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Abstract

This chapter discusses how applied researchers in corporate finance can address endo-

geneity concerns. We begin by reviewing the sources of endogeneity—omitted variables,

simultaneity, and measurement error—and their implications for inference. We then discuss

in detail a number of econometric techniques aimed at addressing endogeneity problems

including: instrumental variables, difference-in-differences estimators, regression discontinu-

ity design, matching methods, panel data methods, and higher order moments estimators.

The unifying themes of our discussion are the emphasis on intuition and the applications to

corporate finance.

Keywords: Instrumental Variables, Difference-in-Differences Estimators, Regression Dis-

continuity Designs, Matching Estimators, Measurement Error

J.E.L. Codes: G3, C21, C23, C26
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1. Introduction

Arguably, the most important and pervasive issue confronting studies in empirical corporate

finance is endogeneity, which we can loosely define as a correlation between the explanatory

variables and the error term in a regression. Endogeneity leads to biased and inconsistent

parameter estimates that make reliable inference virtually impossible. In many cases, en-

dogeneity can be severe enough to reverse even qualitative inference. Yet, the combination

of complex decision processes facing firms and limited information available to researchers

ensures that endogeneity concerns are present in every study. These facts raise the question:

how can corporate finance researchers address endogeneity concerns? Our goal is to answer

this question.

However, as stated, our goal is overly ambitious for a single survey paper. As such,

we focus our attention on providing a practical guide and starting point for addressing

endogeneity issues encountered in corporate finance. Recognition of endogeneity issues has

increased noticeably over the last decade, along with the use of econometric techniques

targeting these issues. Although this trend is encouraging, there have been some growing

pains as the field learns new econometric techniques and translates them to corporate finance

settings. As such, we note potential pitfalls when discussing techniques and their application.

Further, we emphasize the importance of designing studies with a tight connection between

the economic question under study and the econometrics used to answer the question.

We begin by briefly reviewing the sources of endogeneity—omitted variables, simultane-

ity, and measurement error—and their implications for inference. While standard fare in

most econometrics textbooks, our discussion of these issues focuses on their manifestation

in corporate finance settings. This discussion lays the groundwork for understanding how to

address endogeneity problems.

We then review a number of econometric techniques aimed at addressing endogeneity

problems. These techniques can be broadly classified into two categories. The first category

includes techniques that rely on a clear source of exogenous variation for identifying the co-

efficents of interest. Examples of these techniques include instrumental variables, difference-

in-differences estimators, and regression discontinuity design. The second category includes

techniques that rely more heavily on modeling assumptions, as opposed to a clear source of

exogenous variation. Examples of these techniques include panel data methods (e.g., fixed

and random effects), matching methods, and measurement error methods.

In discussing these techniques, we emphasize intuition and proper application in the

context of corporate finance. For technical details and formal proofs of many results, we refer
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readers to the appropriate econometric references. In doing so, we hope to provide empirical

researchers in corporate finance not only with a set of tools, but also an instruction manual

for the proper use of these tools.

Space constraints necessitate several compromises. Our discussion of selection problems is

confined to that associated with non-random assignment and the estimation of causal effects.

A broader treatment of sample selection issues is contained in Li and Prabhala (2007).1 We

also do not discuss structural estimation, which relies on an explicit theoretical model to

impose identifying restrictions. Most of our attention is on linear models and nonparametric

estimators that have begun to appear in corporate finance applications. Finally, we avoid

details associated with standard error computations and, instead, refer the reader to the

relevant econometrics literature and the recent study by Petersen (2009).

The remainder of the paper proceeds as follows. Section 2 begins by presenting the basic

empirical framework and notation used in this paper. We discuss the causes and conse-

quences of endogeneity using a variety of examples from corporate finance. Additionally,

we introduce the potential outcomes notation used throughout the econometric literature

examining treatment effects and discuss its link to linear regressions. In doing so, we hope

to provide an introduction to the econometrics literature that will aid and encourage readers

to stay abreast of econometric developments.

Sections 3 through 5 discuss techniques falling in the first category mentioned above:

instrumental variables, difference-in-differences estimators, and regression discontinuity de-

signs. Sections 6 through 8 discuss techniques from the second category: matching methods,

panel data methods, and measurement error methods. Section 9 concludes with our thoughts

on the subjectivity inherent in addressing endogeneity and several practical considerations.

We have done our best to make each section self-contained in order to make the chapter

readable in a nonlinear or piecemeal fashion.

2. The Causes and Consequences of Endogeneity

The first step in addressing endogeneity is identifying the problem.2 More precisely, re-

searchers must make clear which variable(s) are endogenous and why they are endogenous.

1A more narrow treatment of econometric issues in corporate governance can be found in Bhagat and
Jeffries (2005).

2As Wooldridge notes, endogenous variables traditionally refer to those variables determined within the
context of a model. Our definition of correlation between an explanatory variable and the error term in a
regression is broader.
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Only after doing so can one hope to devise an empirical strategy that appropriately addresses

this problem. The goal of this section is to aid in this initial step.

The first part of this section focuses on endogeneity in the context of a single equation

linear regression—the workhorse of the empirical corporate finance literature. The second

part introduces treatment effects and potential outcomes notation. This literature that stud-

ies the identification of causal effects is now pervasive in several fields of economics (e.g.,

econometrics, labor, development, public finance). Understanding potential outcomes and

treatment effects is now a prerequisite for a thorough understanding of several modern econo-

metric techniques, such as regression discontinuity design and matching. More importantly,

an understanding of this framework is useful for empirical corporate finance studies that seek

to identify the causal effects of binary variables on corporate behavior.

We follow closely the notation and conventions in Wooldridge (2002), to which we refer

the reader for further detail.

2.1 Regression Framework

In population form, the single equation linear model is

y = β0 + β1x1 + · · ·+ βkxk + u (1)

where y is a scalar random variable referred to as the outcome or dependent variable,

(x1, . . . , xk) are scalar random variables referred to as explanatory variables or covariates, u is

the unobservable random error or disturbance term, and (β0, . . . , βk) are constant parameters

to be estimated.

The key assumptions needed for OLS to produce consistent estimates of the parameters

are the following:

1. a random sample of observations on y and (x1, . . . , xk),

2. a mean zero error term (i.e., E(u) = 0),

3. no linear relationships among the explanatory variables (i.e., no perfect collinearity so

that rank(X ′X) = k, where X = (1, x1, . . . , xk) is a 1× (k + 1) vector), and

4. an error term that is uncorrelated with each explanatory variable (i.e., cov(xj, u) = 0

for j = 1, . . . , k).

8
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For unbiased estimates, one must replace assumption 4. with:

4a. an error term with zero mean conditional on the explanatory variables (i.e., E(u|X) =

0).

Assumption 4a is weaker than statistical independence between the regressors and error

term, but stronger than zero correlation. Conditions 1 through 4 also ensure that OLS

identifies the parameter vector, which in this linear setting implies that the parameters can

be written in terms of population moments of (y,X).3

A couple of comments concerning these assumptions are in order. The first assumption

can be weakened. One need assume only that the error term is independent of the sample

selection mechanism conditional on the covariates. The second assumption is automatically

satisfied by the inclusion of an intercept among the regressors.4 Strict violation of the third

assumption can be detected when the design matrix is not invertible. Practically speaking,

most computer programs will recognize and address this problem by imposing the necessary

coefficient restrictions to ensure a full rank design matrix, X. However, one should not rely

on the computer to detect this failure since the restrictions, which have implications for

interpretation of the coefficients, can be arbitrary.

Assumption 4 (or 4a) should be the focus of most research designs because violation of

this assumption is the primary cause of inference problems. Yet, this condition is empirically

untestable because one cannot observe u. We repeat there is no way to empirically test

whether a variable is correlated with the regression error term because the error term is

unobservable. Consequently, there is no way to to statistically ensure that an endogeneity

problem has been solved.

In the following subsections, each of the three causes of endogeneity maintains Assump-

tions 1 through 3. We introduce specification changes to Eqn (1) that alter the error term

in a manner that violates Assumption 4 and, therefore, introduces an endogeneity problem.

3To see this statistical identification, write Eqn (1) as y = XB + u, where B = (β0, β1, . . . , βk)
′ and

X = (1, x1, . . . , xk). Premultiply this equation by X ′ and take expectations so that E(X ′y) = E(X ′X)B.
Solving for B yields B = E(X ′X)−1E(X ′y). In order for this equation to have a unique solution, assumptions
3 and 4 (or 4a) must hold.

4Assume that E(u) = r ̸= 0. We can rewrite u = r + w, where E(w) = 0. The regression is then
y = α + β1x1 + · · · + βkxk + w, where α = (β0 + r). Thus, a nonzero mean for the error term simply gets
absorbed by the intercept.
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2.1.1 Omitted Variables

Omitted variables refer to those variables that should be included in the vector of explanatory

variables, but for various reasons are not. This problem is particularly severe in corporate

finance. The objects of study (firms or CEOs, for example) are heterogeneous along many

different dimensions, most of which are difficult to observe. For example, executive com-

pensation depends on executives’ abilities, which are difficult to quantify much less observe.

Likewise, financing frictions such as information asymmetry and incentive conflicts among a

firms’ stakeholders are both theoretically important determinants of corporate financial and

investment policies; yet, both frictions are difficult to quantify and observe. More broadly,

most corporate decisions are based on both public and nonpublic information, suggesting

that a number of factors relevant for corporate behavior are unobservable to econometricians.

The inability to observe these determinants means that instead of appearing among the

explanatory variables, X, these omitted variables appear in the error term, u. If these

omitted variables are uncorrelated with the included explanatory variables, then there is

no problem for inference; the estimated coefficients are consistent and, under the stronger

assumption of zero conditional mean, unbiased. If the two sets of variables are correlated,

then there is an endogeneity problem that causes inference to break down.

