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1 Robustness tests

1.1 Length of announcement intervals

The results presented in the main text are robust to the choice of the length of an-

nouncement periods. We simulate the model with announcement periods of 8 days

and 12 days, and show that the difference in the slopes of security market lines on

announcement and non-announcement days is significant for both cases.

Table 1 shows the results for the estimates of slopes of the security market lines on

announcement and non-announcement days, with announcement periods of length 12

days, while Table 2 shows the results of 8-day long announcement periods.

Figure 1 and 2 show the corresponding results with individual portfolios’ average

excess returns on announcement and non-announcement days across simulation samples

with 12-day and 8-day long announcement periods, respectively.

1.2 Change in conditional volatility and slope of security mar-

ket line

Figure 3 shows our model can explain the empirical fact that the conditional volatility

of the market portfolio does not change on announcement days while the slope of the

security market line significantly increases on announcement days compared to non-

announcement days.

1.3 Unconditional CAPM relation

Figure 4 shows the results for the unconditional security market lines for the beta-

sorted portfolios. Our model predicts that the security market line is flatter compared

to the CAPM benchmark. The blue dots standard represent the unconditional CAPM

beta
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2 Equity premium and skewness

We simulate the model with different length of announcement periods, and compute

the mean excess returns of the market portfolio across each simulation sample. In

Figure 5 we report the results. In addition, we compute the skewness of the excess

returns and report the results in Figure 6.

3 Additional asset classes

In this section, we provide the pricing formula for VIX and Treasury Bills. Figure 5

plots the distribution of mean market excess return across simulation samples against

the length of announcement periods.

3.1 Computing the VIX

3.1.1 The benchmark model

Similarly to Seo and Wachter (2016), we define the VIX as the square root of time-t

normalized expected quadratic variation of log return between t and t + v under the

risk-neutral measure Q.

VIX2
t ≡

1

v
EQt
[
QVt,t+v

]
, (1)

where

QVt,t+v ≡
∫
t,t+v

d[logS, logS]u. (2)

The Cboe uses standard and weekly S&P 500 Index options (SPX options) to

calculate the VIX. Standard SPX options expire on the third Friday of each month

and weekly SPX options expire on all other Fridays. To better approximate the 30-

day-ahead volatility of the market, the Cboe uses the weighted average of implied

volatilities of near-term options (options with more than 23 but less than 30 days to

expiration) and next-term options (options with more than 30 but less than 37 days to

expiration). Once every week, the VIX computation rolls over to a new set of options.
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As long as the announcement day does not coincide with a day that the options roll,

the option contracts for VIX computation will have a one day shorter maturity after

the announcement than before. In our quantitative practice, we calibrate the length

of announcement periods T to be 10 days, and set that there are 20 trading days

each month for simplicity. As a result, we consider v = 2T for the computation of

VIX. In addition, as the options used for VIX computation do not necessarily roll

on announcement days, we use v = 1.9T for post-announcement VIX computation to

capture the fact that a same set of options is used. In addition, we use a dividend

strip with average market leverage (ϕ) and duration (s∗) to approximate the market

portfolio for simplicity. We sill describe how we pick s∗ later.

Before characterizing the VIX, let us review what contributes to the quadratic

variation of the log return of an asset. Given the assumptions before, we have

The definition of quadratic variation implies

vVIX2
t = EQt

[∫ t+v

t+
d[log Ψ(D, p, λ2, τ, s

∗;χ), log Ψ(D, p, λ2, τ, s
∗;χ)]u

]
= vσ2︸︷︷︸

(3.1)

+EQt
[
bλ(s

∗)2σ2
λ

∫ t+v

t+
λ2sds

]
︸ ︷︷ ︸

(3.2)

+ϕ2 EQt
[∫ t+v

t+
Z2
sdNs

]
︸ ︷︷ ︸

(3.3)

+
∑

{w:t<w≤t+v,w mod T=0}

EQt
[
(a(s∗;χw) + b(s∗)pw − a(s∗;χw−)− b(s∗)pw−)2]

︸ ︷︷ ︸
(3.4)

.

(3)

Equation 3 decomposes the expected quadratic variation into four components. The

first component, (3.1), is the volatility from volatility of dividend growth. The sec-

ond component, (3.2), represents the variation in price-dividend ratio during non-

announcement periods, and is mainly driven by the change in λ2t. The third component

(3.3) is the expected quadratic variation driven by the realization of disasters, and the

fourth component (3.4) yields the expected quadratic variation from announcements.

