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We investigate optimal portfolio choice for an investor who is skeptical about the degree to which excess
returns are predictable. Skepticism is modeled as an informative prior over the R2 of the predictive
regression. We find that the evidence is sufficient to convince even an investor with a highly skeptical
prior to vary his portfolio on the basis of the dividend-price ratio and the yield spread. The resulting
weights are less volatile and deliver superior out-of-sample performance as compared to the weights
implied by an entirely model-based or data-based view.
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0. Introduction

Are excess returns predictable, and if so, what does this
mean for investors? In classic studies of rational valuation
(e.g. Samuelson (1965, 1973) and Shiller (1981)), risk premia are
constant over time and thus excess returns are unpredictable.2
However, an extensive empirical literature has found evidence for
predictability in returns on stocks and bonds by scaled-price ratios
and interest rates.3
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2 Examples of general-equilibrium models that imply excess returns that are
largely unpredictable include Abel (1999, 1990), Backus et al. (1989), Campbell
(1986), Cecchetti et al. (1993), Kandel and Stambaugh (1991) and Mehra and
Prescott (1985).
3 See, for example, Fama and Schwert (1977), Keim and Stambaugh (1986),
Campbell and Shiller (1988), Fama and French (1989), Cochrane (1992), Goetzmann
and Jorion (1993), Hodrick (1992), Kothari and Shanken (1997), Lettau and
Ludvigson (2001), Lewellen (2004) and Ang and Bekaert (2007).
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Confronted with this theory and evidence, the literature has
focused on two polar viewpoints. On the one hand, if models
such as Samuelson (1965) are correct, investors should maintain
constant weights rather than form portfolios based on possibly
spurious evidence of predictability. On the other hand, if the
empirical estimates capture population values, then investors
should time their allocations to a large extent, even in the
presence of transaction costs andparameter uncertainty.4 Between
these extremes, however, lies an interesting intermediate view:
that both data and theory can be helpful in forming portfolio
allocations.
This paper models this intermediate view in a Bayesian

setting. We consider an investor who has a prior belief about
the R2 of the predictive regression. We implement this prior by
specifying a normal distribution for the regression coefficient on
the predictor variable. As the variance of this normal distribution
approaches zero, the prior belief becomes dogmatic that there is
no predictability. As the variance approaches infinity, the prior is
diffuse: all levels of predictability are equally likely. In between,
the distribution implies that the investor is skeptical about
predictability: predictability is possible, but it is more likely that

4 See, for example, Brennan et al. (1997) and Campbell and Viceira (1999) for
stocks and Sangvinatsos and Wachter (2005) for long-term bonds. Balduzzi and
Lynch (1999) show that predictability remains important even in the presence
of transaction costs, while Barberis (2000) and Xia (2001) show, respectively,
that predictability remains important in the presence of estimation risk and
learning. An exception is the case of buy-and-hold portfolios with horizons of
many years (Barberis, 2000; Cochrane, 1999; Stambaugh, 1999). Brennan and Xia
(2005) construct a long-run measure of expected returns and derive implications
for optimal portfolios. They show that this long-run measure often implies a less
extreme response to predictability than regression-based measures.
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predictability is ‘‘small’’ rather than ‘‘large’’. By conditioning this
normal distribution on both the unexplained variance of returns
and on the variance of the predictor variable, we create a direct
mapping from the investor’s prior beliefs on model parameters to
a well-defined prior over the R2.
In our empirical implementation, we consider returns on a

stock index and on a long-term bond. The predictor variables are
the dividend-price ratio and the yield spread between Treasuries
of different maturities. We find that the evidence is sufficient to
convince an investor who is quite skeptical about predictability
to vary his portfolio on the basis of these variables. The resulting
weights, however, are much less volatile than for an investor who
allocates his portfolio purely based on data. To see whether the
skeptical prior would have been helpful in the observed time
series, we implement an out-of-sample analysis. We show that
weights based on skeptical priors deliver superior out-of-sample
performance when compared with diffuse priors, dogmatic priors,
and to a simple regression-based approach.
Our study builds on previous work that has examined

predictability from a Bayesian investment perspective. Kandel and
Stambaugh (1996) show that predictive relations that are weak
in terms of standard statistical measures can nonetheless affect
portfolio choice.5 They conduct a simulation experiment such that
predictability is presentwithmodest significance, and examine the
portfolio choices of a Bayesian investor who views the simulated
data. In contrast, our study bases its inference on the historical
time series of returns and predictor variables. We ask whether
an investor whose priors imply skepticism about the existence of
predictability would find it optimal to vary their investments in
risky assets over time. Other studiesmake use of informative priors
in a setting of return predictability. Avramov (2002) and Cremers
(2002) show that Bayesian inference and informative priors can
lead to superior model selection. Shanken and Tamayo (2005)
jointly model time variation in risk and expected return in a
Bayesian setting. Shanken and Tamayo incorporate model-based
intermediate views on the relation between expected return and
risk. In what follows, we compare the prior beliefs we assume to
those in each of these related studies.
Our study is also related to that of Poirier (1996), who calculates

the prior distribution on the R2 that is implied by the prior
distributions on the regression coefficients and on the standard
deviation of errors. Poirier points out that it is often easier to elicit
priors on goodness-of-fit measures, such as the R2, as compared
to priors on the regression coefficients. Our motivation for using
the R2 is similar. Our study differs from that of Poirier’s in that we
assume a time-series setting in which the regressors are not pre-
determined.We also explicitly calculate the implied posteriors and
develop the implications for portfolio choice.
Our use of model-based informative priors has parallels

in a literature that examines the portfolio implications of
the cross-section of stock returns. Motivated by the extreme
weights and poor out-of-sample performance of mean–variance
efficient portfolios (Best and Grauer, 1991; Green and Hollifield,
1992), Black and Litterman (1992) propose using market weights
as a benchmark, in effect using both data and the capital asset

5 Subsequently, a large literature has examined the portfolio consequences
of return predictability in a Bayesian framework. Barberis (2000) considers the
optimization problem of a long-horizon investor when returns are predictable. Xia
(2001) considers the effect of learning about the predictive relation in a dynamic
setting with hedging demands. Brandt et al. (2005) and Skoulakis (2007) extend
this work to allow for uncertainty and learning about the other parameters in the
predictive system. Johannes et al. (2002) model the mean and volatility of returns
as latent factors. Our methods build directly on those of Stambaugh (1999), who
studies the impact of changes in the prior and changes in the likelihood. In contrast
to the present study, these papers assume diffuse priors.
pricing model to form portfolios. Recently, Bayesian studies such
as Pastor (2000), Avramov (2004) and Wang (2005) construct
portfolios incorporating informative beliefs about cross-sectional
asset pricing models.6 Like the present study, these studies show
that allowing models to influence portfolio selection can be
superior to using the data alone. While these studies focus on the
cross-section of returns, we apply these ideas to the time series.
The remainder of this paper is organized as follows. Section 1

describes the assumptions on the likelihood and prior, the
calculation of the posterior, and the optimization problem of the
investor. Section 2 applies these results to data on stock and
bond returns, describes the posterior distributions, the portfolio
weights, and the out-of-sample performance across different
choices of priors. Section 3 concludes.

1. Portfolio choice for a skeptical investor

Given observations on returns and a predictor variable, how
should an investor allocate his wealth? One approach would be
to estimate the predictability relation, treat the point estimates
as known, and solve for the portfolio that maximizes utility. An
alternative approach, adopted in Bayesian studies, is to specify
prior beliefs on the parameters. The prior represents the investor’s
beliefs about the parameters before viewing data. After viewing
data, the prior is updated to form a posterior distribution;
the parameters are then integrated out to form a predictive
distribution for returns, and utility is maximized with respect
to this distribution. This approach incorporates the uncertainty
inherent in estimation into the decision problem (see Klein and
Bawa (1976), Bawa et al. (1979) and Brown (1979)).7 Rather than
assuming that the investor knows the parameters, it assumes,
realistically, that the investor estimates the parameters from
the data. Moreover, this approach allows for prior information,
perhaps motivated by economic models, to enter into the decision
process. This section describes the specifics of the likelihood
function, the prior, and the posterior used in this study.

1.1. Likelihood

This subsection constructs the likelihood function. Let rt+1
denote an N × 1 vector of returns on risky assets in excess of a
riskless asset from time t to t+1, and xt a scalar predictor variable
at time t . The investor observes data on returns r1, . . . , rT , and the
predictor variable x0, . . . , xT . Let

D ≡ {r1, . . . , rT , x0, x1, . . . , xT }

represent the total data available to the investor. Our initial
assumption is that there is a single predictor variable that has the
potential to predict returns on (possibly) multiple assets. Allowing
multiple predictor variables complicates the problem without
contributing to the intuition. For this reason, we discuss the case
of multiple predictor variables in Appendix A.
The data generating process is assumed to be

rt+1 = α + βxt + ut+1 (1)
xt+1 = θ0 + θ1xt + vt+1, (2)

6 Related approaches to improving performance of efficient portfolios include
Bayesian shrinkage (Jobson andKorkie, 1980; Jorion, 1985) andportfolio constraints
(Frost and Savarino, 1988; Jagannathan and Ma, 2003). Cvitanic et al. (2006)
incorporate analyst forecasts in a dynamic setting with parameter uncertainty and
learning. Garlappi et al. (2007) take a multi-prior approach to portfolio allocation
that allows for ambiguity aversion. Tu and Zhou (2007) impose priors that ensure
that portfolio weights fall into a certain range. Unlike the present study, these
papers assume that the true distribution of returns is iid and focus on the cross-
section.
7 Like these papers and like the portfolio choice papers cited in the introduction,
this paper studies an investor who should not be viewed as representative. By
definition, the representative investor must hold the market portfolio.
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where[
ut+1
vt+1

]
| rt , . . . , r1, xt , . . . , x0 ∼ N (0,Σ) , (3)

α and β are N×1 vectors andΣ is an (N+1)× (N+1) symmetric
and positive definite matrix.8 It is useful to partitionΣ so that

Σ =

[
Σu Σuv
Σvu Σv

]
,

whereΣu is the variance–covariancematrix of ut+1,σ 2v = Σv is the
variance of vt+1,Σuv is the N×1 vector of covariances of vt+1 with
each element of ut+1, and Σvu = Σ>uv . This likelihood is a multi-
asset analogue of that assumed by Kandel and Stambaugh (1996)
and Campbell and Viceira (1999), and many subsequent studies.
It is helpful to group the regression parameters in (1) and (2)

into a matrix:

B =
[
α> θ0
β> θ1

]
,

and to definematrices of the observations on the the left hand side
and right hand side variables:

Y =

r
>

1 x1
...