To see precisely how inference breaks down, assume that the true economic relation is

given by

y = β0 + β1x1 + · · ·+ βkxk + γw + u, (2)

where w is an unobservable explanatory variable and γ its coefficient. The estimable popu-

lation regression is

y = β0 + βx1 + · · ·+ βkxk + v, (3)

where v = γw + u is the composite error term. We can assume without loss of generality

that w has zero mean since any nonzero mean will simply be subsumed by the intercept.

If the omitted variable w is correlated with any of the explanatory variables, (x1, . . . , xk),

then the composite error term v is correlated with the explanatory variables. In this case,

OLS estimation of Eqn (3) will typically produce inconsistent estimates of all of the elements

of β. When only one variable, say xj, is correlated with the omitted variable, it is possible

to understand the direction and magnitude of the asymptotic bias. However, this situation

is highly unlikely, especially in corporate finance applications. Thus, most researchers im-

plicitly assume that all of the other explanatory variables are partially uncorrelated with the

omitted variable. In other words, a regression of the omitted variable on all of the explana-

tory variables would produce zero coefficients for each variable except xj. In this case, the
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probability limit for the estimate of βl (denoted β̂l) is equal to βl for l ̸= j, and for βj

plim β̂j = βj + γϕj, j = 1, . . . , k (4)

where ϕj = cov(xj, w)/V ar(xj).

Eqn (4) is useful for understanding the direction and potential magnitude of any omitted

variables inconsistency. This equation shows that the OLS estimate of the endogenous

variable’s coefficient converges to the true value, βj, plus a bias term as the sample size

increases. The bias term is equal to the product of the effect of the omitted variable on the

outcome variable, γ, and the effect of the omitted variable on the included variable, ϕj. If

w and xj are uncorrelated, then ϕj = 0 and OLS is consistent. If w and xj are correlated,

then OLS is inconsistent. If γ and ϕj have the same sign—positive or negative—then the

asymptotic bias is positive. With different signs, the asymptotic bias is negative.

Eqn (4) in conjunction with economic theory can be used to gauge the importance and

direction of omitted variables biases. For example, firm size is a common determinant in

CEO compensation studies (e.g., Core, Guay, and Larcker, 2008). If larger firms are more

difficult to manage, and therefore require more skilled managers (Gabaix and Landier, 2008),

then firm size is endogenous because managerial ability, which is unobservable, is in the error

term and is correlated with an included regressor, firm size. Using the notation above, y

is a measure of executive compensation, x is a measure of firm size, and w is a measure

of executive ability. The bias in the estimated firm size coefficient will likely be positive,

assuming that the partial correlation between ability and compensation (γ) is positive, and

that the partial correlation between ability and firm size (ϕj) is also positive. (By partial

correlation, we mean the appropriate regression coefficient.)

2.1.2 Simultaneity

Simultaneity bias occurs when y and one or more of the x’s are determined in equilibrium

so that it can plausibly be argued either that xk causes y or that y causes xk. For example,

in a regression of a value multiple (such as market-to-book) on an index of antitakeover

provisions, the usual result is a negative coefficient on the index. However, this result does

not imply that the presence of antitakeover provisions leads to a loss in firm value. It is also

possible that managers of low-value firms adopt antitakeover provisions in order to entrench

themselves.5

5See Schoar and Washington (2010) for a recent discussion of the endogenous nature of governance
structures with respect to firm value.
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Most prominently, simultaneity bias also arises when estimating demand or supply curves.

For example, suppose y in Eqn (1) is the interest rate charged on a loan, and suppose that

x is the quantity of the loan demanded. In equilibrium, this quantity is also the quantity

supplied, which implies that in any data set of loan rates and loan quantities, some of these

data points are predominantly the product of demand shifts, and others are predominantly

the product of supply shifts. The coefficient estimate on x could be either positive or negative,

depending on the relative elasticities of the supply and demand curves as well as the relative

variation in the two curves.6

To illustrate simultaneity bias, we simplify the example of the effects of antitakeover pro-

visions on firm value, and we consider a case in which Eqn (1) contains only one explanatory

variable, x, in which both y and x have zero means, in which y and x are determined jointly

as follows:

y = βx+ u, (5)

x = αy + v, (6)

and with u uncorrelated with v. We can think of y as the market-to-book ratio and x as a

measure of antitakeover provisions. To derive the bias from estimating Eqn (5) by OLS, we

can write the population estimate of the slope coefficient of Eqn (5) as

β̂ =
cov(x, y)

var(x)

=
cov(x, βx+ u)

var(x)

= β +
cov(x, u)

var(x)

Using Eqns (5) and (6) to solve for x in terms of u and v, we can write the last bias term as

cov(x, u)

var(x)
=

α(1− αβ)var(u)

α2var(u) + var(v)

This example illustrates the general principle that, unlike omitted variables bias, simultaneity

bias is difficult to sign because it depends on the relative magnitudes of different effects, which

cannot be known a priori.

6See Ivashina (2009) for a related examination of the role of lead bank loan shares on interest rate spreads.
Likewise, Murfin (2010) attempts to identify supply-side determinants of loan contract features—covenant
strictness—using an instrumental variables approach.
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2.1.3 Measurement Error

Most empirical studies in corporate finance use proxies for unobservable or difficult to quan-

tify variables. Any discrepancy between the true variable of interest and the proxy leads

to measurement error. These discrepancies arise not only because data collectors record

variables incorrectly but also because of conceptual differences between proxies and their

unobservable counterparts. When variables are measured imperfectly, the measurement er-

ror becomes part of the regression error. The impact of this error on coefficient estimates,

not surprisingly, depends crucially on its statistical properties. As the following discussion

will make clear, measurement error does not always result in an attenuation bias in the

estimated coefficient—the default assumption in many empirical corporate finance studies.

Rather, the implications are more subtle.

Measurement Error in the Dependent Variable

Consider the situation in which the dependent variable is measured with error. Capital

structure theories such as Fischer, Heinkel, and Zechner (1989) and Leland (1994) consider

a main variable of interest to be the market leverage ratio, which is the ratio of the market

value of debt to the market value of the firm (debt plus equity). While the market value

of equity is fairly easy to measure, the market value of debt is more difficult. Most debt

is privately held by banks and other financial institutions, so there is no observable market

value. Most public debt is infrequently traded, leading to stale quotes as proxies for market

values. As such, empirical studies often use book debt values in their place, a situation

that creates a wedge between the empirical measure and the true economic measure. For the

same reason, measures of firm, as opposed to shareholder, value face measurement difficulties.

Total compensation for executives can also be difficult to measure. Stock options often vest

over time and are valued using an approximation, such as Black-Scholes (Core, Guay, and

Larcker, 2008).

What are the implications of measurement error in the dependent variable? Consider the

population model

y∗ = β0 + β1x1 + · · ·+ βkxk + u,

where y∗ is an unobservable measure and y is the observable version of or proxy for y∗. The

difference between the two is defined as w ≡ y − y∗. The estimable model is

y = β0 + β1x1 + · · ·+ βkxk + v, (7)

where v = w+u is the composite error term. Without loss of generality, we can assume that

13
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w, like u, has a zero mean so that v has a zero mean.7

The similarity between Eqns (7) and (3) is intentional. The statistical implications of

measurement error in the dependent variable are similar to those of an omitted variable. If

the measurement error is uncorrelated with the explanatory variables, then OLS estimation

of Eqn (7) produces consistent estimates; if correlated, then OLS estimates are inconsistent.

Most studies assume the former, in which case the only impact of measurement error in

the dependent variable on the regression is on the error variance and parameter covariance

matrix.8

Returning to the corporate leverage example above, what are the implications of mea-

surement error in the value of firm debt? As firms become more distressed, the market value

of debt will tend to fall by more than the book value. Yet, several determinants of capital

structure, such as profitability, are correlated with distress. Ignoring any correlation between

the measurement error and other explanatory variables allows us to use Eqn (4) to show that

this form of measurement error would impart a downward bias on the OLS estimate of the

profitability coefficient.9

Measurement Error in the Independent Variable

Next, consider measurement error in the explanatory variables. Perhaps the most recog-

nized example is found in the investment literature. Theoretically, marginal q is a sufficient

statistic for investment (Hayashi, 1982). Empirically, marginal q is difficult to measure, and

so a number of proxies have been used, most of which are an attempt to measure Tobin’s q—

the market value of assets divided by their replacement value. Likewise, the capital structure

literature is littered with proxies for everything from the probability of default, to the tax

benefits of debt, to the liquidation value of assets. Studies of corporate governance also rely

greatly on proxies. Governance is itself a nebulous concept with a variety of different facets.

Variables such as an antitakeover provision index or the presence of a large blockholder are

unlikely sufficient statistics for corporate governance, which includes the strength of board

oversight among other things.

What are the implications of measurement error in an independent variable? Assume

7In general, biased measurement in the form of a nonzero mean for w only has consequences for the
intercept of the regression, just like a nonzero mean error term.

8If u and w are uncorrelated, then measurement error in the dependent variable increases the error variance
since σ2

v = σ2
w + σ2

u > σ2
u. If they are correlated, then the impact depends on the sign and magnitude of the

covariance term.
9The partial correlation between the measurement error in leverage and book leverage (γ) is positive:

measurement error is larger at higher levels of leverage. The partial correlation between the measurement
error in leverage and profitability (ϕj) is negative: measurement error is larger at lower levels of profits.
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the population model is

y = β0 + β1x1 + · · ·+ βkx
∗
k + u, (8)

where x∗k is an unobservable measure and xk is its observable proxy. We assume that u is

uncorrelated with all of the explanatory variables in Eqn (8), (x1, · · · , xk−1, x
∗
k), as well as

the observable proxy xk. Define the measurement error to be w ≡ xk−x∗k, which is assumed

to have zero mean without loss of generality. The estimable model is

y = β0 + β1x1 + · · ·+ βkxk + v, (9)

where v = u− βkw is the composite error term.