Before solving (3.1) to (3.4), it is helpful to characterize the risk-neutral expectation

of λ1t and λ2t.
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Lemma 3.1. Let p̃t be the risk-neutral probability of λ1s = λH , conditional on time-t

information. Then p̃t is given by

p̃t = ProbQt (λ1s = λH) =
φQL→H

φQH→L + φQL→H
+

(
χt −

φQL→H
φQH→L + φQL→H

)
e−(φQH→L+φQL→H)τ ,

(4)

where φQH→L and φQL→H solve the equations

p̃∗1 =
φQL→H

φQH→L + φQL→H
+

(
1− φQL→H

φQH→L + φQL→H

)
e−(φQH→L+φQL→H)T (5)

p̃∗0 =
φQL→H

φQH→L + φQL→H
+

(
0− φQL→H

φQH→L + φQL→H

)
e−(φQH→L+φQL→H)T , (6)

where p̃∗1 and p̃∗0 are the risk-neutral probability of high-risk state before an announce-

ment, conditional on the most recent revealed state is high-risk state or low-risk state,

respectively, and

τ = t mod T. (7)

Proof. We know that the risk-neutral probability of the high-risk state right before an

announcement, given the most recent announcement if the high-risk (low-risk) state is

p̃∗1 (p̃∗0). Under the risk-neutral measure, the regime switch process is again a Markov

regime process, with the intensity of switching from low-risk (high-risk) to high-risk

(low-risk) state being φQL→H (φQH→L).

Then it must be that Equations 5 and 6 hold for the risk-neutral probability of high-

risk state right before announcements. As p̃∗1 and p̃∗0 are determined in the equilibrium,

Equations 5 and 6 can uniquely pin down φQH→L and φQL→H .

The risk-neutral expected probability of the high-risk state is then given by

ProbQt (λ1s = λH) =
φQL→H

φQH→L + φQL→H
+

(
χt −

φQL→H
φQH→L + φQL→H

)
e−(φQH→L+φQL→H)τ ,

where

τ = t mod T. (8)
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Lemma 3.2. The time-t risk-neutral expectation of λ2s is given by

EQt [λ2s] = λ2te
−κQ(s−t) + λ̄Q2

(
1− e−κQ(s−t)

)
= λ̄Q2 +

(
λ2t − λ̄Q2

)
e−κ

Q(s−t),
(9)

where

κQ = κ− (1− γ)bλσ
2
λ

λ̄Q2 =
κ

κQ
λ̄2.

(10)

Proof. Under risk-neutral probability, dBQ
λt = dBλt − (1− γ)bλσλ

√
λ2tdt is a standard

Brownian motion process. The the process of λ2t can be written as

dλ2t = κ(λ̄2 − λ2t)dt+ σλ
√
λ2tdBλt

= κ(λ̄2 − λ2t)dt+ σλ
√
λ2t

(
dBQ

λt + (1− γ)bλσλ
√
λ2tdt

)
= κQ

(
λ̄Q2 − λ2t

)
dt+ σλ

√
λ2tdB

Q
λt,

(11)

with κQ and λ̄Q2 given by (10). Therefore,

EQt [λ2s] = λ2te
−κQ(s−t) + λ̄Q2

(
1− e−κQ(s−t)

)
= λ̄Q2 +

(
λ2t − λ̄Q2

)
e−κ

Q(s−t).
(12)

The following lemmas provides the solutions to (3.2) to (3.4), respectively.

Lemma 3.3. The quadratic variation driven by the variation in price-dividend ratio

during non-announcement periods, as represented by (3.2), is given by

EQt
[
bλ(s

∗)2σ2
λ

∫ t+v

t+
λ2sds

]
= bλ(s

∗)2σ2
λ

(
vλ̄Q2 +

1

κQ

(
λ2t − λ̄Q2

)(
1− e−κQv

))
, (13)
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Proof. We know that

EQt
[
bλ(s

∗)2σ2
λ

∫ t+v

t+
λ2sds

]
= bλ(s

∗)2σ2
λ

∫ t+v

t+
EQt [λ2s] ds. (14)

EQt
[∫ t+v

t+
λ2sds

]
=

∫ t+v

t+
EQt [λ2s] ds

=

∫ t+v

t+
EQt
(
λ̄Q2 +

(
λ2t − λ̄Q2

)
e−κ

Q(s−t).
)
ds

= vλ̄Q2 +
1

κQ

(
λ2t − λ̄Q2

)(
1− e−κQv

)
.