...

r>T xT

 , X =

1 x0
...

...
1 xT−1

 .
As shown in Barberis (2000) and Kandel and Stambaugh (1996),
the likelihood conditional on the first observation takes the same
form as in a regression model with non-stochastic regressors.
Let p(D|B,Σ, x0) denote the likelihood function. From results
in Zellner (1996), it follows that

p(D|B,Σ, x0) = |2πΣ |−
T
2 exp

{
−
1
2
tr
[
(Y − XB)>(Y − XB)Σ−1

]}
, (4)

where tr(·) denotes the sum of the diagonal elements of amatrix.9
The likelihood function (4) conditions on the first observation

of the predictor variable, x0. In contrast, observations 1, . . . , T are
treated as draws from the data-generating process. An alternative,
implemented in a return-predictability setting by Stambaugh
(1999), is to treat x0 as a draw from the data-generating process
as well. The resulting likelihood function fully incorporates the
information contained in x0, while (4) does not. It may at first
seem that this choice should make little difference, since only
one observation is involved. However, Poirier (1978) shows that
the consequences can be quite substantial because the first
observation is transformed in a different way than the remaining
observations.
In constructing the likelihood that does not condition on x0,

we assume that the process for xt is stationary and has run for a
substantial period of time. Results in Hamilton (1994, p. 53) imply
that x0 is a draw from a normal distribution with mean

µx ≡ E [xt | B,Σ] =
θ0

1− θ1
(5)

8 Results assuming a multivariate t-distribution are similar to those reported
below and available from the authors upon request.
9 Maximizing the conditional likelihood function (4) implies estimates of β that
are the same as those obtained by ordinary least squares regression. These estimates
are biased (see Bekaert et al. (1997), Nelson and Kim (1993) and Stambaugh (1999)),
and standard asymptotics provide a poor approximation to the distribution of
test statistics in small samples (Cavanagh et al., 1995; Elliott and Stock, 1994;
Mankiw and Shapiro, 1986; Richardson and Stock, 1989). An active literature based
in classical statistics focuses on correcting for these problems (e.g. Amihud and
Hurvich (2004), Campbell and Yogo (2006), Eliasz (2004), Ferson et al. (2003),
Lewellen (2004) and Torous et al. (2004)).
and variance

σ 2x ≡ E
[
(xt − µx)2 | B,Σ

]
=

σ 2v

1− θ21
. (6)

Combining the likelihood of the first observation with the
likelihood of the remaining T observations produces

p(D|B,Σ) = p(D|x0, B,Σ)p(x0|B,Σ)

=
(
2πσ 2x

)− 12 |2πΣ |− T2 exp{−1
2
σ−2x (x0 − µx)2

−
1
2
tr
[
(Y − XB)>(Y − XB)Σ−1

]}
. (7)

Eq. (7) is the likelihood function used in our analysis. Following Box
et al. (1970), we refer to (7) as the exact likelihood, and to (4) as the
conditional likelihood.

1.2. Prior beliefs

This subsection describes the prior. We specify prior distribu-
tions that range from being ‘‘uninformative’’ in a sense we will
make precise, to ‘‘dogmatic’’. The uninformative priors imply that
all amounts of predictability are equally likely, while the dog-
matic priors rule out predictability all together. Between these ex-
tremes lie priors that downweight empirical evidence on return
predictability. These informative priors imply that large values of
the R2 from predictive regressions are unlikely, but not impossible.
Before discussing the specifics of our informative priors, we

briefly discuss how asset-pricing theory guides us toward these
priors. Models with constant relative risk aversion, rational agents,
and homoskedastic endowments (e.g. Abel (1990, 1999), Backus
et al. (1989) and Barro (2006) and the benchmark case in
Bansal and Yaron (2004)) imply that the R2 in the predictability
regression is exactly zero.10 Recently, several papers propose
general equilibrium models that are capable of generating time-
varying expected excess returns (risk premia). Models that
successfully account for time-varying risk premia have done
so through one of several mechanisms: time-varying relative
risk aversion (e.g. Campbell and Cochrane (1999)), non-rational
investors (e.g. Barberis et al. (2001)), or time-varying volatility
in the endowment process (e.g. Whitelaw (2000) and Bansal and
Yaron (2004)). An investorwhose prior is that constant relative risk
aversion is more likely than time-varying relative risk aversion,
that investors are more likely to be rational and that aggregate
consumption growth is more likely to be homoskedastic would
therefore place low probability on a high R2 from predictive
regressions.11

10 Models with regime shifts in the endowment process, such as Cecchetti et al.
(1993), Kandel and Stambaugh (1991), Mehra and Prescott (1985) and Reitz
(1988) imply a small amount of heteroskedasticity, and therefore of excess return
predictability. The amount of excess return predictability generated through the
regime-shift mechanism is very small, however. Allowing for this small amount of
predictability in the prior would greatly complicate the analysis and is unlikely to
affect the results.
11 Of these possibilities, it is perhaps most difficult to conceptualize a prior
over endowment heteroskedasticity. This issue is complicated by the fact that a
model with endowment heteroskedasticity will not necessarily imply that return
heteroskedascity takes a simple form, and that return variance and risk premia are
related in a straightforward way. In a study that we discuss further below, Shanken
and Tamayo (2005) take a reduced-form approach and assume priors that favor a
linear relation between the return variance and the risk premium. They find that
there is significant variation in expected excess returns that does not correspond
to variation in volatility, a conclusion also reached in many frequentist studies
(see Campbell (2003) for a survey). We hope to investigate the important issue of
heteroskedasticity in future research; however, given the results of existing studies
we expect our conclusions to be unaffected.



J.A. Wachter, M. Warusawitharana / Journal of Econometrics 148 (2009) 162–178 165
We now discuss the specific form assumed for the investor’s
prior beliefs. The most obvious parameter that determines the
degree of predictability is β . Set β to zero, and there is no
predictability in the model. However, it is difficult to think of prior
beliefs aboutβ in isolation frombeliefs about other parameters. For
example, a high variance of xt might lower one’s prior on β , while
a large residual variance of rt might raise it. Rather than placing
a prior on β directly, we instead place a prior on ‘‘normalized’’ β ,
that is β adjusted for the variance of x and the variance of u. As we
show below, this is equivalent to placing a prior on the population
equivalent of the centered, unadjusted R2. Let Cu be the Cholesky
decomposition ofΣu, i.e. CuC>u = Σu. Then

η = C−1u σxβ

is normalized β . We assume that prior beliefs on η are given by

η ∼ N(0, σ 2η IN), (8)

where IN is the N × N identity matrix.12

We implement the prior for η by specifying a hierarchical prior
for the primitive parameters. That is, the prior for β is conditional
on the remaining parameters:

p(B,Σ) = p(β|α, θ0, θ1,Σ)p(α, θ0, θ1,Σ). (9)

Then the specification for the distribution for η, (8), is equivalent
to the following specification for the distribution of β:

β|α, θ0, θ1,Σ ∼ N(0, σ 2η σ
−2
x Σu). (10)

Because σx is a function of θ1 and σv , the prior onβ is also implicitly
a function of these parameters.
For the remaining parameters, we choose a prior that is

uninformative in the sense of Jeffreys (1961).13 We follow the
approach of Stambaugh (1999) and Zellner (1996), and derive a
limiting Jeffreys prior as explained in Appendix D. This limiting
prior takes the form

p(α, θ0, θ1,Σ) ∝ σx|Σu|1/2|Σ |−
N+4
2 , (11)

for θ1 ∈ (−1, 1), and zero otherwise. Therefore the joint prior is
given by

p(B,Σ) = p(β|α, θ0, θ1,Σ)p(α, θ0, θ1,Σ)

∝ σ N+1x |Σ |−
N+4
2 exp

{
−
1
2
β>

(
σ 2η σ

−2
x Σu

)−1
β

}
. (12)

Note that in (11) and (12), σx is a nonlinear function of the
autoregressive coefficient θ1 and volatility of the shock to the
predictor variable σv .
The appeal of linking the prior distribution of β to the

distribution of Σu and σx is that it implies a well-defined
distribution on the population R2. Consider for simplicity the case

12 Formally, we can consider a prior on the parameters p(α, η, θ0, θ1,Σ) =
p(η)p(α, θ0, θ1,Σ), where p(η) is defined by (8).
13 The notion of an uninformative prior in a time-series setting is a matter of
debate. One approach is to ignore the time-series aspect of (1) and (2), treating
the right hand side variable as exogenous. This implies a flat prior for α, β , θ0 ,
and θ1 . When applied in a setting with exogenous regressors, this approach leads
to Bayesian inference which is quite similar to classical inference (Zellner, 1996).
However, Sims and Uhlig (1991) show that applying the resulting priors in a time
series setting leads to different inference than classical procedureswhen xt is highly
persistent. As a full investigation of these issues is outside the scope of this study,
we focus on the Jeffreys prior. Replacing the prior in (11) with one that is implied
by exogenous regressors gives results that are similar to our current ones; these are
available from the authors.
of a single risky asset. In population, the ratio of the variance of the
predictable component of return to the total variance is equal to

R2 = β2σ 2x
(
β2σ 2x +Σu

)−1
=

η2

η2 + 1
. (13)

(note that Σu is a scalar). Eq. (13) is the population equivalent of
the centered, unadjusted R2. In what follows, we will refer to (13)
simply as the R2. Because the R2 is a function of η alone, specifying
a prior on η, and therefore specifying the joint prior (12), implies a
well-defined prior distribution on the R2.
When there are N risky assets, there is a natural extension of

(13). Besides implying a distribution on the R2 of each asset, the
distribution of η, (8) implies a joint distribution such that no linear
combination of asset returns can have an R2 that is ‘‘too large’’. To
be more precise, let w be an N × 1 vector. Then calculations in
Appendix B show that

max
w
R2 = max

w

w>ββ>σ 2x w

w>ββ>wσ 2x + w
>Σuw

=
η>η

η>η + 1
. (14)

The return on the risky part of an investor’s portfolio is a linear
combination of the returns on the risky assets; therefore the risky
part of any portfolio chosen by the investor must have an R2 that
lies below (14). An alternative strategy would be to link the prior
to the R2 of the optimal portfolio of the investor. However, this
optimal portfolio depends not only on the history of the data, it
also depends on the particular value of the predictor variable. Both
are unknown to the investor when forming the prior. In contrast,
placing a prior on the R2, or on the maximum R2 of a system of
equations, has simple, intuitive appeal.14

Fig. 1 depicts the distribution of the R2 implied by these prior
beliefs. The figure shows the probability that the R2 exceeds some
value k, P(R2 ≥ k), as a function of k; it is therefore one minus
the cumulative distribution function for the R2. We construct this
figure by simulating draws of η from (8) and, for each draw,
constructing a draw from the R2 distribution using (13). As this
figure shows, the parameter ση indexes the degree to which
the prior is informative. For ση = 0, the investor assigns zero
probability to a positiveR2; for this reason P(R2 ≥ k) is equal to one
at zero and is zero elsewhere. As ση increases, the investor assigns
non-zero probability to positive values of the R2. For ση = 0.04,
the probability that the R2 exceeds 0.02 is 0.0005. For ση = 0.08,
the probability that the R2 exceeds 0.02 is 0.075. Finally when ση is
large, approximately equal probabilities are assigned to all values
of the R2. This is the diffuse prior that expresses no skepticism
with regard to the data. In what follows, we will consider the
implications of these four priors for the individual’s investment
decisions. We will refer to them by using the corresponding
probabilities that the R2 exceeds 0.02. We note, however, that we
focus on 0.02 for convenience; any number between 0 and 1 could
be substituted.