Again, the similarity between Eqns (9) and (3) is intentional. As long as w is uncorrelated

with each xj, OLS will produce consistent estimates since a maintained assumption is that

u is uncorrelated with all of the explanatory variables — observed and unobserved. In

particular, if the measurement error w is uncorrelated with the observed measure xk, then

none of the conditions for the consistency of OLS are violated. What is affected is the variance

of the error term, which changes from var(u) = σ2
u to var(u−βkw) = σ2

u+β
2
kσ

2
w−2βkσuw. If u

and w are uncorrelated, then the regression error variance increases along with the estimated

standard errors, all else equal.

The more common assumption, referred to as the classical errors-in-variables assumption,

is that the measurement error is uncorrelated with the unobserved explanatory variable, x∗k.

This assumption implies that w must be correlated with xk since cov(xk, w) = E(xkw) =

E(x∗kw) + E(w2) = σ2
w. Thus, xk and the composite error v from Eqn (9) are correlated,

violating the orthogonality condition (assumption 4). This particular error-covariate cor-

relation means that OLS produces the familiar attenuation bias on the coefficient of the

mismeasured regressor.

The probability limit of the coefficient on the tainted variable can be characterized as:

plimβ̂k = βk

(
σ2
r

σ2
r + σ2

w

)
(10)

where σ2
r is the error variance from a linear regression of x∗k on (x1, . . . , xk−1) and an intercept.

The parenthetical term in Eqn (10) is a useful index of measurement quality of xk because it

is bounded between zero and one. Eqn (10) implies that the OLS estimate of βk is attenuated,

or smaller in absolute value, than the true value. Examination of Eqn (10) also lends insight

into the sources of this bias. Ceteris paribus, the higher the error variance relative to the

variance of xk, the greater the bias. Additionally, ceteris paribus, the more collinear x∗k is

with the other regressors (x1, . . . , xk−1), the worse the attenuation bias.
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Measurement error in xk generally produces inconsistent estimates of all of the βj, even

when the measurement error, w, is uncorrelated with the other explanatory variables. This

additional bias operates via the covariance matrix of the explanatory variables. The proba-

bility limit of the coefficient on a perfectly measured variable, βj, j ̸= k, is:

plim
(
β̂j

)
= ϕyxj

− plim
(
β̂k

)
ϕxxj

, j ̸= k, (11)

where ϕyxj
is the coefficient on xj in a population linear projection of y on (x1, . . . , xk−1),

and ϕxxj
is the coefficient on xj in a population linear projection of xk on (x1, . . . , xk−1).

Eqn (11) is useful for determining the magnitude and sign of the biases in the coefficients

on the perfectly measured regressors. First, if x∗k is uncorrelated with all of the xj, then this

regressor can be left out of the regression, and the plim of the OLS estimate of βj is ϕyxj
,

which is the first term in Eqn (11). Intuitively, the measurement error in xk cannot infect

the other coefficients via correlation among the covariates if this correlation is zero. More

generally, although bias in the OLS estimate of the coefficient βk is always toward zero, bias

in the other coefficients can go in either direction and can be quite large. For instance, if

ϕxxj
is positive, and βk > 0, then the OLS estimate of βj is biased upward. As a simple

numerical example, suppose, ϕxxj
= 1, ϕyxj

= 0.2, and the true value of βk = 0.1. Then

from Eqn (11) the true value of βj = 0.1. However, if the biased OLS estimate of βk is 0.05,

then we can again use Eqn (11) to see that the biased OLS estimate of βj is 0.15. If the

measurement quality index in Eqn (10) is sufficiently low so that attenuation bias is severe,

and if ϕxxj
is sufficiently large, then even if the true value of βj is negative, j ̸= k, the OLS

estimate can be positive.

What if more than one variable is measured with error under the classic errors-in-variables

assumption? Clearly, OLS will produce inconsistent estimates of all the parameter estimates.

Unfortunately, little research on the direction and magnitude of these inconsistencies exists

because biases in this case are typically unclear and complicated to derive (e.g. Klepper and

Leamer, 1984). It is safe to say that bias is not necessarily toward zero and that it can be

severe.

A prominent example of measurement error in corporate finance arises in regressions of

investment on Tobin’s q and cash flow. Starting with Fazzari, Hubbard, and Petersen (1988),

researchers have argued that if a firm cannot obtain outside financing for its investment

projects, then the firm’s investment should be highly correlated with the availability of

internal funds. This line of argument continues with the idea that if one regresses investment

on a measure of investment opportunities (in this case Tobin’s q) and cash flow, the coefficient

on cash flow should be large and positive for groups of firms believed to be financially
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constrained. The measurement error problem here is that Tobin’s q is an imperfect proxy for

true investment opportunities (marginal q) and that cash flow is highly positively correlated

with Tobin’s q. In this case, Eqn (11) shows that because this correlation, ϕxxj
, is positive,

the coefficient on cash flow, βj, is biased upwards. Therefore, even if the true coefficient on

cash flow is zero, the biased OLS estimate can be positive. This conjecture is confirmed, for

example, by the evidence in Erickson and Whited (2000) and Cummins, Hassett, and Oliner

(2006).

2.2 Potential Outcomes and Treatment Effects

Many studies in empirical corporate finance compare the outcomes of two or more groups. For

example, Sufi (2009) compares the behavior of firms before and after the introduction of bank

loan ratings to understand the implications of debt certification. Faulkender and Petersen

(2010) compare the behavior of firms before and after the introduction of the American

Jobs Creation Act to understand the implications of tax policy. Bertrand and Mullainathan

(2003) compare the behavior of firms and plants in states passing state antitakeover laws

with those in states without such laws. The quantity of interest in each of these studies is

the causal effect of a binary variable(s) on the outcome variables. This quantity is referred

to as a treatment effect, a term derived from the statistical literature on experiments.

Much of the recent econometrics literature examining treatment effects has adopted the

potential outcome notation from statistics (Rubin, 1974 and Holland, 1986). This notation

emphasizes both the quantities of interest, i.e., treatment effects, and the accompanying

econometric problems, i.e., endogeneity. In this subsection, we introduce the potential out-

comes notation and various treatment effects of interest that we refer to below. We also

show its close relation to the linear regression model (Eqn (1)). In addition to providing

further insight into endogeneity problems, we hope to help researchers in empirical corporate

finance digest the econometric work underlying the techniques we discuss here.

2.2.1 Notation and Framework

We begin with an observable treatment indicator, d, equal to one if treatment is received and

zero otherwise. Using the examples above, treatment could correspond to the introduction

of bank loan ratings, the introduction of the Jobs Creation Act, or the passage of a state

antitakeover law. Observations receiving treatment are referred to as the treatment group;

observations not receiving treatment are referred to as the control group. The observable
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outcome variable is again denoted by y, examples of which include investment, financial

policy, executive compensation, etc.

There are two potential outcomes, denoted y(1) and y(0), corresponding to the outcomes

under treatment and control, respectively. For example, if y(1) is firm investment in a state

that passed an antitakeover law, then y(0) is that same firm’s investment in the same state

had it not passed an antitakeover law. The treatment effect is the difference between the

two potential outcomes, y(1)− y(0).10

Assuming that the expectations exist, one can compute various average effects including:

Average Treatment Effect (ATE) : E [y(1)− y(0)] , (12)

Average Treatment Effect of the Treated (ATT) : E [y(1)− y(0)|d = 1] , (13)

Average Treatment Effect of the Untreated (ATU) : E [y(1)− y(0)|d = 0] . (14)

The ATE is the expected treatment effect of a subject randomly drawn from the population.

The ATT and ATU are the expected treatment effects of subjects randomly drawn from the

subpopulations of treated and untreated, respectively. Empirical work tends to emphasize

the first two measures and, in particular, the second one.11

The notation makes the estimation problem immediately clear. For each subject in

our sample, we only observe one potential outcome. The outcome that we do not observe

is referred to as the counterfactual. That is, the observed outcome in the data is either

y(1) or y(0) depending on whether the subject is treated (d = 1) or untreated (d = 0).

Mathematically, the observed outcome is

y =

{
y(0) if d = 0
y(1) if d = 1

= y(0) + d [y(1)− y(0)] (15)

Thus, the problem of inference in this setting is tantamount to a missing data problem.

This problem necessitates the comparison of treated outcomes to untreated outcomes.

To estimate the treatment effect, researchers are forced to estimate

E(y|d = 1)− E(y|d = 0), (16)

10A technical assumption required for the remainder of our discussion is that the treatment of one unit
has no effect on the outcome of another unit, perhaps through peer effects or general equilibrium effects.
This assumption is referred to as the stable unit treatment value assumption (Angrist, Imbens, and Rubin,
1996).

11Yet another quantity studied in the empirical literature is the Local Average Treatment Effect or LATE
(Angrist and Imbens (1994)). This quantity will be discussed below in the context of regression discontinuity
design.
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or

E(y|d = 1, X)− E(y|d = 0, X), (17)

if the researcher has available observable covariates X = (x1, ..., xk) that are relevant for

y and correlated with d. Temporarily ignoring the role of covariates, Eqn (16) is just the

difference in the average outcomes for the treated and untreated groups. For example, one

could compute the average investment of firms in states not having passed an antitakeover

law and subtract this estimate from the average investment in states that have passed an

antitakeover law. The relevant question is: does this difference identify a treatment effect,

such as the ATE or ATT?

Using Eqn (15), we can rewrite Eqn (16) in terms of potential outcomes

E(y|d = 1)− E(y|d = 0) = {E[y(1)|d = 1]− E[y(0)|d = 1]}

+ {E[y(0)|d = 1]− E[y(0)|d = 0]} . (18)

The first difference on the right hand side of Eqn (18) is the ATT (Eqn (13)). The second

difference is the selection bias. Thus, a simple comparison of treatment and control group

averages does not identify a treatment effect. Rather, the estimate of the ATT is confounded

by a selection bias term representing nonrandom assignment to the two groups.