(15)

As a result,

EQt
[
bλ(s

∗)2σ2
λ

∫ t+v

t+
λ2sds

]
= bλ(s

∗)2σ2
λE

Q
t

[∫ t+v

t+
λ2sds

]
= bλ(s

∗)2σ2
λ

(
vλ̄Q2 +

1

κQ

(
λ2t − λ̄Q2

)(
1− e−κQv

))
.

Lemma 3.4. The quadratic variation driven by disaster realizations, as represented by

(3.3), is given by

ϕ2EQt
[∫ t+v

t+
Z2
sdNs

]
= ϕ2Eν

[
eγZsZ2

s

](
vλ̄Q2 +

1

κQ

(
λ2t − λ̄Q2

)(
1− e−κQv

))
+ ϕ2Eν

[
eγZsZ2

s

]
v

(
λHφQL→H + λLφQH→L
φQH→L + φQL→H

)

+ ϕ2Eν
[
eγZsZ2

s

] λH − λL

φQH→L + φQL→H

(
pt −

φQL→H
φQH→L + φQL→H

)(
1− e−(φQH→L+φQL→H)v

)
. (16)
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Proof. Similarly,

ϕ2EQt
[∫ t+v

t+
Z2
sdNs

]
= ϕ2

∫ t+v

t+
EQt
[
Z2
sdNs

]
= ϕ2

∫ t+v

t+
EQt
[
EQt
[
Z2
sdNs|λ1s, λ2s

]]
= ϕ2

∫ t+v

t+
EQt
[
Eν
[
eγZsZ2

s

]
(λ1s + λ2s)ds

]
= ϕ2Eν

[
eγZsZ2

s

] ∫ t+v

t+
EQt [λ1s + λ2s] ds

= ϕ2Eν
[
eγZsZ2

s

] ∫ t+v

t+
EQt [λ1s] dt+ ϕ2Eν

[
eγZsZ2

s

] ∫ t+v

t+
EQt [λ2s] ds.

(17)

It turns out that∫ t+v

t+
EQt [λ1s] ds

=

∫ t+v

t+

(
(λH − λL)

(
φQL→H

φQH→L + φQL→H
+

(
pt −

φQL→H
φQH→L + φQL→H

)
e−(φQH→L+φQL→H)(s−t)

)
+ λL

)
ds

=v

(
λHφQL→H + λLφQH→L
φQH→L + φQL→H

)
+

λH − λL

φQH→L + φQL→H

(
pt −

φQL→H
φQH→L + φQL→H

)(
1− e−(φQH→L+φQL→H)v

)
.

(18)

Combining (17), (18) and (15) yields Equation 16.

The quadratic variation driven by announcements depends on the most recent an-

nouncement. As a result, it is helpful to decompose the expected quadratic variation

conditioning on the most recent announcement.

Lemma 3.5. When s mod T = 0 and s − t = T − τ , τ = s mod T , the expected

quadratic variation driven by the announcement scheduled at time-s is given by

EQt
[
(a(s∗;χs) + b(s∗)ps − a(s∗;χs−)− b(s∗)ps−)2]

=p̃∗χt

(
a(s∗; 1) + b(s∗)− a(s∗;χs−)− b(s∗)p∗χs−

)2

+ (1− p̃∗χt)
(
a(s∗; 0)− a(s∗;χs−)− b(s∗)p∗χs−

)2

.

(19)
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Lemma 3.6. When s mod T = 0 and s − t ≥ 2T − τ , τ = s mod T , the expected

quadratic variation driven by the announcement scheduled at time-s is given by

EQt
[
(a(s∗;χs) + b(s∗)ps − a(s∗;χs−)− b(s∗)ps−)2]

=

(
φQL→H

φQH→L + φQL→H
+

(
p̃t −

φQL→H
φQH→L + φQL→H

)
e−(φQH→L+φQL→H)(s−t−T )

)
×

(
p̃∗1 (a(s∗; 1) + b(s∗)− a(s∗ + T ; 1)− b(s∗)p∗1)2 + (1− p̃∗1) (a(s∗; 0)− a(s∗ + T ; 1)− b(s∗)p∗1)2)

+

(
φQH→L

φQH→L + φQL→H
−

(
p̃t −

φQL→H
φQH→L + φQL→H

)
e−(φQH→L+φQL→H)(s−t−T )

)
×

(
p̃∗1 (a(s∗; 1) + b(s∗)− a(s∗ + T ; 0)− b(s∗)p∗0)2 + (1− p̃∗1) (a(s∗; 0)− a(s∗ + T ; 0)− b(s∗)p∗0)2) .

