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Abstract

We present an empirical analysis of restructured electricity prices. We study the distributional and

temporal properties of the price process in a non-parametric framework, after which we

parametrically model the price process using several common asset price specifications from the

asset-pricing literature, as well as several less conventional models motivated by the peculiarities of

electricity prices. The findings reveal several characteristics unique to electricity prices including

several deterministic components of the price series at different frequencies. An binverse leverage

effectQ is also found, where positive shocks to the price series result in larger increases in volatility

than negative shocks. We find that forecasting performance is dramatically improved when we

incorporate features of electricity prices not commonly modelled in other asset prices. Our findings

have implications for how empiricists model electricity prices, as well as how theorists specify

models of energy pricing.
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One of the many consequences of restructuring is an increase in the importance of

modeling and forecasting electricity prices.

Under regulation, prices were set by state public utility commissions (PUCs) in order to

curb market power and ensure the solvency of the firm. Price variation was minimal and

under the strict control of regulators, who determined prices largely on the basis of average

costs. This environment focused the industry’s attention on demand forecasting, as prices

were held constant between PUC hearings. Market entry was barred and investment in

new generation by incumbent firms was largely based on demand forecasts. In addition,

there was little need for hedging electricity price risk because of the deterministic nature of

prices.

Restructuring removes price controls and openly encourages market entry.

Consequently, price variation has skyrocketed, giving birth to a new market for

energy-based financial products as purchasers of electricity attempt to hedge price

risk and investors capitalize on new opportunities. Electricity and weather derivative

markets have been established at various locations in the United States, as well as

in Europe. The recent experience in California has illuminated the importance of

such markets and implementing hedging strategies.1 However, the transaction volume

in these markets has been less than anticipated due, in large part, to the difficulty in

understanding the behavior of electricity prices.2 To this ends, we investigate the behavior

of California’s restructured electricity prices. We begin by analyzing electricity prices and

comparing their salient features with those of equities and other commodities. Despite a

few distributional similarities, electricity prices are dramatically different from equity

prices, and even other commodity prices. Specifically, electricity prices display the

following distinct characteristics:

1. stationarity in both the price level and squared prices,

2. pronounced intraday, day of week, and seasonal cycles, and

3. extreme price swings in a short period of time,

4. censoring from above,

5. negative prices.

Most of these characteristics represent departures from equity prices and interest rates,

which form the foundation for much of empirical asset-pricing research. As such, we show
1 Beginning in the summer of 2000, California electricity prices fluctuated wildly and capacity shortages

existed during a number of hours. In an effort to curb demand, rolling blackouts were instituted. Because of

regulatory constraints, the three investor owned utilities (IOUs), Pacific Gas and Electric, Southern California

Edison and San Diego Gas and Electric, felt the brunt of these experiences. When the market was initially

designed, two rules were set in place that left the IOUs unable to hedge against volatility. First, the IOUs were not

allowed to sign long term contracts for wholesale electricity. Secondly, the IOUs retail rates were largely fixed.

Therefore, as prices began to fluctuate and rise, the IOUs were both unsheltered from the fluctuations and unable

to pass any wholesale price increases onto consumers. As a consequence, California’s largest utility, Pacific Gas

and Electric, recently filed for bankruptcy and the other IOUs have compiled huge debts.
2 We recognize that utilities in California were precluded from entering into forward contracts. However, this

ban was recently repealed and, almost immediately, long term forward contracts were instituted at prices that

many believe to be excessively high.
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that statistical models developed for the purpose of modeling equity prices and interest

rates fail to provide a reasonable description of the data generating process. Rather, richer

models, in terms of the range of dynamics that they produce, are needed.

We are also able to test a number of empirical predictions from equilibrium electricity

pricing models. For example, we confirm that power spot prices contain a positive skew

that is larger (smaller) during periods of high (low) demand variability, as suggested by

Bessembinder and Lemmon (2002). A similar pattern exists for the volatility of spot

prices, higher (lower) during periods of high (low) demand, also predicted by Bessem-

binder and Lemmon (2002). We find mean reversion in spot prices, as implied by the

equilibrium model of Routledge et al. (2001). However, we also note that electricity prices

also contain what we refer to as, an binverse leverage effect.Q3 Electricity price volatility

tends to rise more so with positive shocks than negative shocks; this is a result of convex

marginal costs.

While there has been a significant amount of research on commodity prices, because of

the relative youth of electricity market restructuring, there have been few empirical studies

focusing entirely on electricity prices.4 Hoare (1996) presents a discussion of the UK

electricity market. The collection of papers presented in The US Power Market:

Restructuring and Risk Management provides a thorough introduction to the electricity

industry and related markets. In that collection, the paper by Leong discussing the

electricity forward curve touches on some of the models presented below. The paper most

similar in spirit to ours is Bhanot (2000) who looks at the behavior of daily electricity

prices across U.S. markets.

The remainder of the paper is organized as follows. Section 1 discusses the market for

electricity and the potential for an noncompetitive environment. Section 2 presents the data

and a discussion of the distributional and temporal properties of electricity prices. Section

3 presents the statistical models of electricity prices. Section 4 concludes with a summary

of the findings and directions for future research.
1. Electricity markets and market power

1.1. The electricity market

To date, a number of electricity markets around the world have restructured. The

majority of restructured electricity markets set market clearing spot prices through an

auction. Generators and demanders submit supply and demand curves for given time

period; the equilibrium price is the resulting market price. For example, in the California

electricity market, generators and demanders submit hourly supply and demand curves and

the Independent System Operator (ISO) calculates the market clearing price. The auction is
3 This terminology is derived from Black’s (1976) bleverage effectQ and describes the asymmetric response of

volatility to positive and negative shocks.
4 For a theoretical treatment of commodity prices see the papers by Chambers and Bailey (1996), Deaton and

Laroque (1992, 1996), and Wright and Williams (1989). Duffie and Gray (1996) examine the volatility of energy

prices. Kirk (1996) examines correlation in the energy markets.
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a uniform price auction in which all suppliers and demanders receive and pay the same

price, respectively. We use this market clearing price in this paper and discuss it in more

detail below.

The nature of electricity and the behavior of electricity prices differ from that of other

commodity markets. One reason for this difference is that electricity is a non-storable

good, implying that inventories cannot be used to arbitrage prices across over time.5 This

inability to use arbitrage arguments for pricing securities creates a need for accurate

forecasts of electricity prices and a greater understanding of the price process relative to its

equity counterparts. Electricity markets also face extreme capacity constraints; this feature

along with the non-storability of electricity implies the supply of electricity is often

extremely inelastic.

The demand for electricity, at least in the short term, is also extremely in inelastic.

Indeed, during our sample the California market retail customers faced a fixed price,

independent of the wholesale price; therefore, their demand was completely inelastic.

Combined with inelastic supply, small changes in either the supply or demand for

electricity can have huge effects on market clearing prices, generating a tremendous degree

of volatility.

