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Abstract

As risk aversion approaches infinity, the portfolio of an investor with utility over

consumption at time T is shown to converge to the portfolio consisting entirely of a bond

maturing at time T : Previous work on bond allocation requires a specific model for equities,
the term structure, and the investor’s utility function. In contrast, the only substantive

assumption required for the analysis in this paper is that markets are complete. The result,

which holds regardless of the underlying investment opportunities and the utility function,

formalizes the ‘‘preferred habitat’’ intuition of Modigliani and Sutch (Amer. Econom. Rev. 56

(1966) 178).
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1. Introduction

Suppose that a person has an n period habitat; that is, he has funds which he will
not need for n periodsy: if he invests in n period bonds, he will know exactly the
outcome of his investmentsy: Thus, risk aversion should not lead investors to
prefer to stay short but, instead, should lead them to hedge by staying in their
maturity habitat (Modigliani and Sutch [12]).

What is the true riskless asset for a long-term investor? In the one-period model, a
highly risk-averse investor holds a portfolio consisting almost entirely of the riskless
asset. In this case, there is no confusion about the meaning of a riskless asset. It is
simply a one-period bond.
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In the multiperiod setting, a complication arises. The one-period bond is, in a
sense, still riskless because its return is known from one period to the next. However,
the payoff on the asset that comes from rolling over positions in one-period bonds is
not riskless because future interest rates are stochastic. A highly risk-averse investor
does not necessarily favor this asset.
Following the intuition of Modigliani and Sutch [12] as quoted above it is natural

to suppose that a highly risk-averse investor with horizon T would favor a bond
maturing at time T : In fact, this result has never been demonstrated. Brennan and
Xia [1] and Campbell and Viceira [3] show that for specific models of the interest rate
and investor preference, allocation to real long-term bonds rises with risk aversion.1

However, neither speaks to the Modigliani and Sutch intuition which appears to
apply more generally.
Simply put, high risk-aversion leads investors to choose a non-random

consumption policy. A real (inflation-indexed) long-term bond is the asset that
replicates the payoff to this non-random policy. This paper offers a formal proof of
this intuition. The link from the consumption policy to the optimal portfolio comes
via the martingale method of Cox and Huang [5], Karatzas et al. [11], and Pliska [13].
While the proof requires that markets be complete, it does not require specific
assumptions on the behavior of the investment opportunity set, nor on the form of
the investor’s utility function.

2. Main result

Let wt denote the N-dimensional standard Brownian motion on the probability
space ðO;F;PÞ: Let fFt: 0ptpTg denote the filtration generated by wt and let Et

be the conditional expectation with respect to Ft: All processes below are assumed
to be adapted toFt: Statements about random variables are assumed to hold almost
surely.
Assume there exist N securities with instantaneously risky returns

mt dt þ st dwt;

where st is a N � N nonsingular matrix process and the process mt is N � 1: In
addition, assume there exists an instantaneously riskless asset with drift rt dt: Let

Zt ¼ s�1t ðmt � irtÞ; where i is the N � 1 vector of ones. Define the state-price density

ft ¼ exp �
Z t

0

rs ds �
Z t

0

Z0s dws �
1

2

Z t

0

Z0sZs ds

� �
:

As shown by Dybvig and Huang [7], Harrison and Pliska [10], and Harrison and
Kreps [9], the existence of f implies that there is no arbitrage. Given existence,
assuming that markets are complete implies that f is unique. ft can be interpreted as
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‘‘real’’ units, i.e. in units of the consumption good. This paper makes the same assumption.
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a system of Arrow–Debreu prices, i.e. ftðoÞ is the price of consumption in state
oAO at time t:
Assume that f satisfies

E½fT �oN: ð1Þ

Condition (1) is equivalent to the condition that a discount bond maturing at T has a
finite price. Even though bonds are not explicitly modeled, market completeness
guarantees that they can be replicated by trading in the underlying assets.
Consider a sequence of twice-continuously differentiable utility functions un such

that u0
n40; u00

no0: Relative risk aversion measures the sensitivity of changes in u0
n to

changes in W :

gnðWÞ ¼ �d lnðu0ðWÞÞ
dðlnWÞ ¼ �u00

nðWÞW
u0

nðWÞ :