(20)

Proof. It turns out that

EQt
[
(a(s∗;χs) + b(s∗)ps − a(s∗;χs−)− b(s∗)ps−)2]

=EQt
[
EQs−T

[
(a(s∗;χs) + b(s∗)ps − a(s∗;χs−)− b(s∗)ps−)2]]

=

(
φQL→H

φQH→L + φQL→H
+

(
p̃t −

φQL→H
φQH→L + φQL→H

)
e−(φQH→L+φQL→H)(s−t−T )

)
×

(
p̃∗1 (a(s∗; 1) + b(s∗)− a(s∗; 1)− b(s∗)p∗1)2 + (1− p̃∗1) (a(s∗; 0)− a(s∗; 1)− b(s∗)p∗1)2)

+

(
φQH→L

φQH→L + φQL→H
−

(
p̃t −

φQL→H
φQH→L + φQL→H

)
e−(φQH→L+φQL→H)(s−t−T )

)
×

(
p̃∗1 (a(s∗; 1) + b(s∗)− a(s∗; 0)− b(s∗)p∗0)2 + (1− p̃∗1) (a(s∗; 0)− a(s∗; 0)− b(s∗)p∗0)2) .

9



Corollary 3.7. The time-t VIX satisfies

vVIX2
t = vσ2 + bλ(s

∗)2σ2
λ

(
vλ̄Q2 +

1

κQ

(
λ2t − λ̄Q2

)(
1− e−κQv

))
+ϕ2Eν

[
eγZsZ2

s

](
vλ̄Q2 +

1

κQ

(
λ2t − λ̄Q2

)(
1− e−κQv

))
+ϕ2Eν

[
eγZsZ2

s

]
v

(
λHφQL→H + λLφQH→L
φQH→L + φQL→H

)

+ ϕ2Eν
[
eγZsZ2

s

] λH − λL

φQH→L + φQL→H

(
p̃t −

φQL→H
φQH→L + φQL→H

)(
1− e−(φQH→L+φQL→H)v

)
+ 1v+τ≥T

(
p̃∗χt

(
a(s∗; 1) + b(s∗)− a(s∗;χs−)− b(s∗)p∗χs−

)2

+ (1− p̃∗χt)
(
a(s∗; 0)− a(s∗;χs−)− b(s∗)p∗χs−

)2 )
+

∑
w:t+2T−τ≤w≤t+v,w mod T=0

((
φQL→H

φQH→L + φQL→H
+

(
p̃t −

φQL→H
φQH→L + φQL→H

)
e−(φQH→L+φQL→H)(w−t−T )

)
×

(
p̃∗1 (a(s∗; 1) + b(s∗)− a(s∗; 1)− b(s∗)p∗1)2 + (1− p̃∗1) (a(s∗; 0)− a(s∗; 1)− b(s∗)p∗1)2)

+

(
φQH→L

φQH→L + φQL→H
−

(
p̃t −

φQL→H
φQH→L + φQL→H

)
e−(φQH→L+φQL→H)(w−t−T )

)
×

(
p̃∗1 (a(s∗; 1) + b(s∗)− a(s∗; 0)− b(s∗)p∗0)2 + (1− p̃∗1) (a(s∗; 0)− a(s∗; 0)− b(s∗)p∗0)2)).

(21)

Proof. Combining (3), (13), (16), (19) and (20) yields the result above.

When a rare disaster realizes dNt = 1, the quadratic variation of the return jumps

up by ϕ2Z2
s . The expected increase in quadratic variation under Q measure is then

ϕ2E
[
eγZsZ2

s

]
. We assume that upon the realization of a disaster, it takes a series of

days for the drop to realize, with each day having a maximum of 15% drop.1 This will

imply that, in the actual computation, we replace E
[
eγZsZ2

s

]
with

Eν
[
eγZs

(
0.152 × (Zs mod 0.15) + (Zs − 0.15× Zs mod 0.15)2

)]
. (22)

1In US history only on 1987 Black Monday did the market see a larger drop in aggregate index.
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3.1.2 The value of s∗

For simplicity, we consider the quadratics variation of a dividend strip to approximate

that of the market portfolio. As the disasters hit the dividend growth, the choice of s∗

does not affect the quadratic variation driven by the disasters.