1.2. Market power in electricity markets

Another distinguishing feature of electricity markets is the potential for suppliers to

exercise market power. A number of studies have examined this issue by using one of

three approaches. The first is to use data on the engineering marginal cost function and

simulate a game-theoretic model of firm behavior, and compare the simulated strategic

prices to simulated perfectly competitive prices. For example, Green and Newbery (1992)

simulate supply function equilibria for the UK market and find that prices can substantially

exceed marginal costs.6 Borenstein and Bushnell (1999) simulate California’s electricity

market and find that during peak hours, firms have substantial market power. Borenstein et

al. (1999) simulate the California and Pennsylvania, New Jersey and Maryland (PJM)

markets and find similar results; furthermore, these authors find that traditional measures

used to screen for market power do a poor job.

The second approach is more direct. A number of studies compute hourly engineering

marginal cost and compare them to actual market prices. For example, Wolfram (2000)

compares market prices to market marginal costs for the UK restructured electricity market

and finds that the average Lerner index is 0.24.7 However, much of the Lerner index can
5 Hydroelectric resources are arguably storable. Water is stored in a reservoir and then released to produce

electricity. However, hydroelectric resources require large river systems and are thus infeasible in many regions.

In California hydroelectric power represents a relatively small fraction of total electricity generation, compared to

nuclear and fossil-fuelled generators.
6 The supply function equilibria literature began with Klemperer and Meyer (1989) and assumes firms submit

supply functions rather than specific quantities or prices to an auctioneer under demand uncertainty. Klemperer

and Meyer show that as the degree of uncertainty approaches zero, the set supply function equilibria converges to

the Cournot equilibrium.
7 The Lerner index is the typical measure of market power and is defined as ( Pt�mct) /Pt.
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be explained by the inelastic nature of electricity demand. After controlling for the

elasticity of demand, the average elasticity adjusted Lerner index is 0.05.8 More recently,

Borenstein et al. (2002), and Joskow and Kahn (2002) compare California market prices to

marginal costs. Both papers find that mark-ups over marginal cost increased during the

crisis period.

Kim and Knittel (2003) use a third approach for estimating market power. They use

bNew Empirical Industrial OrganizationQ techniques to estimate market power levels in the

California market. Kim and Knittel (2003) find that mark-ups increased during the crisis

period. New Empirical Industrial Organization techniques identify both marginal costs and

market power levels, without data on marginal costs, by estimating the firms’ first order

conditions and treating marginal costs as functions of unknown parameters. They find that

market power levels have been moderate.

While these studies are of great importance, our analysis does not speak to the level of

market power in the industry. In this paper, we analyze the pricing behavior using

traditional statistical and financial models of electricity prices. These pricing models are

necessarily reduced form and independent of cost or market power levels. As mentioned

above, our goal in this paper is to better understand electricity prices for the purpose of

building empirical models, using these models in valuing energy securities, and testing

equilibrium models of electricity pricing. However, we do note in the analysis below, a

shift in the statistical properties of California prices in May of 2000, which is consistent

with the increase in market power found by Borenstein et al. (2002), Joskow and Kahn

(2002) and Kim and Knittel (2003).
2. Data and electricity price properties

The data used in this study consist of hourly electricity prices from California. Because

of transmission capacity constraints, California is partitioned into 26 bzonesQ with a

separate market price for each zone. When congestion does not exist, arbitrage

opportunities restrict the prices in each zone to be equal.9 Since prices across zones are

likely to behave similarly, we focus on just one zone, denoted NP15, that corresponds to

Northern California.10 The sample begins on April 1st, 1998 (the opening of the market)

and ends on August 30th, 2000 for a total of 21,216 observations.
8 The elasticity adjusted Lerner index controls for cross-sectional or time series deviations between prices and

marginal costs driven by differences in the elasticity of demand. It is defined as ( Pt�mct)g t /Pt, where g t is the

elasticity of demand at time t. A convenient benchmark is that the elasticity adjusted Lerner index for a symmetric

Cournot game with N firms is 1/N. Therefore, Wolfram (2000) results suggest the market is acting as though there

are 20 symmetric firms, whereas there were three firms, one of which dominated the market with 52% of capacity.
9 See Borenstein et al. (2001) for a further discussion of this.

10 The sizes of the 26 zones are not equal. In fact, two zones, SP15 and NP15, corresponding to Southern and

Northern California, constitute a large fraction of the state and its population. During our sample, roughly 90% of

the state’s electricity consumption occurs within these two zones. Data for Southern California, SP15, was

examined in a similar manner and yielded results similar to Northern California. As such, these results are not

presented here.
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The behavior of prices is characterized by several distinguishing features, beginning

with its regular intraday variation. This is seen quite clearly in the first two figures. Fig. 1

presents average hourly electricity prices measured in dollars per megawatt hour ($/MWh)

for weekdays and weekends. As expected, prices are, on average, higher during the week

when demand is greater. The price begins to increase at roughly 6:00 a.m., as the populace

wakes and the workday begins. This price increase continues throughout the day as

demand builds, peaking at 4:00 p.m. Prices begin to fall thereafter as the workday ends and

demand shifts to primarily residential usage. Fig. 2 presents a sample of hourly price and

quantity data for the time period, July 1, 1998 to July 10, 1998. The left vertical axis units

are $/MWh and the right vertical axis units are gigawatt hours (GWh). The horizontal axis

categories correspond to midnight of that particular day. This figure illustrates more clearly

the daily usage pattern and its persistence over time. In addition, it is apparent that prices

are mimicking demand.
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Electricity prices also contain a strong seasonal component, reflecting heating and

cooling needs. This feature is illustrated in Fig. 3, which plots hourly weekday

averages for each of the four seasons. Northern California’s primary electricity

consumption occurs during the summer when air conditioning is needed. The swing

months, which comprise spring and fall, show only a minor seasonal effect which are

likely due to residual cooling needs. Since high temperatures often extend into fall

months, we see that the electricity is less expensive in the spring than in the fall.

Winter electricity prices are the lowest of the seasons since most heating needs are met

by natural gas consumption.

Finally, electricity markets are characterized by distribution and transmission

constraints. Once generated, electricity travels along a network of distribution and

transmission lines designed to take the particles from the generation source to the demand

source. Each line within this network has a bcapacityQ or a maximum amount of electricity

that it can carry at a given moment. Once constrained, the marginal cost of transmission

becomes infinite. This implies, and is often the case, that sections of an electricity market

can become isolated from the rest of the market. Once this occurs, the generators in the

isolated market enjoy a greater level of market power, or influence over prices. Not

surprisingly, when a market becomes isolated, the price of electricity rises rapidly as

generators exploit their position.11 Indeed, California electricity prices are consistent with

this theory. Within a time span of 24 h, the spot price for electricity in California can move

from a price of less than $5/MWh to $750/MWh.

Fig. 4 plots the entire hourly price series from April 1, 1998 to July 31, 2000, and

illustrates two points. First, prices make dramatic swings which tend to occur in

clusters. This is a result of demand approaching–and in some cases exceeding–system

capacity. Second, there are several negative prices, which are a consequence of the

inability to freely dispose electricity coupled with non-trivial start up costs for

generators.
11 See Borenstein et al. (1999) for a discussion of this idea.
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1.3. Distributional properties

In this subsection, we discuss the distributional properties of electricity prices. Fig. 5

presents the empirical histogram for our price series, overlaid with a normal density curve.