14 This prior distribution could easily be modified to impose other restrictions
on the coefficients β . In the context of predicting equity returns, Campbell and
Thompson (2008) suggest disregarding estimates of β if the expected excess return
is negative, or if β has an opposite sign to that suggested by theory. In our
model, these restrictions could be imposed by assigning zero prior weight to the
appropriate regions of the parameter space. One could also consider a non-zero
mean for β , corresponding to a prior belief that favors predictability of a particular
sign. For simplicity, we focus on priors that apply to any predictor variable on
possibly multiple assets, and leave these extensions to future work.
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Fig. 1. Prior on the R2 of the predictive regression. (Notes: The prior probability
that the R2 exceeds a value k, for k ranging from 0 to 0.025 implied by skeptical
Jeffreys priors. Prior beliefs are indexed by ση , the prior standard deviation of the
normalized coefficient on the predictor variable. The dogmatic prior is given by
ση = 0; the diffuse prior by ση = ∞. Intermediate priors express some skepticism
about return predictability.)

Finally, we note that Jeffreys invariance theory provides an
independent justification for modeling priors on β as in (10).
Appendix C shows that the limiting Jeffreys prior forB andΣ equals

p(B,Σ) ∝ σ N+1x |Σ |−
N+4
2 . (15)

This prior corresponds to (12) as ση approaches infinity. Modeling
the prior for β as depending on σx not only has an interpretation
in terms of the R2, but also implies that an infinite prior variance
represents ignorance as defined by Jeffreys (1961). Note that a
prior on β that is independent of σx would not have this property.
Because the priors in (12) combine an informative (‘‘skeptical’’)
prior on β with a Jeffreys prior on the remaining parameters, we
refer to these as skeptical Jeffreys priors.

1.2.1. Comparison with related studies
In this section we have described one way of modeling prior

information. We now compare this approach to that used in some
important Bayesian return predictability studies that make use of
informative priors.15
Kandel and Stambaugh (1996) derive posteriors assuming the

investor has seen, in addition to the actual data, a ‘‘prior’’ sample
of the data that has unconditional moments equal to those of
the actual sample except without predictability.16 These priors
are also assumed by Avramov (2002, 2004). In a recent working
paper, Pastor and Stambaugh (2006) focus on informative priors
about the correlation between ut+1 and vt+1; they also construct
an informative prior on the R2 using the sample variance of
stock returns. Cremers (2002) specifies informative prior beliefs
motivated by placing a distribution on the expected sample R2.
Cremers’s priors assume knowledge of sample moments of the
predictor variable. Specifically, if we let X denote a T × kmatrix of
values for k predictor variables, Cremers assumes that the investor
knows X>X .
The various priors specified in the above studies all contain

the same flaw: they require that the investor has knowledge of

15 Goyal and Welch (2008) present an ‘‘encompassing forecast’’, which, while
not Bayesian, has similar implications in that it downweights the predictability
coefficient estimated from the data. Bayesian methods can be seen as formalizing
this approach.
16 Kandel and Stambaugh discuss the appeal of holding the distribution of the R2
constant. To accomplish this in their set-up, they let the length of the prior sample
increase in the number of predictor variables.
the sample moments when forming a prior. It is not enough for
the investor to make a reasonable guess as to the value of the
moments. For the analyses to be correct, the investor must know
the value of the moment precisely. From a Bayesian perspective,
such knowledge is problematic. To know the moments of the data,
either the investor must have seen the data (but then the prior and
the posterior would be identical), or somehow intuited the correct
moments, without seeing the data. Even if we accept this awkward
latter interpretation, to be consistent these moments would have
to be treated as constants (namely conditioned on) throughout the
analysis, which they are not.17
In contrast, we construct a prior that does not require

conditioning on the sample moments, but is nonetheless based
on a measure over which investors have intuition. Rather than
improperly conditioning on sample moments, we do this by
forming a prior over the population R2 itself. We note that the
stochastic nature of the regressor is at the core of the problem,
and thus of our contribution. If the regressors were non-stochastic,
as in standard ordinary least squares (but rarely in predictive
regressions), conditioning on X>X in the prior would be valid.
Another important study that is related to ours is that of

Shanken and Tamayo (2005).18 Shanken and Tamayo model time-
variation in risk as well as in expected returns. Like our priors, the
priors in Shanken and Tamayo represent a model-based view that
is intermediate between complete faith in a model and complete
faith in the data. However, their formulation of priors is less
parsimonious, requiring ten parameters in the case of a single
asset (a broad stock market portfolio) and predictor variable (the
dividend-yield). The prior values are specific to these variables and
donot transfer easily to other assets or newpredictor variables. The
advantage of ourmethod is that it expresses the informativeness of
the agent’s prior beliefs as a single number which can be mapped
into beliefs about the maximum R2. This is the case regardless of
the number of risky assets or the number and characteristics of the
predictor variables.
Our choice of priors is in fact reminiscent of the choice of priors

over intercepts in cross-sectional studies. Pastor and Stambaugh
(1999) and Pastor (2000) specify an informative prior on the vector
of intercepts from regressions of returns on factors in the cross-
section. Building on ideas of MacKinlay (1995), these studies argue
that failure to condition the intercepts on the residual variance
could imply very high Sharpe ratios, because there would be
nothing to prevent a low residual variance draw from occurring
simultaneously with a high intercept draw. Bayesian portfolio
choice studies (Baks et al., 2001; Jones and Shanken, 2005; Pastor
and Stambaugh, 2002) specify an informative prior on estimates of
mutual fund skill. Because skill is measured as the intercept on a
regression of fund returns on factors, this is analogous to the prior
used in the cross-sectional studies. Likewise, these mutual fund
studies condition prior beliefs about skill on the residual variance
of the fund. In the present study, β plays a role that is roughly
analogous to the intercept in these previous studies:β = 0 implies
no predictability, and hence no ‘‘mispricing’’. However, in the time-
series setting, it is not sufficient to conditionβ on residual variance
Σu; β must also be conditioned on σx in order to produce a well-
defined distribution for quantities of interest.

17 Data-based procedures for forming priors are often referred to as ‘‘empirical
Bayes’’. However, at least in its classic applications, empirical Bayes implies either
the use of data that is known prior to the decision problem at hand or data from
the population fromwhich the parameter of interest can be drawn (Robbins, 1964;
Berger, 1985). For example, if one is forming a prior on a expected return for a
particular security, one might use the average expected return of securities for that
industry (Pastor and Stambaugh, 1999).
18 Technically, the priors in Shanken and Tamayo (2005) suffer from the same
difficulty as the ones mentioned in the previous paragraph, as they demean their
variables and divide by the standard deviation. This requires that the investor
knows the sample mean and variance of these variables when forming a prior.
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1.3. Posterior

This section shows how the likelihood of Section 1.1 and the
prior of Section 1.2 combine to form the posterior distribution.
From Bayes’ rule, it follows that the joint posterior for B,Σ is
given by

p(B,Σ |D) ∝ p(D|B,Σ)p(B,Σ),

where p(D|B,Σ) is the likelihood and p(B,Σ) is the prior.
Substituting in the prior (12) and the likelihood (7) produces

p(B,Σ |D) ∝ σ Nx |Σ |
−
T+N+4
2 exp

{
−
1
2
β>

(
σ 2η σ

−2
x Σu

)−2
β

}
× exp

{
−
1
2
σ−2x (x0 − µx)2

}
× exp

{
−
1
2
tr
[
(Y − XB)>(Y − XB)Σ−1

]}
(16)

as a posterior.
This posterior does not take the form of a standard density

function because of the presence of σ 2x in the prior and in the term
in the likelihood involving x0 (note that σ 2x is a nonlinear function
of θ1 and σv). However, we can sample from the posterior using the
Metropolis–Hastings algorithm (see Chib and Greenberg (1995)).
Define column vectors

b = vec(B) = [α1, β1, . . . , αN , βN , θ0, θ1]>

b1 = [α1, β1, . . . , αN , βN ]>

b2 = [θ0, θ1]> .

The Metropolis–Hastings algorithm is implemented ‘‘block-at-a-
time’’, by first sampling from p(Σ |b,D), then p(b1|b2,Σ,D), and
finally p(b2|b1,Σ,D). The proposal density for the conditional
probability of Σ is the inverted Wishart with T + 2 degrees of
freedom and scale factor of (Y − XB)>(Y − XB). The accept–reject
algorithm of Chib and Greenberg (1995, Section 5) is used to
sample from the target density, which takes the same form as
(16). The proposal densities for b1 and b2 are multivariate normal.
For b1, the proposal and the target are equivalent, while for b2,
the accept–reject algorithm is used to sample from the target
density. Details are given in Appendix E. As described in Chib and
Greenberg, drawing successively from the conditional posteriors
for Σ , b1, and b2 produces a density that converges to the full
posterior.