It turns out that, choice of s∗ affects the asset’s exposure to the variation in λ2t

the most, and as a result the quadratic variation driven by λ2t. We pick s∗ such that

the approximating dividend strip has the same sensitivity to variation in λ2t, when the

economy just sees an announcement of low-risk state and λ2t = λ̄2, i.e.

∂

∂λ2t

∣∣∣∣
λ2t=λ̄2

log (exp{a0(s∗) + a(s∗; 0) + bλ(s
∗)λ2t})

=
∂

∂λ2t

∣∣∣∣
λ2t=λ̄2

log

(∫ ∞
0

exp{a0(s) + a(s; 0) + bλ(s)λ2t}ds
)
. (23)

The condition above can be reduced to

bλ(s
∗) =

∫∞
0

exp{a0(s) + a(s; 0) + bλ(s)λ̄2}bλ(s)ds∫∞
0

exp{a0(s) + a(s; 0) + bλ(s)λ̄2}ds
(24)

For our quantitative results, s∗ = 16.4 years.

3.2 Implied volatility surface

To exam the quantitative effect on the implied volatility surface, we compute the option

prices and corresponding implied volatility curve under our model.

Although the model is affine jump-diffusion between announcements, it would still

be challenging to apply the transform analysis by Duffie et al. (2000). We then price

the options by facilitating simulation.

We run 500 parallel simulations with state variables simulated from stationary

distribution. Then for each set of state variables, we simulate 50,000 parallel simulation

paths. For each path, we simulate the shocks and the corresponding state variables

for 20 (or 19) trading days, and then obtain a sample for the 20-day-ahead (or 19-day-
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ahead) return of the underlying asset (claims to dividend from 21st (or 20th) days to

infinity). This allows for computing the expected discounted cash flow of the asset,

and then the implied volatility surface by facilitating the Black-Scholes formula.

3.3 Real zero-coupon bonds

The following corollary characterizes the price of a real zero-coupon bond:

Corollary 3.8. The time-t price of a real zero-coupon bond maturity in s period is

given by

ΨB(pt, λ2t, τ, s;χt) = exp
{
aB0 (s) + aB(τ + s;χt) + bB(s)pt + bBλ (s)λ2t

}
, (25)

with

bB(s) =
(λH − λL)Eν

[
eγZt

(
1− e−Zt

)]
φH→L + φL→H

(1− e−(φH→L+φL→H)s), s ≥ 0, (26)

where bBλ (s) solves

dbBλ
ds

=
1

2
σ2
λb
B
λ (s)2 +

(
(1− γ)bλσ

2
λ − κ

)
bBλ (s) + Eν

[
eγZt(1− e−Zt)

]
, (27)

with boundary condition bBλ (0) = 0, and where aB0 is given by

aB0 (s) =∫ s

0

(
−β − µ+ γσ2 + λLEν

[
eγZt(1− e−Zt)

]
+ κλ̄2b

B
λ (u) + φL→Hb

B(u)
)
du (28)

for a function aB0 : R+ × {0, 1} → R, which is the unique solution to the system of

equations

ea
B
0 (u;χ)+bB(u−T )p∗χ = p̃∗χe

aB0 (u−T ;1)+bB(u−T ) + (1− p̃∗χ)ea
B
0 (u−T ;0) (29)

with boundary condition aB0 (u; ·) = 0, u ∈ [0, T ), for risk neutral probabilities p̃∗χ satis-

fying (24).
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Proof. Non-arbitrage applied to the zero-maturity claim implies the following boundary

condition:

ΨB(pt, λ2t, τ, 0;χt) = 1.