Fig. 6 presents a QQ-plot of the data. The superimposed line joins the first and third quartile

of the data and is a robust linear fit of the sample order statistics. Normally distributed data

will appear linear in this plot. Both figures illustrate the deviation from normality. Fig. 6
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Fig. 5. Empirical histogram of electricity prices with normal density superimposed.
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shows the heavy tail of the distribution and mass of observations at zero, resulting from the

features of electricity described in Section 1.1.

Table 1 presents summary statistics for several subperiods of the sample:

1. the pre-crisis period from April 18, 1998 to April 20, 2000,

2. the crisis period from May 1, 2000 to August 31, 2000, and

3. the months of May through August for the pre-crisis period.

The last period allows for a more accurate comparison between the pre-crisis and crisis

periods, by controlling for seasonal effects. The impact of the crisis is evident in each of
Table 1

Electricity price summary statistics

Statistic Pre-crisis Crisis Pre-crisis May–August months

Mean 29.32 120.29 23.93

Minimum �249.00 �325.60 �249.00

Maximum 492.20 750.00 250.00

Standard deviation 29.85 141.6 34.19

Skewness 4.79 2.54 4.25

Kurtosis 35.70 7.197 25.72

Descriptive statistics for hourly NP15 (Northern California) electricity spot prices over the pre-crisis and crisis

period, which are delineated by May 1, 2000. To control for temporal changes in electricity demand, pre-crisis

descriptive statistics for the months May through August are also included.
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the sample moments beginning with a fourfold increase in the mean price of electricity,

even after controlling for the same months in the pre-crisis period. There is also a

significant increase in the volatility of prices. The kurtosis falls significantly during the

crisis period, but this is a direct result of price caps and the increase in the standard

deviation. Relative to a normal distribution, the kurtosis is significantly larger in both time

periods; large deviations from the mean are a relatively common occurrence. To a lesser

extent, the distribution is skewed with a long right tail.

Several other distributional features are evident in Fig. 4. The conditional mean price is

varying over time in a systematic fashion. This fact is even more apparent in Figs. 1 and 2.

Fig. 4 also shows that the variance of electricity prices is time varying and exhibits clustering.

1.4. Temporal properties

While the price series has several distributional similarities with other tradeable assets,

their temporal properties are quite different. Fig. 7 plots the autocorrelation function for the

level of prices. The autocorrelations are statistically significant even beyond 1000 lags. Also

clear from the correlogram is the intraday usage pattern and to a lesser extent a weekend/

weekday cycle. With a longer lag length, a seasonal pattern emerges as well, but the plot is

truncated at 1000 periods for visual ease. This result is in stark contrast to the predictability

of equity prices, which are commonly assumed to follow a random walk with drift.12

Though prices have an extremely long memory, visual inspection of the correlogram is

consistent with the intuition that prices do not appear to be exploding. The decay in the

autocorrelation function is fairly rapid, at least initially.13 This hypothesis is tested more

formally as follows. Consider the simple approximation to the price generating process:

pt ¼ a þ bpt�1 þ gt ð1Þ

gt ¼ cgt�1 þ et ð2Þ

where pt is the price at time t, a, b, and c are unknown coefficients, and {et} is a Gaussian
white noise process with variance re

2.14 In the presence of serially correlated errors, Phillips

and Perron (1988) show that the parameters of Eq. (1) can be consistently estimated by

ordinary least squares (OLS). The test statistic for a unit root, however, must be modified

to take serial correlation into account. Using the Newey–West estimator, the corrected t-

stat under the null hypothesis of a unit root in the presence of serial correlation is �1153.15

With a 5% critical value of �2.89, the null of a unit root is rejected at all standard

significance levels.
12 We recognize that studies have found a predictable element to stock prices. However, the autocorrelations,

though statistically significant, are very small in comparison to the autocorrelations present in the electricity series.
13 In fact, a statistically significant but very small time trend is found in the series. Because of the magnitude of

the coefficient and lack of economic support for the presence of such a trend, the statistical modeling is performed

without incorporating a time trend.
14 AGaussianwhite noise process is a sequence of independent, normally distributed, mean zero random variables.
15 See Hamilton (1994), Chapter 17 for details of this test and the Newey–West estimator. In fact, we ran another

test allowing for fourth order serial correlation and the results are unchanged. The null of a unit root is rejected at

all standard significance levels.
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Fig. 8 plots the autocorrelation function for the square of prices, which bears a striking

resemblance to Fig. 7. This plot confirms the observation made above regarding the

volatility clustering. The second moment exhibits a high degree of persistence even after

several hundred lags. As with the correlogram for the price level, the intraday usage

pattern is immediately clear, as is the weekend/weekday cycle. This result is similar to

equity markets where volatility persistence is a common phenomenon, although without

the distinct seasonality.

From this preliminary analysis of the data, it is clear that any modeling effort should

take into account the following characteristics of the prices series:

1. mean reversion,

2. time of day effects,

3. weekend/weekday effects,

4. seasonal effects,
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5. time-varying volatility and volatility clustering, and

6. extreme values.

We consider the right censoring and negative prices to be of less importance as the effect

of censoring on the dynamics of prices is likely to have a secondary effect. Accurately

capturing the censoring would require a latent variable model, or a much more complicated

statistical specification; both, exercises for future work. Negative prices are an increasingly

rare occurrence, whose implications for pricing financial securities are of little consequence.
3. Models and results

This section presents several different models of electricity prices. Each model is first

motivated and discussed in the context of the preliminary data analysis. This is followed

by an analysis of the estimation results and forecasting performance of the model.

The models are estimated using two subsamples: the pre-crisis period defined as April 1,

1998 to April 30, 2000, and the crisis period defined as May 1, 2000 to August 31, 2000. For

each period, the last week of data are withheld in order to measure the out of sample

forecasting ability. For example, Model 1 is first estimated using data from April 1, 1998 to

April 23, 2000. Hourly forecasts over the period April 24, 2000 to April 30, 2000 are

computed and then compared to actual prices. The same model is then estimated using data

from May 1, 2000 to August 24, 2000. Forecasts are produced for the period August 25,

2000 to August 31, 2000 and again compared to actual prices. A 1-week forecast horizon is

chosen or two reasons. First, the frequency of our data dictates that only short-term forecasts

are feasible. Second, most electricity contracts are short-term, ranging from 1 day to several

months. All models are estimated by conditional maximum likelihood. The conditioning is

due to the presence of lagged dependent variables on the right hand side. Under the

assumption of stationarity, the unconditional density for these initial observations could be

specified. However, because of the large number of observations, the impact of the first few

observations is likely to be negligible, even in the presence of long-term persistence.

We discuss each model in the context of the data analysis performed above and the

forecasting performance of the model. Each subsequent model builds on the previous

model by introducing new aspects whose purpose is to capture another feature of the data.