One solution to this selection bias is random assignment.12 In other words, if the econo-

metrician could let the flip of a coin determine the assignment of subjects to treatment and

control groups, then a simple comparison of average outcomes would identify the causal ef-

fect of treatment. To see this, note that assignment, d, is independent of potential outcomes,

(y(0), y(1)), under random assignment so that the selection term is equal to zero.

E[y(0)|d = 1]− E[y(0)|d = 0] = E[y(0)|d = 1]− E[y(0)|d = 1] = 0 (19)

The independence allows us to change the value of the conditioning variable without affecting

the expectation.

Independence also implies that the ATT is equal to the ATE and ATU since

E(y|d = 1) = E[y(1)|d = 1] = E[y(1)], and

E(y|d = 0) = E[y(0)|d = 0] = E[y(0)].

12An interesting example of such assignment can be found in Hertzberg, Liberti, and Paravasini (2010)
who use the random rotation of loan officers to investigate the role of moral hazard in communication.
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The first equality in each line follows from the definition of y in Eqn (15). The second

equality follows from the independence of treatment assignment and potential outcomes.

Therefore,

ATT = E[y(1)|d = 1]− E[y(0)|d = 0]

= E[y(1)]− E[y(0)]

= ATE.

A similar argument shows equality with the ATU.

Intuitively, randomization makes the treatment and control groups comparable in that

any observable (or unobservable) differences between the two groups are small and due to

chance error. Technically, randomization ensures that our estimate of the counterfactual

outcome is unbiased. That is, our estimates of what treated subjects’ outcomes would have

been had they not been treated — or control subjects’ outcomes had they been treated—are

unbiased. Thus, without random assignment, a simple comparison between the treated and

untreated average outcomes is not meaningful.13

One may argue that, unlike regression, we have ignored the ability to control for differ-

ences between the two groups with exogenous variables, (x1, . . . , xk). However, accounting

for observable differences is easily accomplished in this setting by expanding the conditioning

set to include these variables, as in Eqn (17). For example, the empirical problem from Eqn

(18) after accounting for covariates is just

E(y|d = 1, X)− E(y|d = 0, X) = {E[y(1)|d = 1, X)− E[y(0)|d = 1, X)}

+ {E[y(0)|d = 1, X)− E[y(0)|d = 0, X)} . (20)

where X = (x1, . . . , xk). There are a variety of ways to estimate these conditional expec-

tations. One obvious approach is to use linear regression. Alternatively, one can use more

flexible and robust nonparametric specifications, such as kernel, series, and sieve estimators.

We discuss some of these approaches below in the methods sections.

Eqn (20) shows that the difference in mean outcomes among the treated and untreated,

conditional on X, is still equal to the ATT plus the selection bias term. In order for this

term to be equal to zero, one must argue that the treatment assignment is independent of the

potential outcomes conditional on the observable control variables. In essence, controlling

for observable differences leaves nothing but random variation in the treatment assignment.

13The weaker assumption of mean independence, as opposed to distributional independence, is all that is
required for identification of the treatment effects. However, it is more useful to think in terms of random
variation in the treatment assignment, which implies distributional independence.
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To illustrate these concepts, we turn to an example, and then highlight the similari-

ties and differences between treatment effects and selection bias, and linear regression and

endogeneity.

2.2.2 An Example

To make these concepts concrete, consider identifying the effect of a credit rating on a firm’s

leverage ratio, as in Tang (2009). Treatment is the presence of credit rating so that d = 1

across firms with a rating and d = 0 for those without. The outcome variable y is a measure

of leverage, such as the debt-equity ratio. For simplicity, assume that all firms are affected

similarly by the presence of a credit rating so that the treatment effect is the same for firms.

A naive comparison of the average leverage ratio of rated firms to unrated firms is unlikely

to identify the causal effect of credit ratings on leverage because credit ratings are not

randomly assigned with respect to firms’ capital structures. Eqn (18) shows the implications

of this nonrandom assignment for estimation. Firms that choose to get a rating are more

likely to have more debt, and therefore higher leverage, than firms that choose not to have

a rating. That is, E[y(0)|d = 1] > E[y(0)|d = 0], implying that the selection bias term is

positive and the estimated effect of credit ratings on leverage is biased up.

Of course, one can and should control for observable differences between firms that do

and do not have a credit rating. For example, firms with credit ratings tend to be larger on

average, and many studies have shown a link between leverage and firm size (e.g., Titman

and Wessels, 1988). Not controlling for differences in firms size would lead to a positive

selection bias akin to an omitted variables bias in a regression setting. In fact, there are a

number of observable differences between firms with and without a credit rating (Lemmon

and Roberts, 2010), all of which should be included in the conditioning set, X.

The problem arises from unobservable differences between the two groups, such that the

selection bias term in Eqn (20) is still nonzero. Firms’ decisions to obtain credit ratings, as

well as the ratings themselves, are based upon nonpublic information that is likely relevant

for capital structure. Examples of this private information include unreported liabilities,

corporate strategy, anticipated competitive pressures, expected revenue growth, etc. It is

the relation between these unobservable measures, capital structure, and the decision to

obtain a credit rating that creates the selection bias preventing researchers from estimating

the quantity of interest, namely, the treatment effect of a credit rating.

What is needed to identify the causal effects of credit ratings is random or exogenous

variation in their assignment. Methods for finding and exploiting such variation are discussed
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below.

2.2.3 The Link to Regression and Endogeneity

We can write the observable outcome y just as we did in Eqn (1), except that there is only

one explanatory variable, the treatment assignment indicator d. That is,

y = β0 + β1d+ u, (21)

where

β0 = E[y(0)],

β1 = y(1)− y(0), and

u = y(0)− E[y(0)].

Plugging these definitions into Eqn (21) recovers the definition of y in terms of potential

outcomes, as in Eqn (15).

Now consider the difference in conditional expectations of y, as defined in our regression

Eqn (21).

E(y|d = 1)− E(y|d = 0) = [β0 + β1 + E(u|d = 1)]− [β0 + E(u|d = 0)]

= β1 + [E(u|d = 1)− E(u|d = 0)]

= β1 + [E(y(0)|d = 1)− E(y(0)|d = 0)]

The last equality follows from the definition of u above. What this derivation shows is

that unless treatment assignment is random with respect to the potential outcomes, i.e.,

E(y(0)|d = 1) = E(y(0)|d = 0), the regression model is unidentified. OLS estimation of Eqn

(21) will not recover the parameter β1, rather, the estimate β̂1 will be confounded by the

selection bias term.

In the context of our credit rating example from above, the OLS estimate will not reveal

the effect of a credit rating on leverage. The estimate will reflect the effect of a credit rating

and the effect of any other differences between the treatment and control groups that are

relevant for leverage. The bottom line is that the regression will not answer the question of

interest—what is the effect of a credit rating on leverage—because the estimate is not an

estimate of a quantity of interest—e.g., average treatment effect of the treated.

Of course, one can incorporate a variety of controls in Eqn (21), such as firm size, the

market-to-book ratio, asset tangibility, profitability, etc. (Rajan and Zingales, 1995). Doing
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so will help mitigate the selection problem but, ultimately, it will not solve the problem if

the treatment and control groups differ along unobservables that are related to leverage and

its determinants. Equivalently, if there is an omitted variable in u that is correlated with d

or even X, the OLS estimates of all the parameters are likely to be inconsistent. Instead,

one must find exogenous variation in credit ratings, which is the focus of Tang (2009). Thus,

the implication of nonrandom assignment for estimating causal treatment effects is akin to

the implications of including an endogenous dummy variable in a linear regression. As such,

the solutions are similar: find random variation in the treatment assignment or, equivalently,

exogenous variation in the dummy variable.

2.2.4 Heterogeneous Effects

A similar intuition holds in the context of heterogeneous treatment effects, or treatment

effects that vary across subjects. To make things concrete, consider the possibility that the

effect of a credit rating varies across firms. In this case, Eqn (21) becomes

y = β0 + β̃1d+ u,

where the treatment effect β̃1 is now a random variable.14 The difference in expected out-

comes for the treated and untreated groups is

E(y|d = 1)− E(y|d = 0) = E(β̃1|d = 1) + [E(u|d = 1)− E(u|d = 0)]

= E(β̃1|d = 1) + [E(y(0)|d = 1)− E(y(0)|d = 0)] (22)

The conditional expectation of β̃1 is the ATT, and the difference in brackets is the selection

bias term.

To recover the ATE, note that

E(β̃1) = Pr(d = 0)E(β̃1|d = 0) + Pr(d = 1)E(β̃1|d = 1)

= Pr(d = 0)
[
E(β̃1|d = 0)− E(β̃1|d = 1)

]
+ E(β̃1|d = 1)

Using this result and Eqn (22) yields

E(y|d = 1)− E(y|d = 0) = E(β̃1) + [E(y(0)|d = 1)− E(y(0)|d = 0)]

− Pr(d = 0)
[
E(β̃1|d = 0)− E(β̃1|d = 1)

]
14The sample analogue of this specification allows the treatment effect to vary across observations as such

yi = β0 + β1idi + ui.
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The first term on the right hand side is the ATE, the second term the selection bias. With

heterogeneous effects, there is an additional bias term corresponding to the difference in

expected gains from the treatment across treatment and control groups. Of course, when

the treatment assignment is randomized, both of these bias terms equal zero so that the

difference in means recovers the ATE.

2.3 Identifying and Discussing the Endogeneity Problem

Before discussing how to address endogeneity problems, we want to emphasize a more prac-

tical matter. A necessary first step in any empirical corporate finance study focused on

disentangling alternative hypotheses or identifying causal effects is identifying the endogene-

ity problem and its implications for inference. Unsurprisingly, it is difficult, if not impossible,

to address a problem without first understanding it. As such, we encourage researchers to

discuss the primary endogeneity concern in their study.

There are a number of questions that should be answered before putting forth a solution.

Specifically, what is the endogenous variable(s)? Why are they endogenous? What are

the implications for inferences of the endogeneity problems? In other words, what are the

alternative hypotheses about which one should be concerned? Only after answering these

questions can researchers put forth a solution to the endogeneity problem.