1.4. Predictive distribution and portfolio choice

This section describes how we determine optimal portfolio
choice based on the posterior distribution. Consider an investor
who maximizes expected utility at time T + 1 conditional on
information available at time T . The investor solves

max ET [U(WT+1)|D] (17)

where WT+1 = WT [w>T rT+1 + rf ,T ], wT are the weights in the N
risky assets, and rf ,T is the total return on the riskless asset from
time T to T + 1 (recall that rT+1 is a vector of excess returns).
The expectation in (17) is taken with respect to the predictive
distribution

p(rT+1|D) =
∫
p(rT+1|xT , B,Σ)p(B,Σ |D) dB dΣ . (18)

Following previous single-period portfolio choice studies (see,
e.g. Baks et al. (2001) and Pastor (2000)), we assume that the
investor has quadratic utility. The advantage of quadratic utility is
that it implies a straightforward mapping between the moments
of the predictive distribution of returns and portfolio choice.
However, because our method produces an entire distribution
function for returns, it can be applied to other utility functions, and
to buy-and-hold investors with horizons longer than one quarter.
Let Ẽ denote the expectation and Ṽ the variance–covariance

matrix of the N assets corresponding to the predictive distribution
(18). For a quadratic-utility investor, optimal weights w∗ in the N
assets are given by

w∗ =
1
A
Ṽ−1Ẽ, (19)

where A is a parameter determining the investor’s risk aversion.
The weight in the riskless bond is equal to 1−

∑N
i=1w

∗

i .
Given draws from the posterior distribution of the parameters

αj, β j,Σ
j
u, and a value of xt , a draw from the predictive distribution

of asset returns is given by

r j = αj + β jxt + uj,

where uj ∼ N(0,Σ ju). The optimal portfolio is then the solution to
(19),with themean and variance computed by simulating draws r j.

2. Results

We consider the problem of a quadratic utility investor who
allocates wealth between a riskless asset, a long-term bond, and a
stock index. We estimate two versions of the system given in (1)–
(3), one with the dividend-price ratio as the predictor variable and
one with the yield spread. An appeal of these variables is that they
are related to excess returns through present value identities for
bonds and stocks (see Campbell and Shiller (1988, 1991)).

2.1. Data

All data are obtained from the Center for Research on Security
Prices (CRSP). Excess stock and bond returns are formed by sub-
tracting the quarterly return on the three-month Treasury bond
from the quarterly return on the value-weighted NYSE-AMEX-
NASDAQ index and the ten-year Treasury bond (from the CRSP
indices file) respectively. The dividend-price ratio is constructed
from monthly return data on the stock index as the sum of the
previous twelve months of dividends divided by the current price.
The natural logarithm of the dividend-price ratio is used as the
predictor variable. The yield spread is equal to the continuously
compounded yield on the zero-coupon five year bond (from the
Fama–Bliss data set) less the continuously compounded yield on
the three-month bond. Data on bond yields are available from the
second quarter of 1952. We therefore consider quarterly observa-
tions from the second quarter of 1952 until the last quarter of 2004.

2.2. Posterior means, expected returns and portfolios conditional on
the full sample

This section quantitatively describes the posterior beliefs of an
investorwho views the entire data set. For both predictor variables,
one million draws from the posterior distribution are simulated
as described in Section 1.3. An initial 100,000 ‘‘burn-in’’ draws are
discarded.
We first examine the posterior distribution over the maximum

R2. We focus on this statistic because it completely summarizes
the prior distribution. It is therefore a good place to start when
comparing the posterior and the prior. Recall that we are using the
term R2 to describe the population analogue of the usual sample
statistic. Just as we can construct a posterior distribution over β ,
α, and over the volatility parameters, it is possible to construct a
posterior distribution over themaximum R2, which is a function of
these primitive parameters.



168 J.A. Wachter, M. Warusawitharana / Journal of Econometrics 148 (2009) 162–178
Fig. 2. Posterior distribution on the maximum R2 (Notes: The left panel shows the
prior and the posterior probability that the maximum R2 over two assets exceeds a
value k. The right panel shows the probability density function for the prior and the
posterior of the maximum R2 . The prior volatility of normalized β , ση , is set equal
to 0.08. The assets are a stock index and a long-term bond. The predictor variable
is either the dividend-price ratio (solid line) or the yield spread (dashed line). The
predictive relation is measured over a quarterly horizon.)

Because our empirical implementation assumes two assets, we
compute the prior distribution of (14) assuming N = 2. The
left panel of Fig. 2 reports the probability that the maximum R2
exceeds k, as a function of k for both the prior with ση = 0.08
(dotted line) and for the posterior distribution given this prior.
The solid line gives the posterior assuming that the dividend-price
ratio is the predictor variable, while the dashed line gives the
posterior assuming that the yield spread is the predictor variable.
The right panel of Fig. 2 shows the probability density function of
the posterior and of the prior.
We first discuss the result for the dividend-price ratio and then

for the yield spread. Below k = 0.02, the posterior probability
that the R2 exceeds k is above the prior probability. Above 0.02,
the posterior probability that the R2 exceeds k is lower for the
posterior than for the prior.While the prior density is decreasing in
the R2 over this range, the posterior density is hump-shaped with
a maximum at about 0.02.
For the yield spread, the agent places more weight on relatively

high values of the R2 as compared with results for the dividend
yield. The probability that the R2 exceeds k is larger for the
posterior than the prior across the entire range that we consider.
The posterior distribution for the R2 still peaks at about 0.02, but
falls off less quickly than in the case of the dividend yield.
Table 1 reports posterior means for values of ση equal to

0, 0.04, 0.08, and ∞. To emphasize the economic significance of
these priors, we report the corresponding probabilities that the
R2 exceeds 0.02: 0, 0.0005, 0.075, and 0.999.19 The predictor
variable is the dividend-price ratio. Posterior standard deviations
are reported in parentheses. The table also shows results from
estimation by ordinary least squares (OLS). For the OLS values,
standard errors are reported in parentheses.
As Panel A of Table 1 shows, the dividend-price ratio predicts

stock returns but not bond returns. The posterior mean for the β
for bond returns is negative and small in magnitude. The posterior
mean for the β for stock returns is positive for all of the priors
we consider and for the OLS estimate. For the diffuse prior, the

19 These values are the marginal probability that the R2 for a single equation
exceeds 0.02.
Table 1
Posterior means.

Parameter P(R2 > 2%) Reg.
0 0.0005 0.075 0.999

Panel A: Dividend yield

βbond 0.00 0.02 −0.00 −0.18 −0.10
(0.00) (0.22) (0.43) (0.72) (0.73)

βstock 0.00 0.69 1.41 1.46 2.72
(0.00) (0.62) (0.97) (1.09) (1.52)

θ1 0.997 0.993 0.988 0.989 0.976
(0.002) (0.006) (0.009) (0.010) (0.015)

E [rbond|B,Σ] 0.18 0.18 0.18 0.17 0.23
(0.27) (0.30) (0.34) (1.07)

E [rstock|B,Σ] 1.16 1.17 1.17 1.17 1.09
(0.29) (0.24) (0.28) (0.72)

E[x|B,Σ] −3.49 −3.50 −3.50 −3.50 −3.72
(1.48) (0.99) (0.76) (1.35)

Panel B: Yield spread

βbond 0.00 0.20 0.46 0.81 0.80
(0.00) (0.14) (0.20) (0.26) (0.26)

βstock 0.00 0.22 0.51 0.89 0.89
(0.00) (0.28) (0.42) (0.55) (0.56)

θ1 0.74 0.73 0.74 0.75 0.74
(0.05) (0.05) (0.05) (0.05) (0.05)

E [rbond|B,Σ] 0.21 0.21 0.21 0.21 0.23
(0.28) (0.28) (0.29) (0.33)

E [rstock|B,Σ] 1.67 1.67 1.67 1.67 1.69
(0.58) (0.59) (0.60) (0.63)

E[x|B,Σ] 0.97 0.97 0.97 0.97 0.99
(0.19) (0.19) (0.19) (0.21)

Posterior means for the predictive coefficients β , the autoregressive coefficient on
the predictor variable θ1 , and unconditional posterior means for returns and the
predictor variable. Posterior standard deviations are in parentheses. The assets are
the ten-year bond and the stock index; the predictor variables are log dividend-
price ratio (Panel A) and the yield spread (Panel B). Prior beliefs are indexed by
P(R2 > 2%), the probability that the R2 from the predictive regression exceeds
2%. P(R2 > 2%) = 0 corresponds to the dogmatic prior; P(R2 > 2%) =
0.999 corresponds to the diffuse prior. The last column gives results implied
by parameters estimated by ordinary least squares regression. For regression
estimates, standard errors are in parentheses. E [r | B,Σ] = α+β θ0

1−θ1
and denotes

the frequentist expectation of excess returns. E [x | B,Σ] = θ0
1−θ1

and denotes the
frequentist expectation of the predictor variable. Data are quarterly from 1952 to
2004.

posterior mean of β equals to 1.46, below the OLS estimate of 2.72.
As the prior becomes more informative, the posterior mean for β
becomes smaller: for P(R2 > 0.02) = 0.075, the estimate is 1.41,
while for P(R2 > 0.02) = 0.0005, it is 0.69.
Even though all of the priors are uninformative with respect

to the autoregressive coefficient θ1, the posterior mean of θ1
nonetheless increases as the priors becomemore informative over
β . The reason is the negative correlation between draws for θ1 and
draws for β . As Stambaugh (1999) shows, the negative correlation
between shocks to returns and shocks to the predictor variable
implies that when β is below its OLS value, θ1 tends to be above
its OLS value. The reason is that if β is below its OLS value, it must
be that the lagged predictor variable and returns have an unusually
high covariance in the sample (because theOLS value is ‘‘too high’’).
When this occurs, the predictor variable tends to have an unusually
low autocorrelation; thus the OLS estimate for θ1 is too low and the
posterior mean will be above the OLS value. Therefore, placing a
prior that weights the posterior mean of β toward zero raises the
posterior mean of θ1.20

Table 1 also reports posterior means and standard deviations
for the means of the predictor variable and of excess returns.