1.5. Model 1: mean-reverting processes

Traditional financial models typically begin with the Black–Scholes assumption of

geometric Brownian motion or log normal prices. This assumption is inappropriate in the

context of electricity prices for many reasons, primarily because of the predictability of

electricity prices. An alternative model used in practice is the Ohrnstein–Uhlenbeck process.

This continuous time model allows for autocorrelation in the series by specifying prices as:

dp tð Þ ¼ j l � p tð Þ½ �dt þ rdb tð Þ; p 0ð Þ ¼ p0; ð3Þ

where p(t) is the price of electricity at time t, j, l, and r are unknown parameters, and {b(t)}

is a standard Wiener process. The intuition behind this specification is that deviations of the
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price from the equilibrium level, [l�p(t)], are corrected at rate j and subject to random

perturbations, rdb(t).16

Eq. (3) is simply a first order autoregressive model in continuous time. This may be

seen by integrating Eq. (3) to obtain:

p tð Þ ¼ e�jtp0 þ l 1� e�tjð Þ þ
Z t

0

ej s�tð Þrdb sð Þ: ð4Þ

Algebra produces the bexactQ discrete time version of Eq. (4):

pt ¼ a0 þ b1pt�1 þ gt; ð5Þ
where a0=l(1�e�j), b1=e

�j, and gt ¼
R t

t�1
ej s�tð Þrdb sð Þ.17 The error term, gt, in Eq.

(5) is Gaussian white noise with variance rg
2 equal to r2 (1�e�2j) /2, by Ito isometry.

Thus, prices are Markovian with a Gaussian transition density. The conditional mean is

a0+b1pt� 1 and conditional variance is rg
2.

We estimate the discrete time parameters in Eq. (5): a0, b1, and rg
2. The log likelihood

function for the discrete time model is:

logL a0; b1; rg
� �

¼ � T � 1

2
log 2pð Þ � T � 1

2
logr2

g �
1

2r2
g

XT
t¼2

pt � b1pt�1ð Þ2:

ð6Þ
To estimate the model, we condition on the first observation (i.e. treat is as known).

Estimates of the continuous time parameters (j, l, r) may be obtained using several

methods. One approach, given maximum likelihood estimates of the discrete time

parameters, simple algebra using the mappings between the two sets of parameters will

produce maximum likelihood estimates of the continuous time parameters by the

invariance property of maximum likelihood (e.g., a0=l(1�e�j), ). Asymptotic standard

errors may be obtained using the delta method. Another approach is to directly maximize

the likelihood function with respect to the continuous time parameters as opposed to the

discrete time parameters. Because of the one-to-one mapping between the discrete time

and continuous time parameters, both approaches should yield equivalent estimates for

forecasting purposes.

The results are presented in Tables 2 and 3. While this model captures some of the

autocorrelation present in the price series, it suffers from several serious shortcomings.

First, it ignores all cycles present in the series: intraday, weekend/weekday and seasonal.

Second, it assumes that the error structure is independent across time. Third, it assumes that

the volatility is constant over time. Fourth, the normality assumption cannot reproduce the

extreme swings found in the data. The root mean squared (RMS) error for the week ahead

out-of-sample forecast during the non-crisis period is 47.51. As we noted above, given the

stochastic nature of electricity prices, the forecast error will necessarily be high; we focus

on the change in the forecast error across different models. During the crisis period, the

RMS increases to 88.56. This increase is due to both an increase in the mean and volatility

of electricity prices. We use Model 1 as a baseline to compare the remaining models.
16 This assumes that j N0, a requirement for stationarity of the process.
17 The terminology bexact discrete time representationQ is borrowed from Bergstrom (1984) and is intended to

differentiate this manipulation from an approximation such as an Euler discretization.



Table 2

Pre-crisis period parameter estimates of Models 1 through 4

Parameter Model 1 Model 2 Model 3a Model 3b Model 4

a0 (Mean) 29.32

(0.6010)

a1 (Peak Mean) 36.90

1.1140

23.86

0.5098

25.51

0.5524

28.18

3.201

a2 (Off-Peak Mean) 32.7326

1.1604

21.7403

(0.5291)

23.32

0.5673

26.42

(3.314)

a3 (Weekend Effect) �2.1663

(0.9323)

0.1473

(0.4094)

0.1995

(0.3995)

�2.5071

(0.8114)

a4 (Fall Effect) 4.6192

(1.5191)

5.0310

(0.7524)

5.1734

(0.7472)

7.4213

(03.720)

a5 (Winter Effect) �9.9530

(1.5537)

�1.7448

(0.7247)

�1.3876

(0.7048)

1.5572

(3.9731)

a6 (Spring Effect) �16.72

(1.4778)

�9.838

(0.7130)

�9.5840

(0.6962)

�0.9111

(3.444)

b1 (AR 1) 0.7602

(0.0048)

0.7650

(0.0070)

0.7748

(0.0055)

0.7648

(0.0053)

0.7323

(0.0051)

b2 (AR 24) 0.9592

(0.0039)

b3 (AR 25) �0.7323

(0.0079)

a1 (MA 1) 0.1574

(0.0106)

a2 (MA 24) 0.8744

(0.0066)

a3 (MA 25) 0.1656

(0.0101)

k0 (Jump Probability) 0.0327

(0.0092)

0.1396

(0.0091)

kfall (Fall Effect) 0.0070

(0.0100)

kwin (Winter Effect) �0.1133

(0.0085)

kspr (Spring Effect) �0.0954

(0.0085)

kweekend (Weekend Effect) �0.0213

(0.0049)

kpeak (Peak Effect) 0.0489

(0.0053)

lv (Jump Mean) 11.06

(1.1794)

12.45

(1.2450)

n (Volatility Multiplier) 62.2042

(2.0934)

61.8939

(2.1492)

r (Volatility) 19.4037

(0.1019)

19.2475

(0.1011)

6.4533

(0.0793)

6.6365

(0.0732)

18.2501

(0.0535)

RMS Forecast Error 47.5088 47.1523 49.4037 44.3501 25.4839
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1.6. Model 2: time-varying mean

The second model addresses the systematic variation found in electricity prices. We

consider the following extension to Eq. (3):

dp tð Þ ¼ j l tð Þ � p tð Þð Þdt þ rdb tð Þ; ð7Þ
where

l tð Þ ¼ a1I taPeakð Þ þ a2I taOffPeakð Þ þ a3I taWeekendð Þ þ a4I taFallð Þ

þ a5I taWinterð Þ þ a6I taSpringð Þ ð8Þ
and I(d ) denotes the indicator function. For example,

I taPeakð Þ¼ 1 if the hour of the day falls between 6 : 00 a:m: and 10 p:m:; and
0 otherwise:

�

Notes to Table 2:

The sample of data is comprised of hourly electricity prices for Northern California during the bpre-crisisQ period:
4/1/1998–4/23/2000. The estimated models are:

1: dp(t)=j(l�p(t))dt +rdb(t)
2: dp(t) =j(l(t)�p(t))dt +rdb(t), l(t) =a1I(taPeak)+a2I(taOffPeak)+a3I(taWeekend)+a4I(taFall) +

a5I(taWinter)+a6I (taSpring)

3: dp(t)=j(l(t)�p(t))dt +rbdb (t)+ zdq(t)

3a: dp(t)=j(l(t)�p(t))dt +rbdb(t)+zdq(t)k
(t)=k0+kpeakI(taPeak)+kweekendI(taWeekend)+kfallI(taFall)+kwinI(taWinter)+ksprI(taSpring)

4: pt =lt +g t

b(L)g t =d(L)e t
b(L)=1�b1L�b2L

24�b3L
25

d(L)=1�d1L�d2L
24�d3L

25,

where p(t) is the electricity price at time t, b(t) is Brownian motion, I(d ) is the indicator function, q(t) is a

Poisson process with jump intensity k, z, e t and g t are standard normal random variables, L is the lag operator

defined as Lnxt =xt � n, Peak hours are from 6 a.m. to 10 p.m. All parameters are estimated via maximum

likelihood. Standard errors are in parentheses.

Notes to Table 3:

The sample of data is comprised of the bcrisisQ period: 5/1/2000–8/24/2000. The estimated models are:

1: dp(t)=j(l�p(t))dt +rdb(t)
2: dp(t) =j(l(t)�p(t))dt +rdb(t), l(t) =a1I(taPeak)+a2I(taOffPeak)+a3I(taWeekend)+a4I(taFall) +

a5I(taWinter)+a6I (taSpring)

3: dp(t)=j(l(t)�p(t))dt +rbdb (t)+ zdq(t)

3a: dp(t)=j(l(t)�p(t))dt +rbdb(t)+ zdq(t)k
(t)=k0+kpeakI(taPeak)+kweekendI(taWeekend)+kfallI(taFall)+kwinI(taWinter)+ksprI(taSpring)

4: pt =lt +g t

b(L)g t =d(L)e t
b(L)=1�b1L�b2L

24�b3L
25

d(L)=1�d1L�d2L
24�d3L

25,

where p(t) is the electricity price at time t, b(t) is Brownian motion, I(d ) is the indicator function, q(t) is a Poisson

process with jump intensityk, z, et and g t are standard normal random variables, L is the lag operator defined as

Lnxt =xt � n, Peak hours are from 6 a.m. to 10 p.m. All parameters are estimated via maximum likelihood. Standard

errors are in parentheses.
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This specification implies that l(t) is a step function, constant across any 1 h. Integrating

Eq. (7) yields:

p tð Þ ¼ e�jtp0 þ
Z t

0

e�k t�sð Þjl sð Þdsþ
Z t

0

e�j t�sð Þrdb sð Þ

¼ e�jp t � 1ð Þ þ
Z t

t�1

e�j t�sð Þjl sð Þdsþ
Z t

t�1

e�j t�sð Þrdb sð Þ: ð9Þ
Table 3

Crisis period parameter estimates of Models 1 through 4

Parameter Model 1 Model 2 Model 3a Model 3b Model 4

a0 (Mean) 120.5084

(8.2331)

a1 (Peak Mean) 159.9843

(9.2713)

173.6223

(22.8593)

173.4912

(22.8502)

154.2709

(17.2948)

a2 (Off-Peak Mean) 125.1324

(9.9646)

164.9730

(22.6932)

164.8100

(23.0237)

121.3176

(18.2001)

a3 (Weekend Effect) �21.4966

(11.5998)

�5.631

(6.5710)

�5.9930

(6.1973)

�11.8851

(10.0701)

a6 (Spring Effect) �86.8142

(16.2252)

�98.3090

(22.9144)

�98.8955

(22.7052)

�71.9011

(28.7389)

b1 (AR 1) 0.8091

(0.0111)

0.7853

(0.0118)

0.9617

(0.0056)

0.9615

(0.0052)

0.8562

(0.0133)

b2 (AR 24) 0.8028

(0.0333)

b3 (AR 25) �0.6917

(0.0336)

a1 (MA 1) 0.2899

(0.0237)

a1 (MA24) 0.6687

(0.0410)

a1 (MA25) �0.2975

(0.0238)

k0 (Jump Probability) 0.0530

(0.0032)

0.2527

(0.0252)

kspr (Fall Effect) �0.1301

(0.0197)

kweekend (Weekend Effect) �0.0895

(0.0196)

kpeak (Peak Effect) 0.0564

(0.0194)

lv (Jump Mean) 0.6587

(8.2091)

0.7563

(8.0784)

n (Volatility Multiplier) 44.95 44.86

(3.3039)

(3.2811)

r (Volatility) 83.2143

(1.1204)

82.2609

(1.1072)

27.6667

(0.8602)

27.4639

(0.8644)

77.1476

(0.0657)

RMS Forecast Error 88.5649 76.1083 73.3400 73.3012 66.6337



C.R. Knittel, M.R. Roberts / Energy Economics 27 (2005) 791–817 807
Considering one unit of time as an hour, l(t) is constant over the interval [t�1, t).

Therefore, the exact discrete time version of Eq. (9) is:

pt ¼ at þ b1pt�1 þ gt; ð10Þ

where at=l(t)(1�e�j), b1=e
�j and gt ¼

R t

t�1
e�j t�sð Þrdb sð Þ. The only difference

between Eqs. (5) and (10) is in the intercept. As such, prices are again Markovian with

a Gaussian transition density.

Eq. (10) may be viewed as an ARMAX(1,0) model with the exogenous variables

consisting of six binary variables. Two of the binary variables indicate whether the

observation falls in a peak or off-peak time period (Peakt, OffPeakt), one of the binary

variables indicate whether the observation falls on a weekend or not (Weekendt), and three

of the binary variables indicate in which season the observation occurs (Fallt, Wintert,

Springt).
18 More explicitly, Eq. (10) may be written as:

pt ¼ a1Peakt þ a2OffPeakt þ a3Weekendt þ a4Fallt þ a5Wintert

þ a6Springt þ b1pt�1 þ gt: ð11Þ

Model 2 is also estimated via conditional maximum likelihood. The likelihood function

differs from Model 1 only through at, which includes the six binary variables, instead of

being a constant as in Model 1. The estimates for the pre-crisis and crisis periods are

presented in column 2 of Tables 2 and 3. The coefficients on the peak/off-peak indicators

reflect intraday usage patterns. Interestingly, the sign on the fall variable in the pre-crisis

period is positive suggesting that prices are, on average, higher during fall months than

summer months. This result is due to a combination of a relatively cool June and

unseasonably warm September in 1998 and 1999. An indicator for spring is the only

seasonal binary variable included in the crisis regression since the period only

encompasses spring and summer. From the estimates, the majority of the high prices

occurred during June through August. Inspection of the Durbin–Watson t-statistic suggests

that the residuals are correlated.19 This is not a surprising result given the preliminary data

analysis.