Each agent is endowed with initial wealth W0: Wealth Wt evolves according to

Wt ¼ W0 þ
Z t

0

ðrsWs þ y0sðms � rsiÞÞ ds þ ysss dws; ð2Þ

where y is the vector of dollar amounts in the risky securities. In order to eliminate
doubling strategies, it is required that

WtX0 8t: ð3Þ

The choice problem for the nth utility function is

Problem 1. Choose WT40 and y to maximize E½unðWT Þ� subject to (2) and (3).

As is well-known, the investor’s dynamic problem can be restated as a static
problem. Solving Problem 1 is equivalent to finding W 


T ;n such that

u0
nðW 


T ;nÞ ¼ knfT ; ð4Þ

where kn is a Lagrange multiplier chosen so that

E½fT W 

T ;n� ¼ W0: ð5Þ

Rather than detail sufficient regularity conditions, it is simply assumed that a unique
solution to (4) and (5) exists, and that (4) and (5) completely characterize the solution
to Problem 1.2

Finally, initial wealth W0 is normalized so that the investor can afford one unit of
the discount bond maturing at T :

W0 ¼ E½fT �:

ARTICLE IN PRESS
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and f�1
t are finite, and that uð�Þ is bounded by a constant plus a polynomial.
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Theorem 2.1. Consider a sequence of twice-continuously differentiable utility functions

un : ð0;NÞ-R such that u0
n40; u00

no0: Suppose that for each W ; relative risk aversion

at W increases monotonically without bound:

lim
n-N

gnðWÞ ¼ N; gnþ1ðWÞ4gnðWÞ;

for all W40: Assume that for each n a solution to Problem 1 exists and is

characterized by (4) and (5). Then for all tA½0;T �; optimal wealth at time t converges

almost surely to the value of a bond with maturity T :

Theorem 2.1 requires only that convergence be pointwise and monotone, i.e. that
risk aversion increase to infinity at each wealth level. The first step in the proof is to
show that terminal wealth approaches a constant. Then it follows that wealth prior
to T must equal the value of the asset with constant payoff at T : This is precisely the
value of a coupon bond.
Define functions fn to equal the agents’ optimal wealth at state fT :

3 That is,

fnðfTÞ ¼ W 

n;T ; ð6Þ

where W 

n;T solves u0

nðW 

n;TÞ ¼ knfT : Because the goal is to show that terminal

wealth approaches a constant, it is necessary to establish facts about the functions fn:
In what follows, x will be used to denote a generic argument of fn; while fT is
reserved for the random variable equaling the state-price density at time T : Because
terminal wealth is assumed to be strictly positive, the functions fn are strictly positive.
Because u00o0; the functions fn are strictly decreasing.
Why might increasing risk aversion lead the agent to choose constant terminal

wealth? Let Wn ¼ fnðxÞ and W 0
n ¼ fnðx0Þ for two values x; x040: It follows from the

mean value theorem applied to ln u0ðexpðlnWÞÞ that

u0
nðW 0

nÞ
u0

nðWnÞ
¼ W 0

n

Wn

� ��gnðW 00
n Þ
; ð7Þ

for some W 00
n between W 0

n and Wn: From the first-order condition (4) it follows that

u0
nðW 0

nÞ
u0

nðWnÞ
¼ x0

x
:

Substituting in for W 0
n and Wn; applying (7), and rearranging implies

fnðx0Þ
fnðxÞ

¼ x0

x

� �� 1
gnðW 00

n Þ
; ð8Þ

for some W 00
n between fnðxÞ and fnðx0Þ: If gnðW 00

n Þ-N; it follows that, in the limit,
the investor chooses constant wealth.
At this point it is tempting to conclude that gnðW 00

n Þ converges to infinity because
gnð�Þ converges pointwise to infinity. While this turns out to be true, it does not
immediately follow. As n grows, Wn or W 0

n might tend to zero or infinity. Thus, W 00
n
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might tend to zero or infinity, and, because the form of gn is unrestricted, there is
nothing to guarantee that gnðW 00

n Þ converges.
4

Fortunately, the economics of the problem prevent optimal wealth from tending
to zero or infinity. In the first case, the budget constraint is violated. In the second
case, to maintain optimality, wealth in some other state of the world must rise. But
this is counter to the notion of increasing risk aversion. The following lemmas
formalize this argument.
Lemma 1 shows that if wealth in some state of the world declines, wealth in

cheaper states of the world must also decline. Loosely speaking, the dispersion of
wealth cannot increase.5

Lemma 1. Suppose fnþ1ðxÞpfnðxÞ: Then for all x0ox; fnþ1ðx0Þofnðx0Þ:

Proof. Let W ¼ fnðxÞ and W 0 ¼ fnðx0Þ: By the first-order condition,
ln u0

nðW 0Þ � ln u0
nðWÞ ¼ ln x0 � ln x:

Therefore,Z W 0

W

gnðyÞ d ln y ¼ ln x � ln x0:

Holding W and W 0 fixed, it follows from the first-order condition for unþ1 thatZ W 0

W

gnþ1ðyÞ d ln y ¼ ln f �1
nþ1ðWÞ � ln f �1

nþ1ðW 0Þ;

where f �1
n denotes the inverse of fn:

6 Because gnþ1ðyÞ4gnðyÞ for all y;

ln f �1
nþ1ðWÞ � ln f �1

nþ1ðW 0Þ4ln x � ln x0:

Rearranging,

ln f �1
nþ1ðWÞ � ln x4ln f �1

nþ1ðW 0Þ � ln x0:

By assumption, fnþ1ðxÞofnðxÞ ¼ W : Because fnð�Þ is monotonic, the left-hand side is
p than zero. Therefore, the right-hand side must be less than zero. Applying
monotonicity again, it follows that fnðx0Þ ¼ W 04fnþ1ðx0Þ: &

Lemma 2 shows that as risk aversion goes to infinity, for each realization of fT

optimal wealth is confined to a compact set.
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4Assuming gnðWÞ-N uniformly would rule out this possibility. However, it would also rule out any

case where gðWÞ is unbounded below, such as constant absolute risk aversion.
5Dybvig [6, Lemma 1] proves an equivalent result using Pratt’s [14] characterization of increasing risk

aversion in terms of concave transformations.
6Because of the presence of the Lagrange multiplier, f �1

n need not equal u0n:
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Lemma 2. For every x40; there exists Lx and Ux such that

0oLxpfnðxÞpUxoN

for all n:

Proof. Suppose that there exists an x such that fnðxÞ is unbounded above. By
monotonicity, for all x0px; fnðx0Þ4fnðxÞ: By the budget constraint

W0XE½1fTpx fnðfTÞfT �XfnðxÞE½1fTpxfT �:

If fnðxÞ is unbounded, this constraint is violated for n sufficiently large. Therefore,
fnðxÞ is bounded from above for all x:
Because wealth is assumed to be nonnegative, to prove the lower bound it suffices

to consider the case of an x such that fnðxÞ comes arbitrarily close to zero. Then there
exists a subsequence such that fnðxÞ monotonically converges to zero. Because fn

is decreasing (and nonnegative), it follows that for all x04x; fnðx0Þ must also
approach 0. Because preferences are strictly increasing, the budget constraint must
hold with equality:

W0 ¼ E½1fTox fnðfTÞfT � þ E½1fT4x fnðfTÞfT �:

By dominated convergence, the second term approaches zero. Therefore, the first
term approaches W0: For this to happen, wealth in some cheaper state must rise. In
other words, at every n there must exist some x00ox such that fnþ1ðx00Þ4fnðx00Þ: By
Lemma 1, this is a contradiction. &

With these lemmas as background, the proof of Theorem 2.1 follows along the
lines previously discussed.