3. Instrumental Variables

In this section we discuss instrumental variables (IV) as a way to deal with endogeneity,

with an emphasis on the hurdles and challenges that arise when trying to implement IV in

corporate finance settings. We first outline the basic econometric framework and discuss

how to find instruments. We then move to the issue of weak instruments and to the tradeoff

between internal and external validity that one naturally encounters in IV estimation.

3.1 What are Valid Instruments?

We start this section with the single equation linear model

y = β0 + β1x1 + · · ·+ βkxk + u. (23)

We assume that key assumptions 1 through 3 for the consistency of the OLS estimator

hold (see section 2.1). However, we relax the assumption that cov(xj, u) = 0,∀j and, for
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simplicity, consider the case in which one regressor, xk, is correlated with u. In this case

all of the regression coefficients are biased except in the special and unlikely case that xk is

uncorrelated with the rest of the regressors. In this particular case, only the estimate of βk

is biased.

The standard remedy for endogeneity is finding an instrument for the endogenous re-

gressor, xk. An instrument, z, is a variable that satisfies two conditions that we refer to as

the relevance and exclusion conditions. The first condition requires that the partial correla-

tion between the instrument and the endogenous variable not be zero. In other words, the

relevance condition requires that the coefficient γ in the regression

xk = α0 + α1x1 + · · ·+ αk−1xk−1 + γz + v (24)

does not equal zero. This condition is not equivalent to nonzero correlation between xk and

z. It refers to the correlation between xk and z after netting out the effects of all other

exogenous variables. Fortunately, this condition is empirically testable. Estimate Eqn (24)

via OLS and test the null hypothesis that γ = 0 against the alternative that γ ̸= 0. However,

as we discuss below, the usual t-test in this instance may be inappropriate.

The exclusion condition requires that cov(z, u) = 0. The name for this condition derives

from the exclusion of the instrument from Eqn (23). In conjunction with the relevance

condition, the exclusion restriction implies that the only role that the instrument z plays

in influencing the outcome y is through its affect on the endogenous variable xk. Together

with the relevance condition, the exclusion condition identifies the parameters in Eqn (23).15

However, unlike the relevance condition, the exclusion condition cannot be tested because

the regression error term, u, is unobservable.

There is nothing restricting the number of instruments to just one. Any variable satisfying

both relevance and exclusion conditions is a valid instrument. In the case that there are

multiple instruments z = (z1, . . . , zm), the relevance condition can be tested with a test of

the joint null hypothesis that γ1 = 0, . . . , γm = 0 against the alternative hypothesis that at

least one γ coefficient is nonzero in the model

xk = α0 + α1x1 + · · ·+ αk−1xk−1 + γ1z1 + · · ·+ γmzm + v. (25)

The exclusion restriction requires the correlation between each instrument and the error

term u in Eqn (23) to be zero (i.e., cov(zj, u) = 0 for j = 1, . . . ,m).

15Write Eqn (1) as y = XB + u, where B = (β0, β1, . . . , βk)
′ and X = (1, x1, . . . , xk). Let Z =

(1, x1, . . . , xk−1, z) be the vector of all exogenous variables. Premultiply the vector equation by Z ′ and
take expectations so that E(Z ′y) = E(Z ′X)B. Solving for B yields B = E(Z ′X)−1E(Z ′y). In order for this
equation to have a unique solution, assumptions 3 and 4 (or 4a) must hold.

25

Electronic copy available at: https://ssrn.com/abstract=1748604



Likewise, there is nothing restricting the number of endogenous variables to just one.

Consider the model,

y = β0 + β1x1 + · · ·+ βkxk + βk+1xk+1 + . . .+ βk+h−1xk+h−1 + u, (26)

where (x1, . . . , xk−1) are the k − 1 exogenous regressors and (xk, . . . , xk+h−1) are the h en-

dogenous regressors. In this case, we must have at least as many instruments (z1, . . . , zm) as

endogenous regressors in order for the coefficients to be identified, i.e., m ≥ h. The exclusion

restriction is unchanged from the previous paragraph: all instruments must be uncorrelated

with the error term u. The relevance condition is similar in spirit except now there is a

system of relevance conditions corresponding to the system of endogenous variables.

xk = α10 + α11x1 + . . .+ α1k−1xk−1 + γ11z1 + . . .+ γ1mzm + v.
...

xk+h−1 = αh0 + αh1x1 + . . .+ αhk−1xk−1 + γh1z1 + . . .+ γhmzm + v.

The relevance condition in this setting is analogous to the relevance condition in the single-

instrument case: the instruments must be “fully correlated” with the regressors. Formally,

E (Xz) has to be of full column rank, that is, rank(Xz) = k.

Models with more instruments (m) than endogenous variables (h) are said to be overi-

dentified and there are (m− h) overidentifying restrictions. For example, with only one en-

dogenous variable, we need only one valid instrument to identify the coefficients (see footnote

15). Hence, the additional instruments are unnecessary from an identification perspective.

What is the optimal number of instruments? From an asymptotic efficiency perspective,

more instruments is better. However, from a finite sample perspective, more instruments is

not necessarily better and can even exacerbate the bias inherent in 2SLS.16

3.2 Estimation

Given a set of instruments, the question is how to use them to consistently estimate the

parameters in Eqn (23). The most common approach is two-stage least squares (2SLS). As

the name suggests, 2SLS can conceptually be broken down into two parts.

1. Estimate the predicted values, x̂k, by regressing the endogenous variable xk on all of

the exogenous variables—controls (x1, . . . , xk−1) and instruments (z1, . . . , zm)—as in

16Although instrumental variables methods such as 2SLS produce consistent parameter estimates, they do
not produce unbiased parameter estimates when at least one explanatory variable is endogenous.
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Eqn (24). (One should also test the significance of the instruments in this regression

to ensure that the relevance condition is satisfied.)

2. Replace the endogenous variable xk with its predicted values from the first stage x̂k,

and regress the outcome variable y on all of the control variables (x1, . . . , xk−1) and x̂k.

This two-step procedure can be done all at once. Most software programs do exactly

this, which is useful because the OLS standard errors in the second stage are incorrect.17

However, thinking about the first and second stages separately is useful because doing so

underscores the intuition that variation in the endogenous regressor xk has two parts: the

part that is uncorrelated with the error (“good” variation) and the part that is correlated

with the error (“bad” variation). The basic idea behind IV regression is to isolate the “good”

variation and disregard the “bad” variation.

3.3 Where do Valid Instruments Come From? Some Examples

Good instruments can come from biological or physical events or features. They can also

sometimes come from institutional changes, as long as the economic question under study

was not one of the reasons for the institutional change in the first place. The only way to

find a good instrument is to understand the economics of the question at hand. The question

one should always ask of a potential instrument is, “Does the instrument affect the outcome

only via its effect on the endogenous regressor?” To answer this question, it is also useful

to ask whether the instrument is likely to have any effect on the dependent variable—either

the observed part (y) or the unobserved part (u). If the answer is yes, the instrument is

probably not valid.18

A good example of instrument choice is in Bennedsen et al. (2007), who study CEO

succession in family firms. They ask whether replacing an outgoing CEO with a family

member hurts firm performance. In this example, performance is the dependent variable, y,

and family CEO succession is the endogenous explanatory variable, xk. The characteristics

of the firm and family that cause it to choose a family CEO may also cause the change in

performance. In other words, it is possible that an omitted variable causes both y and xk,

thereby leading to a correlation between xk and u. In particular, a nonfamily CEO might

17The problem arises from the use of a generated regressor, x̂k, in the second stage. Because this regressor
is itself an estimate, it includes estimation error. This estimation error must be taken into account when
computing the standard error of its, and the other explanatory variables’, coefficients.

18We refer the reader to the paper by Conley, Hansen, and Rossi (2010) for an empirical approach designed
to address imperfect instruments.
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be chosen to “save” a failing firm, and a family CEO might be chosen if the firm is doing

well or if the CEO is irrelevant for firm performance. This particular example is instructive

because the endogeneity—the correlation between the error and regressor—is directly linked

to specific economic forces. In general, good IV studies always point out specific sources

of endogeneity and link these sources directly to the signs and magnitudes (if possible) of

regression coefficients.

Bennedsen et al. (2007) choose an instrumental variables approach to isolate exogenous

variation in the CEO succession decision. Family characteristics such as size and marital

history are possible candidates, because they are highly correlated with the decision to ap-

point a family CEO. However, if family characteristics are in part an outcome of economic

incentives, they may not be exogenous. That is, they may be correlated with firm perfor-

mance. The instrument, z, Bennedsen et al. (2007) choose is the gender of the first-born

child of a departing CEO. On an intuitive level, this type of biological event is unlikely to

affect firm performance, and Bennedsen, et al. document that boy-first firms are similar to

girl-first firms in terms of a variety of measures of performance. Although not a formal test

of the exclusion restriction, this type of informal check is always a useful and important part

of any IV study.

The authors then show that CEOs with boy-first families are significantly more likely

to appoint a family CEO in their first stage regressions, i.e., the relevance conditional is

satisfied. In their second stage regressions, they find that the IV estimates of the negative

effect of in-family CEO succession are much larger than the OLS estimates. This difference

is exactly what one would expect if outside CEOs are likely to be appointed when firms are

doing poorly. By instrumenting with the gender of the first-born, Bennedsen et al. (2007)

are able to isolate the exogenous or random variation in family CEO succession decisions.

And, in doing so, readers can be confident that they have isolated the causal effect of family

succession decisions on firm performance.19

3.4 So Called Tests of Instrument Validity

As mentioned above, it is impossible to test directly the assumption that cov(z, u) = 0 be-

cause the error term is unobservable. Instead, researchers must defend this assumption in

two ways. First, compelling arguments relying on economic theory and a deep understanding

of the relevant institutional details are the most important elements of justifying an instru-

ment’s validity. Second, a number of falsification tests to rule out alternative hypotheses

19Other examples of instrumental variables applications in corporate finance include: Guiso, Sapienza,
and Zingales (2004), Becker (2007), Giroud et al. (2010), and Chaney, Sraer, and Thesmar (in press).
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associated with endogeneity problems can also be useful. For example, consider the evidence

put forth by Bennedsen et al. (2007) showing that the performance of firms run by CEOs

with a first born boy is no different from that of firms run by CEOs with a first born girl.