Thus

aB0 (0) = aB(τ, 0;χt) = bB(0) = bBλ (0) = 0. (30)

Define µBΨt and σBΨt as in Lemma B.2. Applying Ito’s Lemma to the conjecture (25)

implies

µBΨt =
daB0
ds

+ bB(s)φL→H + bBλ (s)κλ̄2

+

(
−db

B

ds
− bB(s)(φH→L + φL→H)

)
pt +

(
−db

B
λ

ds
+

1

2
bBλ (s)2σ2

λ − κbBλ (s)

)
λ2t, (31)

and

σBΨt =
[
0, bBλ (s)σλ

√
λ2t

]
. (32)

Substituting (31), (32), (A.34), and (A.38) into (B.5) and matching coefficients

implies

−db
B

ds
− (φH→L + φL→H)bB(s) + (λH − λL)Eν

[
eγZt(e−ϕZt − e−Zt)

]
= 0 (33)

−db
B
λ

ds
+

1

2
σ2
λb
B
λ (s)2 +

(
(1− γ)bλσ

2
λ − κ

)
bBλ (s) + Eν

(
eγZt(1− e−Zt)

]
= 0, (34)

and

daB0
ds

= β + µ− γσ2 − λLEν
[
eγZt(1− e−Zt)

]
− κλ̄2b

B
λ (s)− φL→HbB(s). (35)

Then (26) uniquely solves (33) together with the boundary condition (30). More-

over, (35) and (30) ensure that that aϕ takes the form (28).

The proof for aB(·, ·; ·) follows closely along the lines of that of Theorem 7.
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4 Cross-sectional results for the calibration with

frequent minor Poisson events

We develop a set of parameters for a cross-section of firms based on the calibration

from Backus et al. (2011). We use similar strategy to choose the disaster sensitivities

ϕj. The simulation results are reported in Figure 7.
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Figure 1: Portfolio excess returns against CAPM betas: 12-day announcement interval
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Figure 2: Portfolio excess returns against CAPM betas: 8-day announcement interval
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Figure 3: Changes in SML slope against change in volatility
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Note: In this figure we plot the difference in the slopes of security market lines on
announcement and non-announcement days against the difference in market volatility.
Each gray circle stands for one simulated sample, while the red star stands for the
empirical result. The dark gray dots are simulation samples without high-risk state
realization. The ellipse with black solid border represents the 50% confidence level
based on simulation samples, while the ellipse with dotted border represents 95%
confidence level.

17



Figure 4: Unconditional portfolio excess returns against CAPM betas: full sample
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Note: In this figure we plot the simulated unconditional mean excess returns against
the CAPM betas for the beta-sorted portfolios. The black diamonds stand for

empirical moments.

18



Figure 5: Mean market excess return against length of announcement intervals
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Figure 6: Skewness of market portfolio excess returns against length of announcement
intervals
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Figure 7: Portfolio excess returns against CAPM betas on announcement and non-
announcement days with frequent minor Poisson events
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Table 1: Cross-sectional regressions on announcement and non-announcement days:
12-day announcement interval

Panel A: Equity Portfolios

Coefficient Data Simulation Median 90 % CI
δa 10.30 14.29 [0.84, 25.54]
δn 1.23 1.70 [0.15, 4.77]
δa − δn 9.07 12.55 [−2.50, 23.55]

Panel B: Nominal Bonds

Coefficient Data Simulation Median 90 % CI
δa 93.33 13.90 [−444.13, 691.19]
δn −0.51 −8.50 [−448.38, 543.18]
δa − δn 93.84 26.46 [−818.21, 977.16]

Notes: For each sample, the regression E[RXk
t | t ∈ i] = δiβ

k
i +

ηki is estimated, where i = a, n stands for sets of announce-
ment and non-announcement days, respectively. These regres-
sions are estimated for beta-sorted equity portfolios (Panel A)
and for Treasury bonds (Panel B). The first column reports
regression slopes in daily data from 1961.01-2016.09. The sec-
ond column reports medians in simulated samples. The third
column reports 90% confidence intervals computed using sim-
ulations. The length for the announcement interval in the sim-
ulation is 12-day.
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Table 2: Cross-sectional regressions on announcement and non-announcement days:
8-day announcement interval

Panel A: Equity Portfolios

Coefficient Data Simulation Median 90 % CI
δa 10.30 8.71 [1.98, 14.43]
δn 1.23 1.90 [0.28, 4.79]
δa − δn 9.07 6.66 [−1.10, 12.33]

Panel B: Nominal Bonds

Coefficient Data Simulation Median 90 % CI
δa 93.33 5.91 [−273.24, 226.17]
δn −0.51 −10.78 [−471.25, 424.03]
δa − δn 93.84 11.52 [−920.26, 701.81]

