Building Charging Stations to Foster Electric Vehicle Demand

Ajmain Hossain, Cabir Kansupada, Neel Shroff
Range anxiety hinders electric vehicle (EV) sales.

- EVs only make up <1% of the global vehicle fleet despite their environmental benefits — largely due to range anxiety.*

- Public charging stations mitigate range anxiety.

Central Question:
Does local public charging availability increase demand for EVs, and if so, where can new charging infrastructure be built to intentionally foster demand?

* International Energy Agency, 2020
Two-Part Analysis

<table>
<thead>
<tr>
<th>Question</th>
<th>Data & Source</th>
<th>Data Science Method</th>
</tr>
</thead>
</table>
| Part 1: Does local public charging availability increase demand for EVs? | - New-build charging station time-series *(Federal Gov.)*
- Washington EV Registration Activity *(State Gov.)* | T-test, Diff-in-Diff Test |
| Part 2: If so, where can new charging infrastructure be built to intentionally foster demand? | - Income Data *(IRS)*
- Educational Attainment *(Census)*
- Population Data *(State Gov.)* | Regression Prediction |
New charging stations increase EV demand.

Key Takeaway

Building a zip code’s first charging station has a statistically significant, positive effect on EV demand.
Charging stations could be more effective in some zip codes than others.

- Using linear regression, we can predict how many EVs *should* be in each zip code based on its demographic data (income, education, population).
- The difference between the predicted and actual EV population shows where charging stations are most needed.

Top 5 eligible zip codes in Washington State:

<table>
<thead>
<tr>
<th>state</th>
<th>zip</th>
<th>POP2020</th>
<th>avg_agi</th>
<th>perc_bach_plus</th>
<th>sum_vehicles</th>
<th>sum_charging_stations</th>
<th>diff</th>
<th>profit_potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>WA</td>
<td>99301</td>
<td>85,131.44</td>
<td>61.43</td>
<td>18.97</td>
<td>247.00</td>
<td>4.00</td>
<td>601.05</td>
<td>6,750,761.08</td>
</tr>
<tr>
<td>WA</td>
<td>98101</td>
<td>17,849.82</td>
<td>217.40</td>
<td>60.93</td>
<td>380.00</td>
<td>42.00</td>
<td>566.76</td>
<td>6,365,586.40</td>
</tr>
<tr>
<td>WA</td>
<td>98112</td>
<td>24,054.27</td>
<td>331.93</td>
<td>80.35</td>
<td>1,063.00</td>
<td>1.00</td>
<td>543.90</td>
<td>6,108,800.61</td>
</tr>
<tr>
<td>WA</td>
<td>99163</td>
<td>36,614.67</td>
<td>61.88</td>
<td>63.82</td>
<td>91.00</td>
<td>5.00</td>
<td>458.41</td>
<td>5,148,671.49</td>
</tr>
<tr>
<td>WA</td>
<td>98119</td>
<td>26,505.15</td>
<td>190.29</td>
<td>74.01</td>
<td>586.00</td>
<td>2.00</td>
<td>431.58</td>
<td>4,847,313.94</td>
</tr>
</tbody>
</table>

Total: $29.2 M
Stations likely generate enough demand to justify their cost.

Average Station Cost: $123,000

Average profit per EV: $54,500 ASP * 20.6% EBITDA margin = $11,200

Required Demand Generation per Station = Station Cost / Profit per EV
= ~11 EVs/Station

Is this believable?

Recall: Regression coefficient in Diff-in-Diff = 0.47
So, 11/0.47 = roughly 23 months to generate enough demand

* International Council on Clear Transportation, 2019
** Tesla Q3 2020 Shareholder Letter*