In addition, a number of statistical specification tests have been proposed. The most

common one in an IV setting is a test of the overidentifying restrictions of the model,

assuming one can find more instruments than endogenous regressors. On an intuitive level,

the test of overidentifying restrictions tests whether all possible subsets of instruments that

provide exact identification provide the same estimates. In the population, these different

subsets should produce identical estimates if the instruments are all truly exogenous.

Unfortunately, this test is unlikely to be useful for three reasons. First, the test assumes

that at least one instrument is valid, yet which instrument is valid and why is left unspecified.

Further, in light of the positive association between finite sample bias and the number of

instruments, if a researcher has one good instrument the choice to find more instruments is

not obvious. Second, finding instruments in corporate finance is sufficiently difficult that it is

rare for a researcher to to find several. Third, although the overidentifying test can constitute

a useful diagnostic, it does not always provide a good indicator of model misspecification.

For example, suppose we expand the list of instruments that are uncorrelated with u. We

will not raise the value of the test statistic, but we will increase the degrees of freedom used

to construct the regions of rejection. This increase artificially raises the critical value of the

chi-squared statistic and makes rejection less likely. In short, these tests may lack power.

Ultimately, good instruments are both rare and hard to find. There is no way to test

their validity beyond rigorous economic arguments and, perhaps, a battery of falsification

tests designed to rule out alternative hypotheses. As such, we recommend thinking carefully

about the economic justification—either via a formal model or rigorous arguments—for the

use of a particular instrument.

3.5 The Problem of Weak Instruments

The last two decades have seen the development of a rich literature on the consequences

of weak instruments. As surveyed in Stock, Wright, and Yogo (2002), instruments that

are weakly correlated with the endogenous regressors can lead to coefficient bias in finite

samples, as well as test statistics whose finite sample distributions deviate sharply from

their asymptotic distributions. This problem arises naturally because those characteristics,

such as randomness, that make an instrument a source of exogenous variation may also make

the instrument weak.
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The bias arising from weak instruments can be severe. To illustrate this issue, we consider

a case in which the number of instruments is larger than the number of endogenous regressors.

In this case Hahn and Hausman (2005) show that the finite-sample bias of two-stage least

squares is approximately
jρ (1− r2)

nr2
, (27)

where j is the number of instruments, ρ is the correlation coefficient between xk and u, n is

the sample size, and r2 is the R2 of the first-stage regression. Because the r2 term is in the

denominator of Eqn (27), even with a large sample size, this bias can be large.

A number of diagnostics have been developed in order to detect the weak instruments

problem. The most obvious clue for extremely weak instruments is large standard errors

because the variance of an IV estimator depends inversely on the covariance between the

instrument and the exogenous variable. However, in less extreme cases weak instruments

can cause bias and misleading inferences even when standard errors are small.

Stock and Yogo (2005) develop a diagnostic based on the Cragg and Donald F statistic

for an underidentified model. The intuition is that if the F statistic is low, the instruments

are only weakly correlated with the endogenous regressor. They consider two types of null

hypotheses. The first is that the bias of two-stage least squares is less than a given fraction

of the bias of OLS, and the second is that the actual size of a nominal 5% two-stage least

squares t-test is no more than 15%. The first null is useful for researchers that are concerned

about bias, and the second is for researchers concerned about hypothesis testing.

They then tabulate critical values for the F statistic that depend on the given null. For

example, in the case when the null is that the two-stage least squares bias is less than 10%

of the OLS bias, when the number of instruments is 3, 5, and 10, the suggested critical

F-values are 9.08, 10.83, and 11.49, respectively. The fact that the critical values increase

with the number of instruments implies that adding additional low quality instruments is

not the solution to a weak-instrument problem. As a practical matter, in any IV study, it is

important to report the first stage regression, including the R2. For example, Bennedsen et

al. (2007) report that the R2 of their first stage regression (with the instrument as the only

explanatory variable) is over 40%, which indicates a strong instrument. They confirm this

strength with subsequent tests of the relevance condition using the Stock and Yogo (2005)

critical values.20

20Hahn and Hausman (2005) propose a test for weak instruments in which the null is that the instruments
are strong and the alternative is that the instruments are weak. They make the observation that under the
null the choice of the dependent variable in Eqn (23) should not matter in an IV regression. In other words,
if the instruments are strong, the IV estimates from Eqn (23) should be asymptotically the same as the IV
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Not only do weak instruments cause bias, but they distort inference. Although a great

deal of work has been done to develop tests that are robust to the problem of weak in-

struments, much of this work has been motivated by macroeconomic applications in which

data are relatively scarce and in which researchers are forced to deal with whatever weak

instruments they have. In contrast, in a data rich field like corporate finance, we recommend

spending effort in finding strong—and obviously valid—instruments rather than in dealing

with weak instruments.

3.6 Lagged Instruments

The use of lagged dependent variables and lagged endogenous variables has become widespread

in corporate finance.21 The original economic motivation for using dynamic panel techniques

in corporate finance comes from estimation of investment Euler equations using firm-level

panel data (Whited, 1992, Bond and Meghir, 1994). Intuitively, an investment Euler equa-

tion can be derived from a perturbation argument that states that the marginal cost of

investing today is equal, at an optimum, to the expected discounted cost of delaying invest-

ment until tomorrow. This latter cost includes the opportunity cost of the foregone marginal

product of capital as well as any direct costs.

Hansen and Singleton (1982) point out that estimating any Euler equation—be it for

investment, consumption, inventory accumulation, labor supply, or any other intertemporal

decision—requires an assumption of rational expectations. This assumption allows the em-

pirical researcher to replace the expected cost of delaying investment, which is inherently

unobservable, with the actual cost plus an expectational error. The intuition behind this

replacement is straightforward: as a general rule, what happens is equal to what one expects

plus one’s mistake. Further, the mistake has to be orthogonal to any information available

at the time that the expectation was made; otherwise, the expectation would have been dif-

ferent. This last observation allows lagged endogenous variables to be used as instruments

to estimate the Euler equation.

It is worth noting that the use of lagged instruments in this case is motivated by the char-

acterization of the regression error as an expectational error. Under the joint null hypothesis

that the model is correct and that agents have rational expectations, lagged instruments can

be argued to affect the dependent variable only via their effect on the endogenous regressors.

estimates of a regression in which y and xk have been swapped. Their test statistic is then based on this
equality.

21For example, see Flannery and Rangan (2006), Huang and Ritter (2009), and Iliev and Welch (2010) for
applications and analysis of dynamic panel data models in corporate capital structure.
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This intuition does not carry over to a garden variety regression. We illustrate this point

in the context of a standard capital structure regression from Rajan and Zingales (1995), in

which the book leverage ratio, yit, is the dependent variable and in which the regressors are

the log of sales, sit, the market-to-book ratio, mit, the lagged ratio of operating income to

assets, oit, and a measure of asset tangibility, kit:

yit = β0 + β1sit + β2mit + β3oit + β4kit + uit.

These variables are all determined endogenously as the result of an explicit or implicit

managerial optimization, so simultaneity might be a problem. Further, omitted variables are

also likely a problem since managers rely on information unavailable to econometricians but

likely correlated with the included regressors. Using lagged values of the dependent variable

and endogenous regressors as instruments requires one to believe that they affect leverage

only via their correlation with the endogenous regressors. In this case, and in many others

in corporate finance, this type of argument is hard to justify. The reason here is that all five

of these variables are quite persistent. Therefore, if current operating income is correlated

with uit, then lagged operating income is also likely correlated with uit. Put differently, if a

lagged variable is correlated with the observed portion of leverage, then it is hard to argue

that it is uncorrelated with the unobserved portion, that is, uit.

In general, we recommend thinking carefully about the economic justification for using

lagged instruments. To our knowledge, no such justification has been put forth in corpo-

rate finance outside the Euler equation estimation literature. Rather, valid instruments for

determinants of corporate behavior are more likely to come from institutional changes and

nonfinancial variables.

3.7 Limitations of Instrumental Variables

Unfortunately, it is often the case that in corporate finance more than one regressor is

endogenous. In this case, inference about all of the regression coefficients can be compromised

if one can find instruments for only a subset of the endogenous variables. For example,

suppose in Eqn (23) that both xk and xk−1 are endogenous. Then even if one has an

instrument z for xk, unless z is uncorrelated with xk−1, the estimate of βk−1 will be biased.

Further, if the estimate of βk−1 is biased, then unless xk−1 is uncorrelated with the other

regressors, the rest of the regression coefficients will also be biased. Thus, the burden on

instruments in corporate finance is particularly steep because few explanatory variables are

truly exogenous.
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Another common mistake in the implementation of IV estimators is more careful attention

to the relevance of the instruments than to their validity. This problem touches even the

best IV papers. As pointed out in Heckman (1997), when the effects of the regressors on the

dependent variable are heterogeneous in the population, even purely random instruments

may not be valid. For example, in Bennedsen et al. (2007) it is possible that families

with eldest daughters may still choose to have the daughter succeed as CEO of the firm

if the daughter is exceptionally talented. Thus, while family CEO succession hurts firm

performance in boy-first families, the option of family CEO succession in girl-first families

actually improves performance. This contrast causes the IV estimator to exaggerate the

negative effect of CEO succession on firm performance.

This discussion illustrates the point that truly exogenous instruments are extremely diffi-

cult to find. If even random instruments can be endogenous, then this problem is likely to be

magnified with the usual non-random instruments found in many corporate finance studies.

Indeed, many papers in corporate finance discuss only the relevance of the instrument and

ignore any exclusion restrictions.