Proof. For any x40; it follows from (8) that

fnðxÞ
fnð1Þ

¼ x
� 1

gnðynÞ

for ynA½minðLx;L1Þ;maxðUx;U1Þ�: But 1=gnð�Þ converges monotonically to zero on
the compact interval ½minðLx;L1Þ;maxðUx;U1Þ�: It follows from Rudin [15,
Theorem 7.13] that 1=gnð�Þ converges to zero uniformly on this interval and

lim
n-N

fnðxÞ
fnð1Þ

¼ 1: ð9Þ

That is, terminal wealth at every x approaches a constant.
From the investor’s budget constraint, it follows that

W0 ¼ E½fT fnðfT Þ� ¼ fnð1ÞE fT

fnðfT Þ
fnð1Þ

� �
: ð10Þ

As shown in Appendix A (Lemma A.1), the function inside the brackets is bounded
above by a function with finite expectation. Therefore by dominated convergence,
the limit in (9) can be taken inside the expectation (recall that fnð1Þ is bounded below
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by L140). BecauseW0 is normalized so the investor can afford one unit of the bond,
it follows that the constant value of wealth must equal 1:

lim
n-N

fnð1Þ ¼ 1:

Therefore,

lim
n-N

fnðxÞ ¼ 1 8x40:

Let W 

n;t denote the optimal wealth for the nth agent at time t: Cox and Huang [5]

show that

W 

n;t ¼ Et

fT

ft

W 

n;T

� �
a:s:

Applying Lemma A.1 and dominated convergence once more, it follows that

lim
n-N

W 

n;t ¼ lim

n-N

Et

fT

ft

fnðfT Þ
� �

¼ Et lim
n-N

fT

ft

fnðfTÞ
� �

¼ Et

fT

ft

� �
a:s:;

which is the value of the bond with maturity T at time t: &

3. Conclusion

This paper demonstrates that as risk aversion approaches infinity, the optimal
portfolio dynamically replicates a long-term bond. This result is quite intuitive. The
martingale approach allows the proof to follow the intuition: highly risk-averse
investors seek a stable consumption stream. Their wealth must equal the expected
discounted value of their future consumption, where the discounting is accomplished
through the state-price density. Therefore, wealth approaches the value of an
inflation-indexed bond.
One application of this result pertains to the asset allocation puzzle of Canner et al.

[2]. Canner et al. find that financial advisers recommend a higher proportion of long-
term bonds to stocks in their ‘‘conservative’’ portfolios than in their ‘‘aggressive’’
portfolios. This is described as a puzzle, because in a one-period model, long-term
bonds are risky investments and thus the proportion of bonds to stocks should be the
same for all investors. This paper points to a simple resolution that holds under
conditions of low inflation risk: the riskless asset for long-term investors is not a
short-term bond, but the bond with maturity equal to their horizon.
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Appendix A

Lemma A.1. Let f ðxÞ be the function defined in (6). There exists a function F and an

integer N such that 8nXN;

fnðxÞpFðxÞ 8xAð0;NÞ ðA:1Þ

and such that 8t; Et½FðfT ;TÞfT � is finite a.s.

Proof. Choose %x sufficiently small so that f1ð %xÞ42U1: By (9), there exists an N such
that for nXN:

fnð %xÞo2 fnð1Þo2U1of1ð %xÞ:

By Lemma 1, for xo %x; fnðxÞofNðxÞ: Define a function

FðxÞ ¼
fnð %xÞ; xX %x;

fNðxÞ; xo %x:

(

Then fnðxÞoFðxÞ for n4N and

E½FðfTÞfT �pE½ fNðfT ;TÞfT1fTo %x� þ fnð %xÞE½fT1fT4 %x�

pW0 þ fnð %xÞE½fT �:

Hence, E½FðfT ÞfT � is finite. By the law of iterated expectations Et½FðfT ÞfT � is finite
almost surely. &
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