20 The value for β under the diffuse prior is also substantially below the OLS value,
and the value for θ1 is higher. The reason is that, relative to the flat prior, the Jeffreys
prior favors higher values of θ1 .
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Fig. 3. Conditional expected returns and holdingswhen the dividend-price ratio predicts returns. (Notes: Conditional expected returns (top two plots) and portfolio holdings
(bottom two plots) as functions of the log dividend-price ratio. Conditional expected returns are calculated using the predictive distribution. Given the predictive distribution,
portfolios maximize mean–variance utility for risk aversion parameter A = 5. Assets are a stock index, a long-term bond, and the riskfree asset (not shown). Prior beliefs are
indexed by P.02 , the probability that the R2 from the predictive regression exceeds 2%. P.02 = 0 corresponds to the dogmatic prior; P.02 = 0.999 corresponds to the diffuse
prior. Diamonds correspond to the sample mean and plus and minus one and two sample standard deviations of the predictor variable.)
For example, for returns the table reports E [E[rt+1|B,Σ]|D] =

E
[
α + β

θ0
1−θ1
|D
]
and

(
Var

[
α + β

θ0
1−θ1
|D
])1/2

. The OLS mean is

set equal to α̂ + β̂
θ̂0
1−θ̂1
, where ˆ denotes the OLS estimate of a

parameter. The unconditional means are of interest because they
help determine the average level of the portfolio allocation. The
Bayesian approach implies about the same unconditional mean for
the dividend-price ratio, regardless of the prior. This is close to
−3.50, the mean in the data. However, the mean implied by OLS
is−3.72. The reason that the Bayesian approach is able to identify
this mean is the presence of the unconditional distribution term in
the likelihood.
These differences in the mean of x translate into differences

in the unconditional means for returns. Table 1 shows that for
the stock index, the posterior mean equals 1.17%, while the OLS
value is 1.09% per quarter. The sample mean for stocks in this
time period was 1.67%. The difference between the OLS and the
sample mean arises mechanically from the difference between
θ̂0
1−θ̂1

(equal to −3.72), and the sample mean of the dividend-
price ratio (equal to −3.50). The difference between the sample
and the Bayesian posterior mean occurs for a more subtle reason.
Because the dividend-price ratio in 1952 is above its conditional
maximum likelihood estimate (−3.72), it follows that shocks to
the dividend-price ratio were negative on average during the time
period. Because of the negative correlation between the stock
return and thedividend-price ratio, shocks to stock returnsmust be
positive on average. The exact likelihood function therefore implies
a posterior mean that is below the samplemean. Similar reasoning
holds for bond returns, though here, the effect is much smaller
because of the low correlation between the dividend-price ratio
and bond returns. This effect is not connected with the ability of
the dividend-price ratio to predict returns, as it operates equally
for all values of the prior.
Panel B Table 1 reports analogous results for the yield spread.

The yield spread predicts both bond and stock returns with a
positive sign. As the prior becomes more diffuse, the posterior
mean of the β coefficients go from 0 to the OLS estimate. As in the
case of the dividend-price ratio, both the posterior mean of long-
run expected returns and the long-run mean of xt are nearly the
same across the range of prior distributions.
We now examine the consequences of these posterior means

for the predictive distribution of returns and for portfolio choice.
Fig. 3 plots expected excess returns (top two plots) and optimal
portfolio holdings (bottom two plots) as functions of the log
dividend-price ratio. Graphs are centered at the sample mean.
Diamonds denote plus and minus one and two sample standard
deviations of the dividend-price ratio. We report results for the
four prior beliefs discussed above; to save notation we let P.02 =
P(R2 > 0.02).
The linear form of (1) implies that expected returns are linear

in the predictor variables, conditional on the past data. The slope
of the relation between the conditional return and xt equals the
posterior mean of β . Fig. 3 shows large deviations in the expected
return on the stock on the basis of the dividend-price ratio. As
the dividend-price ratio varies from −2 standard deviations to
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Fig. 4. Conditional expected returns and holdings when the yield spread predicts returns. (Notes: Conditional expected returns (top two plots) and portfolio holdings
(bottom two plots) as functions of the yield spread. Conditional expected returns are calculated using the predictive distribution. Given the predictive distribution, portfolios
maximize mean–variance utility for risk aversion parameter A = 5. Assets are a stock index, a long-term bond, and the riskfree asset (not shown). Prior beliefs are indexed
by P.02 , the probability that the R2 from the predictive regression exceeds 2%. P.02 = 0 corresponds to the dogmatic prior; P.02 = 0.999 corresponds to the diffuse prior.
Diamonds correspond to the sample mean and plus and minus one and two sample standard deviations of the predictor variable.)
+2 standard deviations, the expected return varies from 0% per
quarter to 2% per quarter. On the other hand, the dividend-price
ratio has virtually no predictive power for returns on the long-term
bond.
The bottom panel of Fig. 3 shows that the weight on the stock

index also increases in the dividend-price ratio. Bond weights
decrease in the dividend-price ratio because bond and stock
returns are positively correlated, so an increase in the mean of the
stock return, without a corresponding increase in the bond return,
results in an optimal portfolio that puts less weight on the bond.
For the diffuse prior, weights on the stock index vary

substantially, from −30% when the dividend-price ratio is two
standard deviations below its mean to 100% when the dividend-
price ratio is two standard deviations above its mean. As the prior
becomes more informative, expected returns and weights both
vary less. However, this change happens quite slowly. Conditional
expected returns under a prior that assigns only a 0.075 chance of
an R2 greater than 2% are nearly identical to conditional expected
returnswith a diffuse prior. There is sufficient evidence to convince
even this skeptical investor to vary her portfolio to nearly the same
degree as an investorwith no skepticism at all. For amore skeptical
prior with P.02 = 0.0005, differences emerge: the slope of the
relation between expected returns and the dividend-price ratio is
about half of what it was with a diffuse prior.
Fig. 4 displays analogous plots for the yield spread. Both the

conditional expected bond return and the stock return increase
substantially in the yield spread. For bonds, these expected returns
vary between −2% and 2% per quarter as the yield spread varies
between −2 and +2 standard deviations. For stocks, expected
returns vary between 0% and 3%, similar to the variation with
respect to the dividend-price ratio. These large variations in
expected returns lead to similarly large variation in weights for
the diffuse prior: for bonds, the weights vary between−200% and
200% as the yield spread varies between −2 and +2 standard
deviations from themean. For the stock, the weights vary between
0% and 75%. The variation in the weights on the stock appears less
than the variation in expected returns on the stock; this is due to
the positive correlation in return innovations between stocks and
bonds.
Fig. 4 also shows that the more informative the prior, the

less variable the weights. However, when the predictor variable
is the yield spread, inference based on a skeptical prior with
P.02 = 0.075% differs noticeably from inference based on a diffuse
prior. Nonetheless, even the investors with skeptical priors choose
portfolios that vary with the yield spread.
This section has shown that an investor who is skeptical about

predictability, when confronted with historical data, does indeed
choose to time the market. The next two sections show the
consequences of this for the time series of portfolio weights and
for out-of-sample performance.

2.3. Posterior means and asset allocation over the post-war period

We next describe the implications of various prior beliefs for
optimal weights over the postwar period. Starting in 1972, we
compute the posterior distribution conditional on having observed
data up to and including that year. We start in 1972 because this
allows for twenty years of data for the first observation; this seems
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Fig. 5. Time series of state variables and portfolio holdings for the diffuse prior.
(Notes: Time series of optimal portfolio holdings in the long-term (10-year) bond
and in the stock index are plotted together with the predictor variable minus its
mean. Not shown are holdings in the riskfree asset. For each year beginning in 1972,
the predictive distribution for returns is computed using the data up to that year.
Given the predictive distribution, the portfoliomaximizesmean–variance utility for
risk aversion parameter A = 5. Panel A shows results assuming that the dividend-
price ratios is the predictor variable while Panel B shows results assuming that the
yield spread is the predictor variable.)

reasonable given the persistence in the data and the fact that
there are 12 parameters to be estimated. Starting the analysis in
1982 with thirty years of data leads to very similar results.21 The
posterior is computed by simulating 200,000 draws and dropping
the first 50,000. Each quarter, the investor updates the portfolio
weights using that quarter’s observation of the predictor variable.
The assets are the stock, the long-term bond, and a riskless asset.
Panel A of Fig. 5 displays the de-meaned dividend-price ratio

and the weights in the long-term bond and the stock for the most
diffuse prior. On average, the investor allocates a positive fraction
of wealth to the stock, a negative fraction to the long-term bond,
and a positive fraction to the riskfree asset. The shorting of the
long-term bond arises because of its relatively poor risk-return
tradeoff (as compared with the stock), as well as from the positive
correlation of bond and stock returns. This latter property makes
bonds a good hedge against risks in the more attractive stock
portfolio. Campbell et al. (2003) study allocation to stocks, long-
term bonds and a riskfree asset in a non-Bayesian setting that is
otherwise similar to ours. They also find persistent shorting of the
long-term bond.
Fig. 5 also shows that theweights in the stock co-movewith the

dividend-price ratio. As discussed above, the higher the dividend-
price ratio, the higher the expected return on the stock, and

21 We update the posterior distribution yearly rather than quarterly to save on
computation time, which is a particular concern when we assess the significance of
our results using a Monte Carlo procedure. The results from updating quarterly are
very close to those from updating yearly and are available from the authors upon
request.
the higher the portfolio weight. Less correlation is apparent for
bond returns, due to the fact that investors hold bonds in part
to hedge the risk from holding equities. From the mid-90’s, on,
this correlation is reduced for both assets: despite the continued
decline in the dividend-price ratio, the allocation to stocks levels
off and the allocation to bonds rises. As Fig. 5 shows, under diffuse
priors, portfolio weights are highly variable and often extreme.
Fig. 6 offers another perspective on the relation between the

predictor variable and the allocation. Panel A shows the posterior
means of β for the stock index and the long-term bond. The
posterior means are shown for priors ranging from dogmatic to
diffuse (P.02 ranging from 0 to 1) and for the point estimates of
β from OLS. The left side of Panel A shows that, for the stock, the
OLS betas lie above the posterior mean for the entire sample. The
posterior means for P.02 = 0.999, and for P.02 = 0.075 decline
around 1995, and then rise again around 2000.22
The posterior mean of the stock beta for P.02 = 0.075 lies

above the posterior mean for the diffuse prior after 2000. This
may seem surprising, as the role of the prior is to shrink the
βs toward zero. However, the prior shrinks the total amount of
predictability as measured by the R2. This can be accomplished not
only by shrinking β , but also by shrinking the persistence relative
to the diffuse prior. In contrast to the posterior means for the less
informative priors, the posterior mean for P.02 = 0.0005 remains
steady throughout the sample and actually increases after 2000.
Panel B of Fig. 6 shows holdings in the stock and bond for a

range of beliefs about predictability. Also displayed are holdings
resulting from OLS estimation. Volatility in holdings for the stock
decline substantially as the prior becomes more dogmatic. For the
fully dogmatic prior, the weight on the stock index displays some
initial volatility, and then stays at about 40% after about 1976. The
prior that is close to dogmatic, P.02 = 0.0005, implies somemarket
timing for the stock portfolio based on the dividend-price ratio. In
the early part of the sample the weight in the stock index implied
by this prior is about 50%, declining to zero at the end of the sample.
Of course, P.02 = 0.075 and thediffuse prior imply greater amounts
of market timing. These priors imply time-varying weights that
fluctuate both at a very slow frequency, and at a higher frequency.
However, the weights that display the most volatility are those
arising from ordinary least squares regression.
Fig. 6 also shows corresponding results for the bond. The right

side of Panel A shows that for most of the sample, the dividend
yield predicts bond returns with a positive sign, just as it does with
stock returns. Starting in the late-90s, this predictability begins to
decline. Volatility in bond holdings also decline substantially as
the prior becomesmore dogmatic. Holdings corresponding to yield
spread predictability (shown in Panel B of Fig. 5 and in Fig. 7) share
these features.
Fig. 6 demonstrates that using predictive variables in portfolio

allocations need not lead to extreme weights. Combining the
sample evidence with priors that are skeptical about return
predictability leads to a moderate amount of market timing. We
now turn to the out-of-sample performance of these strategies.

