch. Bus.,

N.Y. Univ.
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