While all but one of the estimated coefficients is highly statistically significant, the

improvement over the previous model in terms of forecasting performance is minimal. The

RMS during the pre-crisis period is 47.15, an improvement of only 0.36 over Model 1; the

forecasted price series still fails to capture the erratic nature of the true price series. During

the crisis period, the improvement is greater as the RMS is 76.11 compared to 88.56 for

Model 1. This is due to the larger disconnect between the peak and off-peak parameters

during the crisis period, a1 and a2 (159.98 vs. 125.13 in the crisis period compared to

36.90 vs. 32.73 in the pre-crisis period).
18 We also estimated the models using separate binary variables for each hour. However, there was no appreciable

improvement in forecasting ability.
19 Since the specification in Eq. (10) contains a lagged dependent variable, the Durbin Watson statistic is biased

towards 2 and has reduced power. As such, we use Durbin’s t-statistic which is asymptotically equivalent to the

Durbin h-statistic (see Durbin, 1970).
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1.7. Model 3a: jump-diffusion process

As a first attempt to capture the leptokurtosis present in the price series, we turn to a

popular extension of the standard diffusion process: the jump-diffusion process. Our price

process is now specified by appending an additional term to Eq. (7), yielding:

dp tð Þ ¼ j l tð Þ � p tð Þð Þdt þ rbdb tð Þ þ zdq tð Þ ð12Þ

where q(t) is a Poisson process with intensity k, z is a draw from a normal distribution

with mean lz and standard deviation rz. We assume that the Wiener process, Poisson

process and jump size are mutually independent.

As Ball and Torous (1983) note, empirical implementation of Eq. (12) is difficult. As

such, we follow their approach and approximate this model with a mixture of normals. The

intuition behind such a model can be explained in terms of a coin tossing experiment. At

each time period, a k-coin is flipped. That is, with probability k, the coin shows a head

and, with probability (1�k), the coin shows a tail. If the coin toss results in a tail, then no

jump has occurred during the observation interval and the price process has behaved

according to Eq. (7). This is equivalent to drawing the price at time t from a normal

distribution with mean at+b1pt� 1 and variance rg
2. If the coin toss results in a head, then

a jump has occurred during the observation interval. Now the price is drawn from a normal

distribution with mean at +b1pt� 1+l2 and variance rg
2+rz

2. Note, that while the mean

may rise or fall when a jump occurs, the variance always increases.20

The conditional likelihood function is thus:

logL hð Þ ¼
YT
t¼2

1� kð Þ/
�
Pt � at þ b1Pt�1ð Þ

rb

	
r�1
b ð13Þ

þ k/

�
Pt � at þ b1Pt�1 þ lzð Þ

r2
b þ r2

z

� �1=2
	

r2
b þ r2

z

� ��1=2
; ð14Þ

where /(d ) is the standard normal density and l are the unknown parameters.

To ease in interpreting the results, and without loss of generality, we can write the

likelihood function as:

logL hð Þ ¼
YT
t¼2

1� kð Þ/
�
Pt � at þ b1Pt�1ð Þ

rb

	
r�1
b ð15Þ

þ k/
Pt � at þ b1Pt�1 þ lzð Þ

nrbð Þ

	
nrbð Þ�1;

�
ð16Þ

where n represents the proportional increase in volatility during hours that contain a jump.

The results are presented in Tables 2 and 3. Beginning with the pre-crisis period, the

probability of a jump occurring during any hour k is estimated as 0.03. Thus, a jump

occurs, on average, every 33 h. The average size of a jump, lz, is $11.06. This suggests

that prices jump up more often than they jump down. During hours that contain a jump,
20 Theoretically, any number of jumps may occur in any time interval. For simplicity, we assume that at most one

jump can occur during any hour.
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the price volatility is 62 times larger than when a jump does not occur: an increase from

$6.45 to $401.14. The parameter estimate of the slope coefficient, b1, is consistent with the

previous model’s estimates, as are estimates of a1 through a6.

The crisis period estimate of k reflects an increase in the probability of a jump to one

every 20 h. The estimated average jump size has fallen to $0.66, reflecting an increase in

negative jumps off-setting positive price spikes. The estimated price volatility is 45 times

larger when a jump occurs. Again, parameter estimates of a1 through a6 are consistent

with previous models. However, there is an increase in the estimated AR coefficient, b1, to

over 0.96. While significantly larger than previous model estimates, it is still statistically

far from the boundary of non-stationarity.

To generate useful forecasts from this model, one must simulate a forecasted path

because of the model’s dependency on random jumps. Of course, there are a continuum of

possible paths that may be simulated by, intuitively, flipping a k-coin each time period,

and drawing from the appropriate conditional distribution. Combining many simulated

paths averages out the excess variation induced from the jumps, and leaves a very smooth

forecast representing a number falling somewhere between the means of the two

conditional distributions that make up the mixture.21 The forecasting performance of the

jump-diffusion model is poor in the pre-crisis period compared to Model 1. The RMS is

49.40, greater than the simple mean-reverting model. During the crisis period, the

forecasting performance of the jump-diffusion model improves compared to Models 1 and

2; the RMS is 73.34, lower than the two preceding models. These results are consistent

with our priors that during the crisis period jumps became more commonplace, increasing

their importance in a model of the price process.

1.8. Model 3b: time-dependent jump intensity

We now refine the model specification above by allowing the jump intensity parameter

to vary over time. There are several reasons for doing this including the fact that jumps are

more likely to occur when transmission lines become congested. This suggests that during

high demand periods a jump in prices is more probable. Thus, we allow the jump intensity

to vary by the time of day and season, by specifying:

k tð Þ ¼ k0 þ kpeakPeakt þ kweekendWeekendt þ kfallFallt þ kwinWintert þ ksprSpringt:

The results listed in Tables 2 and 3 confirm our observation. In both the pre-crisis and

crisis samples, the probability of a jump increases during peak hours and decreases during

the spring and winter months. In addition, we also find a significant weekend effect in the

jump intensity.

The same forecasting issues discussed above are present here. The performance of this

model improves markedly during the pre-crisis period over the more simple jump intensity

specification. The RMS decreases to 44.35, lower than Models 1 and 2. There is little
21 We ran 5000 Monte Carlo simulations of forecasted price paths. We then average the price paths over time to

obtain a final forecasted path. Because of the high variance when a jump occurs, forecasted prices above $250 and

under�$250 during the crisis period are set to $250 and �$250, respectively. This is done to respect the price cap

and ignore impossibly low prices.
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improvement during the crisis period, however. The RMS is 73.30, virtually identical to

the more simple jump-diffusion model.

1.9. Model 4: ARMAX

The fourth model takes a more traditional time series approach to modeling electricity

prices. We begin by relaxing the Markovian assumption on prices by introducing serial

correlation in the error term. Working in a discrete time framework, price dynamics are

now specified as:

pt ¼ at þ gt ð17Þ

b Lð Þgt ¼ d Lð Þet: ð18Þ

where b(L) and d(L) are the autoregressive and moving average polynomials in the lag

operator L, respectively. These operators are defined as:

b Lð Þ ¼ 1� b1L� b2L
24 � b3L

25 ð19Þ

d Lð Þ ¼ 1� d1L� d2L
24 � d3L

25: ð20Þ

The mean at is as specified in Eq. (10) and {et} is Gaussian white noise with variance

parameter a2. The motivation for Eqs. (17)–(20) follows from an examination of the

correlogram, which shows high correlation between the current price and the previous

day’s prices.