2.4. Out-of-sample performance

The previous sections show how skeptical priors can inform
portfolio selection. The results indicate that investors who are
highly skeptical about return predictability nonetheless choose
time-varying weights, but that these weights are less variable and
extreme than the weights for investors with diffuse priors. In this

22 This plot is suggestive of parameter instability in the postwar sample; indeed
evidence of such instability is found by Lettau and Van Nieuwerburgh (2008), Paye
and Timmermann (2006) and Viceira (1996).
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Fig. 6. Time series of posterior means and stock holdings when the dividend-price ratio predicts return. (Notes: Panel A shows the posterior mean of β (the coefficient on
the predictor variable) for the stock index and the long-term bond, respectively; Panel B shows the corresponding portfolio holdings in the stock index and the long-term
bond. For each year beginning in 1972, the posterior distribution is computed using the data up to that year. Optimal portfolios for themean–variance investor are computed
quarterly for risk aversion A = 5. Prior beliefs are indexed by P.02 , the probability that the R2 from the predictive regression exceeds 2%. P.02 = 0 corresponds to the dogmatic
prior; P.02 = 0.999 corresponds to the diffuse prior. Also shown are results from ordinary least squares regression (Reg.). Note that the left and right graphs in Panel A are
on different scales.)
section, we assess out-of-sample performance of these priors.23
The goal is not to find outwhich prior is ‘‘best’’; indeed this analysis
should not be interpreted as suggesting that one prior is superior to
another. Rather, the purpose of this section is to relate our findings
to those in papers that critique the evidence for predictability
based on out-of-sample performance (Bossaerts and Hillion, 1999;
Goyal and Welch, 2008).
To assess out-of-sample performance in a way that controls

for risk, we adopt a certainty equivalent approach. The certainty
equivalent return (CER) answers the question: ‘‘what riskless rate
would the investor be willing to accept in exchange for not
following this strategy?’’ That is

CER = E[rp] − A
1
2
Var[rp], (20)

where A is the appropriate risk-aversion parameter (see, e.g., Bren-
nan and Xia (2001)). In this analysis, the mean and variance in (20)
are computed using the samplemean and variance that result from
following strategies associatedwith a given prior belief. That is, for

23 Avramov (2004) and Handa and Tiwari (2006) also highlight how informative
non-dogmatic priors can improve ex post performance of portfolios. Unlike the
present study, these studies use informative priors for the cross-section (in the style
of Pastor and Stambaugh (1999)), and show that shrinking a broad cross-section of
returns toward what would be implied by asset pricing models can lead to better
ex post performance in settings that include return predictability. As discussed in
Section 1.2, Avramov also examines the effects of introducing a ‘‘prior’’ sample with
no predictability and no mispricing relative to the 3-factor model. When there is
such a sample, performance is often better thanwhen there is no such prior sample.
However, it is not clearwhether these results are due to the prior over predictability
or mispricing.
each quarter, we apply the weights described in the previous sec-
tion to the actual returns realized over the next quarter. This gives
us a time series of 120 quarterly returns to use in computing the
means and variances. In reporting the certainty equivalent returns,
we multiply by 400 to express the return as an annual percentage.
Results are reported for values of A equal to 2 and 5. As an addi-
tionalmetric,we also report out-of-sample Sharpe ratios. These are
equal to the sample mean of excess returns, divided by the sample
standard deviation. Excess returns are quarterly and constructed
as described above. In reporting Sharpe ratios, we multiply by 2 to
annualize.
Panel A of Table 2 reports CERs and Sharpe ratios when the

dividend-price ratio is the predictor variable. For both metrics,
the weights implied by ordinary least squares deliver worse
performance than the weights implied by the dogmatic prior,
which implies no market timing. A similar result is found by Goyal
and Welch (2008), who argue against the use of predictability
in portfolio allocation. We find, however, that market timing can
increase out-of-sample performance, if the investor treats the
evidencewith some skepticism. The intermediate priorwith P.02 =
0.0005 has the best out-of-sample performance regardless of the
level of risk aversion and whether the CER or Sharpe ratio metric
is used.While ignoring the predictability evidence results in better
performance than applying a diffuse prior, simply looking at these
two extreme positions hides the better performance that can be
achieved by taking the intermediate view.
Panel B of Table 2 reports analogous results for the yield

spread as the predictor variable. For the certainty equivalent
return metric, OLS again performs the worst, while the diffuse
and dogmatic priors perform somewhat better. However, skeptical
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Fig. 7. Time series of posterior means and stock holdings when the yield spread predicts returns. (Notes: Panel A shows the posterior mean of β (the coefficient on the
predictor variable) for the stock index and the long-term bond, respectively; Panel B shows the corresponding portfolio holdings in the stock index and the long-term bond.
For each year beginning in 1972, the posterior distribution is computed using the data up to that year. Optimal portfolios for the mean–variance investor are computed
quarterly for risk aversion A = 5. Prior beliefs are indexed by P.02 , the probability that the R2 from the predictive regression exceeds 2%. P.02 = 0 corresponds to the
dogmatic prior; P.02 = 0.999 corresponds to the diffuse prior. Also shown are results from ordinary least squares regression (Reg.). Note that the left and right graphs in
Panel A are on different scales.)
priors perform better still.24 The differences can be large. When
the risk aversion parameter equals 2, for example, a diffuse prior
results in a CER of 5.47% per annum, while a dogmatic prior results
in a CER of 5.61%. However, for the intermediate prior of P.02 =
0.0005, the CER is 7.58% per annum; for the prior with P.02 =
0.075, the CER is 9.19% per annum. These results show that priors
indicating skepticism about the degree of predictability lead to
superior out-of-sample performance over the postwar period, as
well as to less extreme portfolio allocations, and to more stable
parameter estimates.
We now ask whether the out-of-sample results reported in

Table 2 are statistically significant. Unlike the rest of the paper,
this exercise is purely frequentist in nature. More precisely, we
take as our null hypothesis that returns are unpredictable.We then
ask, what is the probability, calculated across repeated samples,
that our strategies would have led to superior performance?
Because these repeated samples are generated under the null of no
predictability, any outperformancewould presumably be spurious.
To correctly assess the statistical significance of our results,

we use a Monte Carlo procedure. The goal of this procedure is to
capture the dependencies inherent in our out-of-sample return
observations (even though the shocks to returns and the predictor
variablemay be independent across time, portfolio returns depend
on the investor’s posterior, and therefore in principle on all
previous observations). We simulate 300 samples of data designed
so that means, variances, and covariances of returns and of the
state variable, and the autocorrelation of the state variable are
the same as in the data. However, in simulated data, returns

24 For the Sharpe ratiometric, OLS and the diffuse priors also outperform themost
dogmatic prior.
are unpredictable. We then calculate out-of-sample performance,
exactly repeating the procedure we used to calculate performance
in actual data.25
Panel A of Table 3 shows the results of this exercise for the

dividend-price ratio. The first row of Panel A reports the difference
between the CER of each skeptical prior (and the regression
estimate) and that of the dogmatic prior seen in the data for a risk
aversion of 2. These differences are a measure of the ex-post gains
frommarket timing. The next two rows report the 5th and the 95th
percentile of theMonte-Carlo-generated statistic. The results show
that the outperformance of the prior P.02 = 0.0005 could have
occurred by chance with at most a 10% probability using a two-
tailed test (because computation costs force us to limit the Monte
Carlo to 300 draws, critical values corresponding to higher levels of
significancewould be unreliable). In the data, outperformance is 69
basis points per year while the 95th percentile is 60 basis points.
The subsequent rows report the results of a similar exercise for the
Sharpe ratio. The difference in the data between the skeptical and
the dogmatic prior is 0.025; the 95th percentile is only 0.006.
Panel B of Table 3 reports analogous results for the yield

spread. Both skeptical priors (P.02 = 0.0005 and P.02 = 0.075)
outperform the dogmatic prior. This outperformance is far above

25 We consider only 300 draws because of the heavy computational requirements.
While sampling from the posterior distribution for a given dataset takes under an
hour, obtaining out-of-sample statistics requires that this procedure be repeated
32 times (once for every sample year since 1972). The whole procedure then
needs to be repeated 300 times for the Monte Carlo. The entire set of Monte Carlo
results (for two predictor variables and four priors) requires about three months of
computation time on a 10-node Beowulf cluster. This prevents us from embarking
onmore detailed statistical analyses, e.g. correcting for the impact of searching over
the two skeptical priors.
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Table 2
Out-of-sample results.

A P(R2 > 2%) Reg.
0 0.0005 0.075 0.999

Panel A: Dividend-price ratio
Certainty equivalent returns

2 6.98 7.66 6.76 5.25 −2.63
5 6.78 7.05 6.66 6.03 2.86
Sharpe ratios

0.19 0.22 0.19 0.15 0.16

Panel B: Yield spread
Certainty equivalent returns

2 5.61 7.58 9.19 5.47 0.65
5 6.26 7.06 7.72 6.25 4.35
Sharpe ratios

0.19 0.28 0.37 0.43 0.39

Certainty equivalent returns and Sharpe ratios when the predictor variables are
dividend-price ratio (Panel A) and the yield spread (Panel B) and the assets are the
stock index and the ten-year bond. For each year beginning in 1972, the predictive
distribution for returns is computed using all data up to that year. Optimal portfolios
are then computed quarterly to maximize a mean–variance utility function with
risk aversion parameter A = 2, 5; these are combined with actual returns over
the following quarter to create out-of-sample returns on the investment strategy.
Certainty equivalent returns (CERs) are defined as E[rp] − A

2Var[rp], where rp is the
return on the investment strategy and the mean and variance are computed using
the sample. Sharpe ratios are the average excess returns on the investment strategy
divided by the standard deviation and do not depend on A. Prior beliefs are indexed
by P(R2 > 2%), the probability that the R2 from the predictive regression exceeds
2%. P(R2 > 2%) = 0 corresponds to the dogmatic prior; P(R2 > 2%) = 0.999
corresponds to the diffuse prior. Reg. denotes results obtained from ordinary least
squares regression. Data are from 1952 to 2004. CERs are in annualized percentages
(×400), and Sharpe ratios are annualized (×2).

Table 3
Monte Carlo results.