A final limitation of IV is that it—like all other strategies discussed in this study—faces

a tradeoff between external and internal validity. IV parameter estimates are based only on

the variation in the endogenous variable that is correlated with the instrument. Bennedsen et

al. (2007) provide a good illustration of this issue because their instrument is binary. Their

results are applicable only to those observations in which a boy-first family picks a family

CEO or in which a girl-first family picks a non-family CEO. This limitation brings up the

following concrete and important question. What if the family CEOs that gain succession

and that are affected by primogeniture are of worse quality than the family CEOs that gain

succession and that are not affected by primogeniture? Then the result of a strong negative

effect of family succession is not applicable to the entire sample.

To address this point, it is necessary to identify those families that are affected by the

instrument. Clearly, they are those observations that are associated with a small residual

in the first stage regression. Bennedsen et al. (2007) then compare CEO characteristics

across observations with large residuals (not affected by the instrument) and those with

small residuals (affected by the instrument), and they find that these two groups are largely

similar. In general, it is a good idea to conduct this sort of exercise to determine the external

validity of IV results.
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4. Difference-in-Differences Estimators

Difference-in-Differences (DD) estimators are used to recover the treatment effects stemming

from sharp changes in the economic environment, government policy, or institutional envi-

ronment. These estimators usually go hand in hand with the natural or quasi-experiments

created by these sharp changes. However, the exogenous variation created by natural ex-

periments is much broader than any one estimation technique. Indeed, natural experiments

have been used to identify instrumental variables for 2SLS estimation and discontinuities for

regression discontinuity designs discussed below.22

The goal of this section is to introduce readers to the appropriate application of the DD

estimator. We begin by discussing single difference estimators to highlight their shortcomings

and to motivate DD estimators, which can overcome these shortcomings. We then discuss

how one can check the internal validity of the DD estimator, as well as several extensions.

4.1 Single Cross-Sectional Differences After Treatment

One approach to estimating a parameter that summarizes the treatment effect is to compare

the post-treatment outcomes of the treatment and control groups. This method is often used

when there is no data available on pre-treatment outcomes. For example, Garvey and Hanka

(1999) estimate the effect of state antitakeover laws on leverage by examining one year of

data after the law passage. They then compare the leverage ratios of firms in states that

passed the law (the treatment group) and did not pass the law (the control group). This

comparison can be accomplished with a cross-sectional regression:

y = β0 + β1d+ u, (28)

where y is leverage, and d is the treatment assignment indicator equal to one if the firm is

incorporated in a state that passed the antitakeover law and zero otherwise. The difference

between treatment and control group averages is β1.

If there are observations for several post-treatment periods, one can collapse each sub-

ject’s time series of observation to one value by averaging. Eqn (28) can then be estimated

using the cross-section of subject averages. This approach addresses concerns over depen-

dence of observations within subjects (Bertrand, Duflo, and Mullainathan, 2004). Alterna-

tively, one can modify Eqn (28) to allow the treatment effect to vary over time by interacting

22Examples of natural experiments beyond those discussed below include Schnabl (2010), who uses the
1998 Russian default as a natural experiment to identify the transmission and impact of liquidity shocks to
financial institutions.
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the assignment indicator with period dummies as such,

y = β0 + β1d× p1 + · · ·+ βTd× pT + u. (29)

Here, (β1, . . . , βT ), correspond to the period-by-period differences between treatment and

control groups.

From section 2, OLS estimation of Eqns (28) and (29) recovers the causal effect of the

law change if and only if d is mean independent of u. Focusing on Eqn (28) and taking

conditional expectations yields the familiar expression

E(y|d = 1)− E(y|d = 0) = β1 + [E(u|d = 1)− E(u|d = 0)]

= β1 + [E(y(0)|d = 1)− E(y(0)|d = 0)] ,

where the second equality follows from Eqn (21). If there are any permanent unobserved

differences between the treatment and control groups prior to the onset of treatment, then

the selection bias is nonzero and OLS will not recover the causal effect of the law change. In

the antitakeover law example, one must argue that firms are similar, prior to the passage of

the laws, with regard to leverage related characteristics in states that did and did not pass

the law. The validity of this argument depends crucially on why the law was changed when

it was in some states and not in others.

For example, if the law was enacted to protect profitable firms from hostile raiders, then

the bias term is likely to be negative. Many studies have shown a negative link between

profitability and leverage (e.g., Rajan and Zingales, 1995; Frank and Goyal, 2009) implying

that firms from states enacting the law (d = 1) tend to have lower leverage because they

are more profitable. Of course, one could control for profitability, as well as a host of other

variables. However, one should not control for variables that themselves may be affected by

the treatment (e.g., other outcome variables such as investment or dividend policy). This

restriction implies that most control variables should be measured prior to the onset of

treatment or, in this example, passage of the law. Despite the inclusion of many observable

variables, one must ensure that there are no unobservable differences related to leverage and

the passage of the law that may taint inferences.

4.2 Single Time-Series Difference Before and After Treatment

A second way to estimate the treatment effect is to compare the outcome after the onset

of the treatment with the outcome before the onset of treatment for just those subjects

that are treated. This is a more commonly used approach in corporate finance where the
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event affects all observable subjects as opposed to just a subset of subjects. For example,

Bertrand, Schoar, and Thesmar (2007) examine the impact of deregulation of the French

banking industry on the behavior of borrowers and banks.23 Graham, Michaely, and Roberts

(2003) compare ex-dividend day stock returns for NYSE listed firms during three different

price quote eras: 1/16s, 1/8s, and decimals. Blanchard, Lopez-de-Silanes, and Shleifer (1994)

compare a variety of corporate outcomes (e.g., investment, dividends, net debt issuance, net

equity issuance, asset sales) before and after large legal awards. Khwaja and Mian (2008)

use the unanticipated nuclear tests in Pakistan to understand the role that liquidity shocks

to banks play in their lending behavior. In each case, the control and treatment groups

are defined by the before- and after-treatment periods, respectively, and consist of the same

subjects.

With only two time-series observations per subject—one before and one after treatment—

comparisons can be accomplished with a two period panel regression using only subjects

affected by the event,

y = β0 + β1p+ u, (30)

where p equals one if the observation is made after treatment onset (i.e., post-treatment)

and zero otherwise (i.e., pre-treatment). The treatment effect is given by β1. Alternatively,

one can estimate a cross-sectional regression of first differences,

∆y = β0 +∆u (31)

in which case the treatment effect is given by the intercept β0.

With more than one period before and after the event, several options are available.

First, one can estimate a level regression assuming a constant treatment effect across all

post-treatment periods

y = β0 + β1p+ u,

where p equals one for all post-treatment periods. The differenced version of this specification

is simply

∆y = β0 + β1∆p+∆u,

though one must take care to account for the effects of differencing on the statistical prop-

erties of the error term.

23Other examples include Sufi (2009) who examines the introduction of loan ratings.
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Alternatively, one can include a dummy for each period—pre- and post-treatment—

except for one:

y = β0 + β1p1 + · · ·+ βT−1pT−1 + u,

where ps, s = 1, . . . , T−1 equals one in the sth period and zero otherwise. With the estimated

coefficients (β1, . . . , βT−1) one can visually inspect or test whether a break occurs around the

date of the natural experiment, in our example the change in law. However, if the response

to the law is gradual or delayed, this strategy will not work well.

Taking conditional expectations of Eqn (30) yields

E(y|p = 1)− E(y|p = 0) = β1 + [E(u|p = 1)− E(u|p = 0)]

= β1 + [E(y(0)|p = 1)− E(y(0)|p = 0)]

The selection bias is nonzero when there exist trends in the outcome variable that are due

to forces other than the treatment. Using the previous example, imagine focusing on firms

in states that have passed an antitakeover law and comparing their capital structures before

and after the passage. The endogeneity concern is that these firms’ leverage ratios would

have changed over the period of observation even if the laws had not been passed. For

example, empirical evidence suggests that there is a strong counter-cyclical component to

leverage ratios (Korajczyk and Levy, 2003).

This phenomenon is just another form of omitted (or mismeasured) variables bias, that

stems from the inability to control perfectly for business cycle forces, financial innovation,

variation in investor demand, etc. As with the cross-sectional estimator, one can incorpo-

rate controls subject to the restriction that these controls are unaffected by the treatment.

However, it is no easier, or more credible, to account for all of the potentially omitted and

mismeasured determinants in this time-series setting than it is in the previous cross-sectional

setting. For example, throwing in the kitchen sink of macroeconomic factors is insufficient,

especially if firms’ sensitivities to these factors are heterogeneous. The consequence is that

the OLS estimate of β1 is biased because the regression cannot disentangle the effects of the

event from all of the forces causing time series changes in the outcome variables.

An alternative strategy to addressing secular trends is to examine the outcomes for similar

groups that did not receive the treatment but would be subject to similar influence from

the trending variables. While one would expect to see a sharp change in behavior among

the treatment group following application of the treatment, we would not expect to see such

a change among groups not receiving the treatment. In fact, this approach leads us to the

difference-in-differences estimator.
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4.3 Double Difference Estimator: Difference-in-Differences (DD)

The two single difference estimators complement one another. The cross-sectional compar-

ison avoids the problem of omitted trends by comparing two groups over the same time

period. The time series comparison avoids the problem of unobserved differences between

two different groups of firms by looking at the same firms before and after the change. The

double difference, difference-in-differences (DD), estimator combines these two estimators to

take advantage of both estimators’ strengths.

Consider a firm-year panel dataset in which there are two time periods, one before and

one after the onset of treatment, and only some of the subjects are treated. For example,

Arizona passed antitakeover legislation in 1987 at which time Connecticut had not passed

similar legislation (Bertrand and Mullainathan, 2003). Assuming for simplicity that the

legislation was passed at the beginning of the year, 1986 represents the pre-treatment period,

1987 the post-treatment period. Firms registered in Arizona represent the treatment group,

those registered in Connecticut the control group.