Model 4 is estimated via conditional maximum likelihood. Because there the model

includes 25 lags, the first 25 observations are treated as fixed. The likelihood function can

be derived as follows. First define the hourly error terms as:

et ¼ pt � at � b1pt�1 � b2pt�24 � b3pt�25 � d1et�1 � d2et�24 � d3et�25: ð21Þ

The log likelihood function is given as:

logL hð Þ ¼ � T � 25

2
log 2pð Þ � T � 25

2
logr2 � 1

2r2

XT
t¼26

e2t ; ð22Þ

where h is the vector of unknown parameters.

Clear from the parameter estimates in Tables 2 and 3 is that electricity prices are not

reasonably approximated by a univariate Markov process. All lag parameters are highly

statistically significant.22 The estimated deterministic component of prices is consistent

with Model 2’s results in both subsamples.

Improvement in forecast accuracy over pervious models is significant in the pre-crisis

period as measured by root mean square forecast error. In the pre-crisis period, the RMS is,

by far, the lowest of the first five models �25.48. This improvement is also present in the
22 We examined several other specifications incorporating higher order lags at 24-h intervals. While the

estimated coefficients are statistically significant, the contribution to forecasting accuracy is minimal.
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crisis period, where the RMS is 66.63, compared to 73.30 the lowest of the first four

models. These results underline the importance of incorporating higher order autocorre-

lation in models of restructured electricity prices.

1.10. Model 5: EGARCH processes

The preliminary data analysis revealed that electricity prices exhibit volatility

clustering. In addition, intuition tells us that it is also possible that innovations to the

prices series have an asymmetric impact on the price volatility. A priori, we expect positive

price shocks to increase volatility more than negative surprises. The intuition behind this is

that a positive shock to prices is really an unexpected positive demand shock. Therefore,

since marginal costs are convex, positive demand shocks have a larger impact on price

changes relative to negative shocks. To test for this effect, we begin by specifying the price

level as the sum of a deterministic component and a stochastic component:

pt ¼ at þ gt; ð23Þ

where at is unchanged from above. The random term gt is assumed to follow an

autoregressive process

b Lð Þgt ¼ mt; ð24Þ

where b(L) is the lag operator defined in Eq. (19) above. To capture the conditional

heteroscedasticity, we adopt the EGARCH model of Nelson (1991), modeling mt as

mt ¼
ffiffiffiffi
ht

p
et; ð25Þ

ln htð Þ ¼ h þ
X

ia 1;24;25f g
jig zt�ið Þ þ c1ln ht�1ð Þ; ð26Þ

where

g zsð Þ ¼ wzs þ jzsj � E jzsjð Þf g

zs ¼ mt=
ffiffiffiffi
ht

p
;

and {et} is Gaussian white noise with unit variance. The coefficient w controls the degree

of asymmetry. When w =0, there is no asymmetric effect of past shocks on current

variance. If �1bw b0, then a positive shock increases variance less than a negative shock.

If w b1 then positive shocks reduce variance while negative shocks increase variance. Our

prediction is that w N0, implying that the effect of positive shocks on the variance of prices

is amplified over negative shocks.

Parameter estimates for Eqs. (23)–(26) are found in Tables 4 and 5.23 In the pre-crisis

period, estimated coefficients in the deterministic component of prices are consistent with

previous specifications. The autoregressive coefficients in both periods are consistent in

terms of signs, although the EGARCH model’s estimates are a bit smaller in magnitude

when compared with previous models. As anticipated, the asymmetry parameter is
23 See Hamilton (1994, pp. 668–669) for the derivation of the log likelihood function.



Table 4

Pre-crisis period parameter estimates of Model 5

Parameter Model 5

a1 (Peak Mean) 29.2703 (0.0047)

a2 (Off-Peak Mean) 25.6694 (0.0125)

a3 (Weekend Effect) �2.8401 (0.0018)

a4 (Fall Effect) 14.5210 (0.0172)

a5 (Winter Effect) 0.1660 (0.0121)

a6 (Spring Effect) �6.2021 (0.0398)

b1 (AR 1) 0.6320 (0.0068)

b2 (AR 24) 0.2293 (0.0070)

b3 (AR25) �0.0750 (0.0065)

h (ARCH Intercept) 4.9984 (0.0020)

j1 (ARCH 1) 1.5042 (0.0038)

c1 (GARCH 1) 0.2553 (0.0034)

c24 (GARCH 24) �.0750 (0.0027)

c25 (GARCH 25) 0.0069 (0.0040)

w (Asymmetry) 0.0034 (0.0003)

RMS Forecast Error 52.1893

The pre-crisis estimation period is 4/1/1998–4/23/2000. Standard errors are in parentheses. Model 5 is an

EGARCH model with a ARCH component of one lag in the volatility and GARCH components of 1, 24 and

25 lags.
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positive and significant, suggesting the presence of an binverse leverage effect.Q Thus,
positive shocks to prices amplify the conditional variance of the process more so than

negative shocks.

The forecasting ability of this model in the pre-crisis period is actually the poorest of all

models considered thus far, with an RMS of 52.19. In contrast, in the crisis period, the

EGARCH specification has the best forecasting performance, but not dramatically so
Table 5

Crisis period parameter estimates of Model 5

Parameter Model 5

a1 (Peak Mean) 139.0722 (0.1666)

a2 (Off-Peak Mean) 32.6045 (1.1498)

a3 (Weekend) 4.4532 (2.5943)

a6 (Spring Effect) �75.3778 (0.2846)

b1 (AR 1) 0.6935 (0.0156)

b2 (AR 24) 0.2362 (0.0144)

b3 (AR 25) �0.0100 (0.0223)

h (ARCH Intercept) 0.7700 (0.0743)

j1 (ARCH 1) 0.7434 (0.0378)

c1 (GARCH 1) 0.7558 (0.0172)

c2 (GARCH 24) 0.2726 (0.0334)

c3 (GARCH 25) �0.1113 (0.0332)

w (Asymmetry) 0.3452 (0.0311)

RMS Forecast Error 61.3005

The crisis estimation period is 5/1/2000–8/24/2000. Standard errors are in parentheses. Model 5 is an EGARCH

model with a ARCH component of one lag in the volatility and GARCH components of 1, 24 and 25 lags.
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(RMS of 61.30 compared to 66.63 for Model 4). These results suggest that when the

electricity market is supply constrained–as it was during the crisis period–incorporating

volatility will be most important, since persistent positive shocks to demand will result in

high prices and therefore clustering.

1.11. Model 6: incorporating weather data

The final model extends the ARMAX specification above (Model 4) by incorporating

temperature data. Before specifying the model, however, several issues must be resolved.

Northern California is both large and geographically diverse. There are inland valleys,

mountainous regions, and coastal areas; each of which has a unique climate. As such, a

single temperature from any one area is inappropriate.