A Statistic P(R2 > 2%) Reg.
0.0005 0.075 0.999

Panel A: Dividend-price ratio
Certainty equivalent returns

2 Data 0.69 −0.21 −1.72 −9.61
5th percentile −0.67 −1.93 −5.99 −9.61
95th percentile 0.60 1.36 1.46 1.20

5 Data 0.26 −0.13 −0.75 −3.92
5th percentile −0.27 −0.77 −2.40 −3.84
95th percentile 0.24 0.54 0.58 0.48

Sharpe ratios

Data 0.025 −0.009 −0.046 −0.029
5th percentile −0.006 −0.034 −0.111 −0.186
95th percentile 0.006 0.015 −0.005 0.004

Panel B: Yield spread
Certainty equivalent returns

2 Data 1.97 3.58 −0.15 −4.97
5th percentile −2.11 −1.89 −7.91 −6.92
95th percentile 1.75 1.55 2.47 1.76

5 Data 0.80 1.46 −0.01 −1.90
5th percentile −0.84 −0.75 −3.16 −2.77
95th percentile 0.70 0.62 0.99 0.71

Sharpe ratios

Data 0.089 0.182 0.242 0.200
5th percentile −0.020 −0.024 −0.084 −0.082
95th percentile −0.000 −0.011 −0.054 −0.052

Differences between the out-of-sample performance of skeptical priors (and of the
regression estimates) and that of the dogmatic prior. See Table 2 for the description
of the performance measures. ‘‘Data’’ denotes the performance difference in the
data. The analysis is repeated in samples of simulated data with no predictability.
The table displays the 5th and 95th percentiles of the performance difference. Prior
beliefs are indexed by P(R2 > 2%), the probability that the R2 from the predictive
regression exceeds 2%. P(R2 > 2%) = 0 corresponds to the dogmatic prior;
P(R2 > 2%) = 0.999 corresponds to the diffuse prior. Reg. denotes results from
ordinary least squares regression. A is the risk-aversion parameter.
Table 4
Subperiod out-of-sample results: dividend-price ratio.

End date A P(R2 > 2%) Reg.
0 0.0005 0.075 0.999

Panel A: Dividend-price ratio
Certainty equivalent returns

1984 2 6.64 7.99 11.05 11.42 −3.14
5 8.08 8.62 9.86 9.97 4.23

1994 2 6.35 7.27 9.34 9.03 2.60
5 7.21 7.58 8.40 8.24 5.69

Sharpe ratios

1984 0.08 0.16 0.33 0.37 0.38
1994 0.10 0.15 0.28 0.29 0.34

Panel B: Yield spread
Certainty equivalent returns

1984 2 3.11 4.74 4.83 −9.24 −21.91
5 6.67 7.36 7.44 1.92 −3.07

1994 2 4.55 6.44 7.63 0.79 −6.26
5 6.50 7.28 7.78 5.09 2.31

Sharpe ratios

1984 0.01 0.09 0.20 0.32 0.27
1994 0.08 0.18 0.29 0.38 0.34

Certainty equivalent returns (CERs) and Sharpe ratios are computed as in Table 2
with 1984 and 1994 as end dates rather than 2004. A is the risk aversion parameter.
Prior beliefs are indexed by P(R2 > 2%), the probability that the R2 from the
predictive regression exceeds 2%. P(R2 > 2%) = 0 corresponds to the dogmatic
prior; P(R2 > 2%) = 0.999 corresponds to the diffuse prior. Reg. denotes out-
of-sample results obtained from ordinary least squares regression. CERs are in
annualized percentages (×400), and Sharpe ratios are annualized (×2).

the 95th percentile for the Monte Carlo draws for both the CER
and the Sharpe ratio measure. For example, when risk aversion is
2, P.02 = 0.075 implies a performance differential of 3.58%. The
95th percentile is 1.55%. When risk aversion is 5, this prior implies
a performance differential of 1.46%; the 95th percentile is 0.62%.
Taken together, our Monte Carlo results suggest that it is quite
unlikely that the superior performance of the skeptical priors could
have occurred by chance.
Finally, we examine the performance of our strategies over

subperiods of the data. The results above use data from 1952
to 2004. Here, we repeat the analysis with data ending in 1984
and 1994. The results for the dividend-price ratio are shown
in Panel A of Table 4. For each subsample, OLS continues to
give the worst performance as measured by certainty equivalent
returns. However, skeptical priors deliver superior performance
relative to the dogmatic prior. Similar results hold when the yield
spread is the predictor variable, as shown in Panel B. In both
subsamples, and across all measures of performance, the skeptical
priors outperform the dogmatic prior.
To summarize, we find that intermediate priors lead to

strategies that exhibit superior out of sample performance. They
outperform strategies implied by the diffuse prior, which takes
an entirely data-driven view. They also outperform strategies
implied by the dogmatic prior. While this latter result may seem
unsurprising in light of the in-sample evidence that the yield
spread and the dividend-price ratio predict returns, it is in contrast
to the findings of Goyal andWelch (2008) and Bossaerts andHillion
(1999) that show that strategies making use of predictability have
poor out-of-sample performance.

3. Conclusions

How much evidence on predictability is enough to influence
portfolio choice? One view is that predictability should be taken
into account only if the statistical evidence for it is incontrovertible.
An opposite view is that investors should time their allocations
to a large extent, even if the evidence for predictability is
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weak according to conventional measures. The first view states
that investors should be extremely skeptical when viewing data
showing evidence of predictability, while the second view states
that no skepticism is necessary at all.
In this paper, we modeled the portfolio choice problem of an

investor who has prior beliefs on the amount of predictability in
the data. These prior beliefs put ‘‘skepticism’’ about predictability
on a sound decision-theoretic basis. The skeptical investor believes
that, while predictability is possible, large values of the R2 are
unlikely.
We applied our method to post-war data on bond and stock

returns, with the yield spread and the dividend-price ratio as
predictor variables. We found that even investors with a high
degree of prior skepticism still vary their allocations to long-
term bonds and stocks based on both of these variables. Thus
the amount of predictability in the data is sufficient to influence
investment, even if the investor is skeptical about the strength of
this predictability.
To see the implications of various prior beliefs for portfolio

allocations over the postwar period, we implemented an out-of-
sample analysis. For each quarter starting in 1972, the posterior
and optimal portfolio weights were determined based on previous
data. Parameter estimates implied by skeptical priors were more
stable than those implied by the diffuse prior and by ordinary
least squares regression. Moreover, the resulting weights are
less volatile and deliver superior out-of-sample performance as
compared with the weights implied by an entirely model-based or
data-based view.
This study provides a method for rigorously implementing

an intermediate view on predictability. The resulting portfolio
weights are more reasonable, and in fact perform better out of
sample than either extreme view. The question remains as to why
the skeptical prior outperforms. Skepticism can be motivated by
a theory of rational markets (see Samuelson (1965)). Our results
suggest that there may be value to this theory even if it does not
hold exactly. More broadly, this study supports the idea that using
models to downweight unreasonable regions of the parameter
space may improve decision making.

Appendix A. Extensions to multiple predictor variables

This section extends the results in Section 1 to the case of
multiple predictor variables. We continue to assume (1) and (2),
except that xt is now allowed to be K × 1, β is N × K , θ0 is K × 1,
and θ1 is K × K . Define

B =
[
α> θ>0
β> θ>1

]
.

The multivariate analogues of (5) and (6) are

µx = E [xt | B,Σ] = (IK − θ1)−1 θ0, (21)

and

vec(Σx) =
(
IK2 − (θ1 ⊗ θ1)

)−1 vec(Σv), (22)

whereΣx = E
[
(xt − x0)(xt − x0)>

]
(see Hamilton (1994, p. 265)).

As in Section 1, we specify a prior over normalized β . Let Cx be
a lower triangular matrix such that CxC>x = Σx, and

η = C−1u βCx (23)

(recall that Cu is such that CuC>u = Σu). Assume prior beliefs on η
are given by

vec(η) ∼ N(0, σ 2η INK ).

Then (23) implies

vec(η) =
(
C>x ⊗ C

−1
u

)
vec(β)
and therefore,

vec(β) | α, θ0, θ1,Σ ∼ N
(
0, σ 2η

(
Σ−1x ⊗Σu

))
. (24)

Appendix D shows that the Jeffreys prior on (α, θ0, θ1,Σ) takes
the form

p(α, θ0, θ1Σ) ∝ |Σ |−
N+2K+2
2 |Σu|

K/2
|Σx|

K/2. (25)

Because

vec(β)>
(
Σu ⊗Σ

−1
x

)−1
vec(β) = vec(β)>

(
Σ−1u ⊗Σx

)
vec(β)

= tr
(
β>ΣxβΣ

−1
u

)
,

the joint prior is given by

p(B,Σ) ∝ |Σx|
N+K
2 |Σ |−

N+2K+2
2 exp

{
−
1
2
σ−2η tr

(
β>ΣxβΣ

−1
u

)}
. (26)

As ση approaches zero, p(B,Σ) approaches a dogmatic, no-
predictability prior. Appendix C shows that p(B,Σ) approaches a
Jeffreys prior as ση approaches infinity. Intermediate levels of ση
allow for skepticism about the level of predictability by placing an
informative prior on the maximum R2 implied by the Eqs. (1) and
(2). The generalization of the equation for the maximum R2 is

max
w
R2 = max

w

w>βΣxβ
>w

w>βΣxβ>w + w>Σuw

=
η>η

η>η + 1
(27)

as shown in Appendix B.
The computations for the likelihood and the posterior closely

follow those in Section 1. Define

Y =

r
>

1 x>1
...

...

r>T x>T

 , X =

1 x>0
...

...

1 x>T−1

 .
The exact likelihood is given by

p(D|B,Σ) = |2πΣx|−
1
2 |2πΣ |−

T
2

× exp
{
−
1
2
(x0 − µx)>Σ−1x (x0 − µx)

−
1
2
tr
[
(Y − XB)>(Y − XB)Σ−1

]}
. (28)

Applying Bayes rule to (26) and (28) leads to the posterior

p(B,Σ |D) ∝ |Σx|
N+K−1
2 |Σ |−

T+N+2K+2
2

× exp
{
−
1
2
(x0 − µx)>Σ−1x (x0 − µx)

}
× exp

{
−
1
2
σ−2η tr

(
β>ΣxβΣ

−1
u

)
−
1
2
tr
[
(Y − XB)>(Y − XB)Σ−1

]}
. (29)

The procedure for sampling from this posterior is very similar to
that described in Section 1.3. The Metropolis–Hastings algorithm
is used to draw blocks of parameters at a time. First, Σ is
drawn from p(Σ |B,D) using the inverted Wishart distribution
with T + K + 1 degrees of freedom. Second, α and β are
drawn from p(α, β|θ0, θ1,D), and finally θ0 and θ1 are drawn from
p(θ0, θ1|α, β,Σ,D). The computation of the conditional posteriors
for (α, β), and (θ0, θ1) is exactly as in Section 1.3.
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Appendix B. Derivation of the maximum R2

This section derives Eqs. (14) and (27). The maximum R2
satisfies

max R2 = max
w

w>βΣxβ
>w

w>βΣxβ>w + w>Σuw
, (30)

where w is an N × 1 nonzero vector (it is not necessary that the
elements of w sum to 1). Define w̄ = C>u w, where CuC

>
u = Σu.