Notes: For each sample, the regression E[RXk
t | t ∈ i] = δiβ

k
i +

ηki is estimated, where i = a, n stands for sets of announce-
ment and non-announcement days, respectively. These regres-
sions are estimated for beta-sorted equity portfolios (Panel A)
and for Treasury bonds (Panel B). The first column reports
regression slopes in daily data from 1961.01-2016.09. The sec-
ond column reports medians in simulated samples. The third
column reports 90% confidence intervals computed using sim-
ulations. The length for the announcement interval in the sim-
ulation is 8-day.
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Table 3: Annual moments for aggregate market and riskfree rate

Panel A: Summary statistics
Simulation quantiles

Data 0.125 0.5 0.875
E[Rft] 0.94 −2.71 0.40 2.22
σ[Rft] 2.26 1.29 4.25 8.89
E[Rmkt

t+1 −Rft] 6.73 5.42 8.07 12.27
σ[Rmkt

t+1 −Rft] 17.50 11.17 18.73 25.44
Sharpe Ratio 0.38 0.32 0.46 0.68
Skewness −0.67 −1.28 0.62 2.74
exp(E[pd]) 36.38 31.45 38.82 52.91
σ(pd) 0.40 0.14 0.26 0.41
AR1(pd) 0.91 0.64 0.83 0.93

Panel B: predictive regressions: 1-year ahead excess returns
Simulation quantiles

Data 0.125 0.5 0.875
βpd 0.07 −0.05 0.20 0.49
R2 0.03 0.00 0.08 0.30

Panel C: predictive regressions: 5-year ahead excess returns
Simulation quantiles

Data 0.125 0.5 0.875
βpd 0.19 −0.18 0.66 1.26
R2 0.06 0.02 0.23 0.64

Notes: The table reports statistics for the excess market return, the riskfree rate, and
the price-dividend ratio in simulated and historical data from 1961–2009. Historical
data are annual. Model-simulated data are daily, aggregated to an annual frequency.
Panel A reports the mean (E[Rmkt

t+1 −Rft]), the volatility, (σ(Rmkt
t+1 −Rft)), the Sharpe

ratio (mean divided by volatility), and the skewness, where Rmkt
t+1 − Rft is the market

return in excess of the riskfree rate. Similarly, E[Rft] is the mean riskfree rate and
σ(Rft) is its volatility. We also report the exponentiated mean of the log annual price-
dividend ratio pd, and its volatility and first-order autocorrelation. In the data, the
market is the CRSP index. The moments of riskfree rate are computed using the
realized real 30-day Treasury bill return, (i.e. the return on a 30-day Treasury bill
minus realized inflation). Market excess returns are computed using the difference
between the market return and the Treasury bill return. Panel B reports moments
from predictive regressions. Specifically, we run the regression logRmkt

t:t+k − rft = a +
βpd×pdt+εt+1, where Rmkt

t:t+k is the market return from time t to t+k, rft = logRft and
pdt is defined as the log price-dividend at time t. We run this regression for horizons
of 1 and 5 years. For each simulated statistic, we report the median, the 5th, and the
95th percentile value. Units are in percentage per annum.

24



Table 4: The equity premium and volatility, riskfree rate and VIX on announcement
and non-announcement days

Statistic Data Simulation Median 75 % CI

Ea[RXmkt
t ] 10.79 11.19 [6.51, 15.04]

σa[RX
mkt
t ] 101.2 248.8 [58.5, 390.3]

En[RXmkt
t ] 1.16 2.46 [1.32, 4.47]

σn[RXmkt
t ] 97.8 83.8 [58.6, 111.1]

Ea[RXmkt
t ]− En[RXmkt

t ] 9.63 9.04 [3.11, 12.67]
σa[RX

mkt
t ]− σn[RXmkt

t ] 3.4 157.4 [−16.3, 304.1]

E[Rft] 0.42 0.12 [−1.34, 0.91]
σ[Rft] 1.14 2.2 [0.6, 4.5]

Pre-announcement VIX 20.1 26.5 [23.3, 30.8]
Post-announcement VIX 19.82 25.89 [22.63, 30.30]
VIX change on announcement days −0.29 −0.61 [−0.67,−0.53]