Despite this diversity, the majority of electricity consumption is concentrated in a

small number of areas. We gathered hourly temperature data from the National

Oceanographic and Atmospheric Association (NOAA) corresponding to reading stations

at San Francisco, Sacramento, and Fresno.24 Fig. 9 shows a scatter plot of price vs.

temperature, as measured in San Francisco, overlaid with a univariate regression line.

Several characteristics are evident in the plot, including a nonlinear relationship. The

price–temperature relationship is negative for temperatures below 508, when heating

becomes necessary. Since electric heating is rare in California, this relationship is subtle.

After 558, the relationship turns positive as commercial cooling needs begin. The

sensitivity is also much greater at higher temperatures than lower temperatures. Price caps

are evident from the rows of data points at the $250, $500, and $750 marks. Scatter plots

of price and temperature in other areas are not presented here because of their similarity to

Fig. 9.

To capture the diversity of regions, each of the three temperature series is initially

included in the specification. To capture the nonlinearity, the square and cube of each

temperature series are included as well. However, the additional explanatory power of

additional temperature series is negligible—as is their impact on forecasting accuracy.

Thus, the pre-crisis and crisis results for the following specification are presented in Tables

6 and 7. Specifically, we specify:

pt ¼ at þ gt ð27Þ

b Lð Þgt ¼ d Lð Þet; ð28Þ

where

at ¼ a11 taPeakð Þ þ a21 taOffPeakð Þ þ a31 taWeekendð Þ þ a41 taFallð Þ

þ a51 taWinterð Þ þ a61 taSpringð Þ þ a7Tempt þ asTempt þ a9Temp3t ; ð29Þ
24 Actually, San Francisco is not included in zone NP15. However, its proximity and similar climate to other

areas in the zone motivate its inclusion.



Fig. 9. Scatterplot of hourly spot prices vs. hourly San Francisco temperatures.
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the AR and MA polynomials are unchanged from above (i.e. 1, 24, and 25 period lags),

and {et} is Gaussian white noise. The temperature variable used is an equally weighted

average of the temperatures from each of the three cities.25

Referring to Tables 6 and 7, the temperature variables are all highly statistically

significant during the pre-crisis period. The RMS forecast error is also the lowest of all

models examined, though the difference from the previous ARMAX model is small,

roughly 2.0. During the crisis period, the price–temperature association breaks down. All

parameters are insignificant suggesting that other forces were at work during this period.

This result highlights the limitations of simple statistical models relative to structural

models.

1.12. Non-normal distributions

As an initial attempt to recognize the non-normality of the transition densities, the

models are re-estimated and new forecasts are generated using the natural logarithm of

prices. This transformation implies that the original price process is lognormal. In order to

perform this transformation, nonpositive prices are set to missing and dropped from the

analysis.26
25 We examined other weighting schemes, including population based weights and demand based weights. Each

had a minimal impact on the results.
26 This represented less than 1% of the data.



Table 6

Pre-crisis period parameter estimates of model 6

Parameter Model 5

a1 (Peak Mean) 29.2703 (0.0047)

a2 (Off-Peak Mean) 25.6694 (0.0125)

a3 (Weekend Effect) �2.8401 (0.0018)

a4 (Fall Effect) 14.5210 (0.0172)

a5 (Winter Effect) 0.1660 (0.0121)

a6 (Spring Effect) �6.2021 (0.0398)

a7 (Temperature) 10.0729 (1.6111)

a8 (Temperature2) �0.2220 (0.0266)

a9 (Temperature3) 0.0016 (0.0001)

b1 (AR 1) 0.71603 (0.0084)

b2 (AR 24) 0.9192 (0.0071)

b3 (AR 25) �0.6530 (0.0102)

d1 (MA 1) 0.1459 (0.0118)

d1 (MA24) 0.8145 (0.0104)

d1 (MA25) �0.1302 (0.0112)

r (Error SD) 18.2067 (0.0532)

RMS Forecast Error 23.4787

The pre-crisis estimation period is 4/1/1998–4/23/2000. Standard errors are in parentheses. Model 6 is a ARMAX

model with AR and MA terms of 1, 24, and 25 lags that incorporates a polynomial of the temperature of order 3.
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The estimation results offer no meaningful change in terms of estimated parameter

significance or direction of association. And, the transformation had a negligible effect on

forecasting performance. The reason for this lack of improvement is that the kurtosis is the

dominant feature of the price series. The skewness, while clearly present, is not
Table 7

Crisis period parameter estimates of Model 6

Parameter Model 5

a1 (Peak Mean) 29.2703 (0.0047)

a2 (Off-Peak Mean) 25.6694 (0.0125)

a3 (Weekend Effect) �2.8401 (0.0018)

a4 (Fall Effect) 14.5210 (0.0172)

a5 (Winter Effect) 0.1660 (0.0121)

a6 (Spring Effect) �6.2021 (0.0398)

a7 (Temperature) �30.7134 (29.9954)

a8 (Temperature2) 0.2422 (0.4084)

a9 (Temperature3) 0.0003 (0.0019)

b1 (AR 1) 0.8008 (0.0180)

b2 (AR 24) 0.3562 (0.0885)

b3 (AR 25) �0.2531 (0.0794)

d1 (MA1) 0.2864 (0.0280)

d1 (MA24) 0.2046 (0.0924)

d1 (MA25) �0.1437 (0.0395)

r (Error SD) 75.4821 (0.0625)

RMS Forecast Error 75.3501

The crisis estimation period is 5/1/2000–8/24/2000. Standard errors are in parentheses. Model 6 is a ARMAX

model with AR and MA terms of 1, 24, and 25 lags that incorporates a polynomial of the temperature of order 3.
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responsible for the forecasting performance of any model. The frequency of large price

deviations from the conditional mean creates big forecast errors, which translate into high

RMS forecast errors. Even after using an alternative measure of forecasting performance

(average absolute deviation), forecasting performance is minimally affected by the

transformation.27
4. Conclusions

The events of the past 2 years in California have made understanding the stochastic

properties of restructured electricity prices of the upmost importance. Retail electricity

companies, large consumers, and entrants are increasing their use of electricity derivatives

to hedge against price risk in this new era. However, the idiosyncracies of electricity prices

make existing statistical models of asset prices of little practical use in modeling electricity

prices.

In this paper, we have provided a detailed examination of restructured prices. Unlike

other commodity prices, electricity prices show a high degree persistence in both price

levels and squared prices. In addition, because electricity prices closely track demand

movements, we also find strong deterministic cycles including, intraday, day of week, and

seasonal effects. Finally, the large values of higher order moments relative to a Gaussian

distribution render models based on normality and log-normality of limited use in

representing electricity prices.

Forecasting performance, a crucial component of security valuation in the electricity

industry, can be greatly improved by incorporating the most salient features of electricity

prices. Specifically, volatility clustering and higher order autocorrelation are two of the

most important features. We also document an inverse leverage effect where positive price

shocks increase price volatility more than negative shocks.
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