Rewrite (30) as

max R2 = max
w̄

w̄>ηη>w̄

w̄>ηη>w̄ + w̄>w̄
. (31)

The Cauchy–Schwartz inequality implies that w̄
>ηη>w̄

w̄>w̄
≤ η>η for

all nonzero vectors w̄, and that equality is achieved by choosing
w̄ to be proportional to η. Therefore w̄ = η is a solution to (31).
Substituting η in for w̄ in the argument of (31) implies (27). Eq. (14)
is a special case.

Appendix C. Jeffreys prior on B,Σ

Our derivation for the limiting Jeffreys prior on B,Σ follows
Stambaugh (1999). We derive the prior density for p(B,Σ−1) and
then transform this into the density for p(B,Σ) using the Jacobian.
Let b = vec(B), and

ζ = (σ 11, σ 12, . . . , σ 1,N+K , σ 22, σ 23, . . . , σ 2,N+K , . . . , σ N+K ,N+K ),

where σ ij denotes element (i, j) of Σ−1. Let l(B,Σ;D) =

log p(D|B,Σ, x0) denote the natural log of the conditional likeli-
hood. The definition of the Jeffreys prior implies

p(B,Σ−1) ∝

∣∣∣∣∣∣∣∣−E



∂2l
∂b∂b>

∂2l
∂b∂ζ>

∂2l
∂ζ∂b>

∂2l
∂ζ∂ζ>



∣∣∣∣∣∣∣∣
1/2

. (32)

Computing the expectation on the right hand side of (32) yields

p(B,Σ−1) ∝

∣∣∣∣∣∣
Σ−1 ⊗ Ψ 0

0
∂2 log |Σ |
∂ζ∂ζ>

∣∣∣∣∣∣
1/2

, (33)

where

Ψ =

[
1 µ>x
µx µxµ

>

x +Σx

]
.

Note that Ψ is (K + 1) × (K + 1). From the formula for the
determinant of a partitionedmatrix (Green (1997, p. 33)), it follows
that |Ψ | = Σx.
Box and Tiao (1973, pp. 474–475) show that∣∣∣∣∂2 log |Σ |∂ζ∂ζ>

∣∣∣∣1/2 = |Σ | N+K+12 (34)

(recall thatΣ is (N + K)× (N + K)). It then follows from (33) that

p(B,Σ−1) ∝ |Σ−1 ⊗ Ψ |1/2|Σ |
N+K+1
2

=
(
|Σ |−(K+1)|Ψ |N+K

)1/2
|Σ |

N+K+1
2

= |Ψ |
N+K
2 |Σ |N/2

= |Σx|
N+K
2 |Σ |N/2.

From results in Zellner (1996, p. 226), it follows that Jacobian of the
transformation fromΣ−1 toΣ is |Σ |−(N+K+1). Therefore

p(B,Σ) ∝ |Σx|
N+1
2 |Σ |−

N+2K+2
2 . (35)
Appendix D. Jeffreys prior on α, θ0, θ1,Σ

We calculate the prior for (α, θ0, θ1,Σ−1), and use the
determinant of the Jacobian to transform this into a prior for
(α, θ0, θ1,Σ). Define blocks ofΣ−1 as

Σ−1 =

[(
Σ−1

)
11

(
Σ−1

)
12(

Σ−1
)
21

(
Σ−1

)
22

]
.

Here,
(
Σ−1

)
11 is N × N ,

(
Σ−1

)
12 is N × K ,

(
Σ−1

)
21 =

(
Σ−1

)>
12,

and
(
Σ−1

)
22 is K × K .

The starting point for the calculation is the information matrix
for B,Σ−1 given in Appendix C. The information matrix for
α, θ0, θ1,Σ

−1 can be obtained by removing the rows and columns
corresponding to derivatives with respect to βij from (33).Without
loss of generality, the rows and columns of (33) can be re-ordered
so that

p(B,Σ−1) ∝

∣∣∣∣∣∣
Ψ ⊗Σ−1 0

0
∂2 log |Σ |
∂ζ∂ζ>

∣∣∣∣∣∣
1/2

.

This corresponds to taking second derivatives of l with re-
spect to vec(B>) rather than vec(B). Because vec(B>) =

(α>, θ>0 , vec(β)
>, vec(θ1)>)>, removing the rows and columns

corresponding to vec(β) leads to

p(α, θ0, θ1,Σ−1) ∝

∣∣∣∣∣∣
Φ 0

0
∂2 log |Σ |
∂ζ∂ζ>

∣∣∣∣∣∣
1/2

, (36)

where

Φ =

 Σ−1 µ>x ⊗

[(
Σ−1

)
12(

Σ−1
)
22

]
µx ⊗

[(
Σ−1

)
21 ,

(
Σ−1

)
22

] (
Σx + µxµ

>

x

)
⊗
(
Σ−1

)
22

 .
From the formula for the determinant of a partitioned matrix, it
follows that

|Φ| =
∣∣Σ−1∣∣ ∣∣∣∣ (Σx + µxµ>x )⊗ (Σ−1)22
−
(
µx ⊗

[(
Σ−1

)
21 ,

(
Σ−1

)
22

])
Σ

(
µ>x ⊗

[(
Σ−1

)
12(

Σ−1
)
22

])∣∣∣∣ .
Because

Σ

[(
Σ−1

)
12(

Σ−1
)
22

]
=

[
0N×K
IK

]
,

it follows that
|Φ| =

∣∣Σ−1∣∣ ∣∣(Σx + µxµ>x )⊗ (Σ−1)22 − µxµ>x ⊗ (Σ−1)22∣∣
=
∣∣Σ−1∣∣ ∣∣Σx ⊗ (Σ−1)22∣∣

= |Σ |−1|Σx|
K
|
(
Σ−1

)
22 |
K .

Applying the formula for the determinant of a partitioned matrix
toΣ produces
|Σ | = |Σu|

∣∣Σv −ΣvuΣ−1u Σuv
∣∣ .

By the formula for the inverse of a partitioned matrix (Green,
1997, p. 33),

|
(
Σ−1

)
22 | =

∣∣Σv −ΣvuΣ−1u Σuv
∣∣−1 .

Therefore,
|Φ| = |Σ |−(K+1)|Σ |K |

(
Σ−1

)
22 |
K
|Σx|

K

= |Σ |−(K+1)|Σu|
K
|Σx|

K .

Finally, from (34) and (36),

p(α, θ0, θ1,Σ−1) ∝ |Φ|1/2|Σ |
N+K+1
2

= |Σ |N/2|Σu|
K/2
|Σx|

K/2

which, by the Jacobian of the transformation from Σ−1 to Σ (see
Appendix C) completes the proof of (25).
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Appendix E. Sampling from the posterior

The conditional density p(Σ |B,D) has an expression identical
to (16). The proposal density is the inverted Wishart with T + 2
degrees of freedom (Zellner, 1996, p. 395):

f (Σ |B,D) ∝ |Σ |−
T+N+4
2 exp

{
−
1
2
tr
[
(Y − XB)>(Y − XB)Σ−1

]}
.

Because the target density takes the form

p(Σ |B,D) ∝ ψ(Σ)× proposal,

we can use the results in Chib and Greenberg (1995, Section 5) to
sample from the posterior.
The density for p(B|Σ,D) is sampled from in two steps:

first we sample from p(b1|b2,Σ,D), and next we sample from
p(b2|b1,Σ,D). For the first of these steps, we can sample directly
from the true density, without using the accept–reject algorithm.
Note that

tr
[
(Y − XB)>(Y − XB)Σ−1

]
= (b− b̂)>(Σ−1 ⊗ X>X)(b− b̂)
+ terms independent of B

where b̂ = vec(B̂), and B̂ = (X>X)−1X>Y . Let V =(
Σ−1 ⊗ X>X

)−1, and partition V so that
V =

[
V11 V12
V21 V22

]
,

where V11 is 2N × 2N , V12 is 2N × 2, V21 = V>12 and V22 is 2 × 2.
Then

(b− b̂)>(Σ−1 ⊗ X>X)(b− b̂) =
(
b1 − b̂1 − V12V−122 (b2 − b̂2)

)>
×
(
V11 − V12V−122 V21

)−1 (
b1 − b̂1 − V12V−122 (b2 − b̂2)

)
+ terms independent of b1

(see Green (1997, Chapter 3.1)). Then under the prior (12),

p(b1 | b2,Σ,D) ∝ exp
{
−
1
2
β>

(
σ 2η σ

−2
x Σu

)−1
β

}
× exp

{
−
1
2

(
b1 − b̂1 − V12V−122 (b2 − b̂2)

)>
×
(
V11 − V12V−122 V21

)−1 (
b1 − b̂1 − V12V−122 (b2 − b̂2)

)}
.

We now complete the square to derive the distribution for b1. Let

Ω = Σ−1u ⊗

[
0 0
0

(
σ 2η σ

−2
x

)−1 ] . (37)

The posterior distribution for b1 conditional on b2 andΣ is normal
with variance

V ∗11 =
(
Ω + (V11 − V12V−122 V21)

−1)−1
and mean

b∗1 = V
∗

11(V11 − V12V
−1
22 V21)

−1
(
b̂1 + V12V−122 (b2 − b̂2)

)
.

Similar reasoning can be used to draw from the posterior for b2 =
[θ0, θ1] conditional on the other parameters, Applying the results
of Green (1997, Chapter 3.1),

(b− b̂)>(Σ−1 ⊗ X>X)(b− b̂) =
(
b2 − b̂2 − V21V−111 (b1 − b̂1)

)>
×
(
V22 − V21V−111 V12

)−1 (
b2 − b̂2 − V21V−111 (b1 − b̂1)

)
+ terms independent of b2.
The density is sampled from using an accept–reject algorithm. The
proposal density is normal with mean b̂2 + V>12V

−1
11 (b1 − b̂1) and

variance V22 − V>12V
−1
11 V12. The target density is

p(b2|b1,Σ,D) ∝ σ Nx exp
{
−
1
2
β>

(
σ 2η σ

−2
x Σu

)−1
β

−
1
2
σ−2x (x0 − µx)2

}
× proposal

for θ1 ∈ (0, 1) and zero otherwise.26
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