Notes: Ea[RXmkt
t ] and En[RXmkt

t ] denote the average excess return on the mar-
ket portfolio on announcement days and non-announcement days respectively.
stda[RX

mkt
t ] and stdn[RXmkt

t ] denote analogous statistics for the standard deviation.
E[Rft] and σ[Rft] denote the unconditional average and standard deviation of the
real riskfree rate. We use the the difference between the Federal Funds Rate and
average realized inflation of the calendar month as the empirical proxy of the real
daily riskfree rate. Pre-announcement VIX is defined as VIX at close one day before
a scheduled announcement, while post-announcement VIX is the VIX at close of an
announcement day. Their difference is defined as the change of VIX on announce-
ment days. The first column reports the empirical estimate. The second column
reports the median across samples simulated from the model. The third column re-
ports the two-sided 90% confidence intervals from simulated samples. The units are
in basis points per day.

25



Table 5: Cross-sectional regressions on announcement and
non-announcement days

Panel A: Equity Portfolios

Coefficient Data Simulation Median 75 % CI
δa 10.30 11.76 [4.98, 16.74]
δn 1.23 1.75 [0.52, 3.77]
δa − δn 9.07 9.58 [2.55, 15.33]

Panel B: Nominal Bonds

Coefficient Data Simulation Median 75 % CI
δa 93.33 8.93 [−121.58, 95.12]
δn −0.51 2.60 [−207.17, 239.15]
δa − δn 93.84 3.01 [−411.44, 459.54]

Notes: For each sample, the regression E[RXk
t | t ∈ i] = δiβ

k
i +

ηki is estimated, where i = a, n stands for sets of announcement
and non-announcement days, respectively. These regressions
are estimated for beta-sorted equity portfolios (Panel A) and
for Treasury bonds (Panel B). The first column reports regres-
sion slopes in daily data from 1961.01-2016.09. The second col-
umn reports medians in simulated samples. The third column
reports 90% confidence intervals computed using simulations.
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Table 6: Summary statistics for simulated equity assets

Panel A: Mean excess returns: announcement days

Portfolio 1 2 3 4 5 6
Median 6.42 10.03 12.79 15.01 16.61 18.04
75% CI [4.19, 8.49] [6.92, 12.99] [8.82, 16.89] [9.92, 20.56] [11.24, 24.04] [12.10, 27.08]

Panel B: Mean excess returns: non-announcement days

Portfolio 1 2 3 4 5 6
Median 2.02 2.26 2.56 2.83 3.07 3.25
75% CI [1.15, 3.55] [1.22, 4.03] [1.36, 4.58] [1.47, 5.14] [1.61, 5.66] [1.65, 6.05]

Panel C: Volatility: announcement days

Portfolio 1 2 3 4 5 6
Median 121.42 224.78 316.98 401.41 480.88 554.47
75% CI [40.14, 179.59] [51.61, 320.54] [59.24, 451.27] [65.80, 577.21] [71.26, 694.29] [76.33, 802.70]

Panel D: Volatility: non-announcement days

Portfolio 1 2 3 4 5 6
Median 56.13 72.06 84.16 96.81 110.04 124.42
75% CI [37.79, 83.66] [48.49, 103.14] [56.39, 119.77] [64.15, 133.83] [71.02, 153.26] [76.82, 173.94]

Notes: In this table, we report the summary statistics of the equity assets from simulated data. We report
the distribution of mean excess returns and volatility of the assets on announcement and non-announcement
days across simulated samples. The units are in basis points per day.
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Table 7: Difference in announcement and non-announcement day betas in simulated
data

Panel A: Equity Portfolios

Portfolio 1 2 3 4 5 6
Median −0.16 0.01 0.08 0.20 0.32 0.40
75% CI [−0.28, 0.06] [−0.14, 0.14] [0.00, 0.36] [0.00, 0.53] [−0.04, 0.68] [−0.11, 0.82]

Panel B: Bonds

Maturity 1 3 5 7 10
Median 0.00 0.07 0.19 0.35 0.42
75% CI [−0.00, 0.01] [−0.01, 0.11] [−0.01, 0.27] [−0.02, 0.49] [−0.02, 0.59]

Notes: In data simulated from the model, we compute betas on announcement days and non-
announcement days. We do this for beta-sorted equity portfolios (Panel A) and for zero-coupon
bonds (Panel B). The table reports the median difference and 90% confidence intervals for the dif-
ference.
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