The regression model in levels for the DD estimator is:

y = β0 + β1d× p+ β2d+ β3p+ u, (32)

or, in differences,

∆y = β0 + β1d+∆u, (33)

where d is the treatment assignment variable equal to one if a firm is registered in Arizona,

zero if registered in Connecticut, p is the post-treatment indicator equal to one in 1987 and

zero in 1986. Intuitively, including the level d controls for permanent differences between

the treatment and control groups. For example, if firms in Arizona are, on average, less

levered than those in Connecticut, perhaps because they are more profitable, then β2 should

capture this variation. Likewise, including the level p controls for trends common to both

treatment and control groups. For example, if leverage is increasing between 1986 and 1987

because of a secular decline in the cost of debt, β3 will capture this variation. The variation

that remains is the change in leverage experienced by firms in Arizona relative to the change

in leverage experienced by firms in Connecticut. This variation is captured by β1, the DD

estimate.

The DD estimator can also be obtained using differences of variables, as opposed to

levels. With two periods, one pre- and one post-treatment, a cross-sectional regression of

the change in outcomes, ∆y, on a treatment group indicator variable d and the change in
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control variables ∆x1, . . . ,∆xk, if any, will recover the treatment effect, β1. Mathematically,

the specification is a generalization of Eqn (33):

∆y = β0 + β1d+∆Xψ +∆u,

where ∆X is a 1× k vector of changes in the covariates, (∆x1, . . . ,∆xk).

More formally, consider the conditional expectations corresponding to the four combina-

tions of values for the indicator variables in Eqn (32):

E(y|d = 1, p = 1) = β0 + β1 + β2 + β3,

E(y|d = 1, p = 0) = β0 + β2,

E(y|d = 0, p = 1) = β0 + β3,

E(y|d = 0, p = 0) = β0,

assuming E(u|d, p) = 0. Arranging these conditional means into a two-by-two table and

computing row and column differences produces:

Table 1: Conditional Mean Estimates from the DD Regression Model

Post-Treatment Pre-Treatment Difference
Treatment β0 + β1 + β2 + β3 β0 + β2 β1 + β3
Control β0 + β3 β0 β3
Difference β1 + β2 β2 β1

The inner cells of the table are the conditional means. For example, the average y for firms

in the treatment group during the post-treatment period is (β0+β1+β2+β3). Likewise, the

average y for firms in the control group during the pre-treatment period is β0. The outer cells

correspond to differences in these conditional means. The average difference in y between

the treatment and control groups during the pre-treatment period is (β0 + β2)− β0 = β2.

The cell in the bottom right corner is the DD estimate, which can be obtained by either

(1) differencing down the rightmost column, or (2) differencing across the bottom row. These

two cases can be expressed as

β1 = (E(y|d = 1, p = 1)− E(y|d = 1, p = 0))− (E(y|d = 0, p = 1)− E(y|d = 0, p = 0))

= (E(y|d = 1, p = 1)− E(y|d = 0, p = 1))− (E(y|d = 1, p = 0)− E(y|d = 0, p = 0))

The top line is the difference in the treatment group from the pre to post era minus the

difference in the control group from the pre to post era, and the second line gives the
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difference between the treatment and control group in the post era minus the difference

between the treatment and control group in the pre era. Linearity ensures that these two

approaches generate the same result.

4.3.1 Revisiting the Single Difference Estimators

Reconsider the single difference cross-sectional estimator of section 4.1. According to Eqn

(32), this estimator can be written as

E(y|d = 1, p = 1)− E(y|d = 0, p = 1)) = (β0 + β1 + β2 + β3)− (β0 + β3)

= β1 + β2

This result shows that the cross-sectional difference estimator is an unbiased estimate of the

treatment effect, β1, only if β2 = 0. In other words, the treatment and control groups cannot

differ in ways that are relevant for the outcome variable, precisely as noted above.

Now reconsider the single difference time-series estimator of section 4.2.2. According to

Eqn (32), this estimator can be written as

E(y|d = 1, p = 1)− E(y|d = 1, p = 0)) = (β0 + β1 + β2 + β3)− (β0 + β2)

= β1 + β3

This result shows that the time-series difference estimator is an unbiased estimate of the

treatment effect, β1, only if β3 = 0. In other words, there can be no trends relevant for the

outcome variable, precisely as noted above.

The DD estimator takes care of these two threats to the identification of the treatment

effect. First, any permanent, i.e., time-invariant, difference between the treatment and

control groups is differenced away by inclusion of the d indicator variable. Second, any

common trend affecting both the treatment and control group is also differenced away by

inclusion of the p indicator variable. These points are important, and often misunderstood:

threats to the internal validity of the DD estimator cannot come from either permanent

differences between the treatment and control groups, or shared trends.

4.3.2 Model Extensions

One can easily incorporate covariates, X, into Eqn (32)

y = β0 + β1d× p+ β2d+ β3p+XΓ + u,
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or Eqn (33)

∆y = β0 + β1d+∆XΓ +∆u,

where X = (x1, . . . , xk) and Γ = (γ1, . . . , γk)
′. In each case, β1 is the DD estimator with

roughly the same interpretation as the case without covariates.

Reasons for including covariates include: efficiency, checks for randomization, and adjust-

ing for conditional randomization. Assuming random or exogenous assignment to treatment

and control groups, the OLS estimate of the treatment effect β1 is more efficient with addi-

tional exogenous controls because these controls reduce the error variance.

If assignment is random, then including additional covariates should have a negligible

effect on the estimated treatment effect. Thus, a large discrepancy between the treatment

effect estimates with and without additional controls raises a red flag. If assignment to treat-

ment and control groups is not random but dictated by an observable rule, then controlling

for this rule via covariates in the regression satisfies the conditional mean zero assumption

required for unbiased estimates. Regardless of the motivation, it is crucial to remember that

any covariates included as controls must be unaffected by the treatment, a condition that

eliminates other outcome variables and restricts most covariates to pre-treatment values.

Bertrand, Duflo, and Mullainathan (2004) propose a general model to handle multiple

time periods and multiple treatment groups. The model they consider is

yigt = β1dgt +XigtΓ + pt +mg + uigt,

where i, g, and t index subjects, groups, and time periods, respectively, dgt is an indicator

identifying whether the treatment has affected group g at time t, Xigt a vector of covariates,

pt are period fixed effects,mg are group fixed effects, and uigt is the error term. The treatment

effect is given by β1.

4.3.3 The Key Identifying Assumption for DD

The key assumption for consistency of the DD estimator is, as with all regression based

estimators, the zero correlation assumption. Economically, this condition means that in

the absence of treatment, the average change in the response variable would have been the

same for both the treatment and control groups. This assumption is often referred to as the

“parallel trends” assumption because it requires any trends in outcomes for the treatment

and control groups prior to treatment to be the same.
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Figure 1 illustrates this idea by plotting the average treatment and control response

functions during the pre- and post-treatment periods. To highlight the concept of parallel

trends, we assume that there are three distinct outcomes in the pre- and post-treatment eras.

The realized average treatment and control outcomes are represented by the filled circles and

“x”s on the solid lines, respectively. The pre- and post-treatment periods are delineated by

the vertical dashed line, and indicated on the horizontal axis. The empty circles on the

dashed line in the post-treatment period represent the counterfactual outcomes, what would

have happened to the subjects in the treatment group had they not received treatment.

There are several features of the picture to note.

Figure 1: Difference-in-Differences Intuition

y

t

Pre-treatment Post-treatment

– Realized Avg. Treatment Outcomes

– Realized Avg. Control Outcomes
– Counterfactual Avg. Treatment Outcomes

First, the average outcome for the treatment and control groups are different; treated

firms have higher outcomes than control firms, on average. Second, outcomes for both

treated and control firms appear to be trending down at the same rate during the pre-

treatment period. As noted above, neither of these issues are cause for concern since these

patterns are fully accounted for by the d and p control variables, respectively.

The third feature to notice is a kink or break in the realized outcome for the treatment

group occurring immediately after the onset of the treatment. Rather than continuing on

the pre-treatment trend, as indicated by the dashed line representing the counterfactual

outcomes, the treatment group appears to have abruptly altered its behavior as a result of
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the treatment. This sharp change in behavior among the subjects that are treated—and lack

of change in behavior for the control group—is the variation that the DD estimator uses for

identifying the treatment effect.

Fourth, the picture highlights the importance of the parallel trends assumption. While

level differences and common trends are easily handled by the DD estimator, differential

trends among the treatment and control groups will generally lead to inconclusive or er-

roneous inferences. Figure 2 highlights this point. There is no change in behavior among

either treatment or control groups following the onset of treatment. Yet, the DD estimator

will estimate a large positive effect simply because of the different trends. This estimated

difference could be because the treatment had no effect on the treated subjects, or perhaps

the treatment had a significant effect on the treated subjects, whose outcomes may have

been significantly lower or higher without intervention. The point is that there is no way of

knowing and, therefore, the estimated treatment effect is unidentified.

Figure 2: Violation of the Parallel Trends Assumption

y

t

Pre-treatment Post-treatment

– Realized Avg. Treatment Outcomes
– Realized Avg. Control Outcomes

As with all endogeneity problems, we cannot formally test the parallel trends assumption,

i.e.,

cov(d, u) = cov(p, u) = cov(dp, u) = 0.

What we can do, assuming we have more than one period’s worth of pre-treatment data,

is compare the trends in the outcome variables during the pre-treatment era. For example,
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Figure 1 clearly passes this visual inspection, while Figure 2 does not. One can even perform

a formal statistical test (e.g., paired sample t-test) of the difference in average growth rates

across the two groups. However, while similar pre-treatment trends are comforting, indeed

necessary, they are not a sufficient condition to ensure that the endogeneity problem has been

solved. If there are omitted time-varying variables that differentially affect the treatment and

control groups, but are correlated with the outcome variable, then the coefficient estimates

will be inconsistent.

Another potential concern arises when the treatment and control groups have different

pre-treatment levels for the outcome variable. For example, in Figure 1, the level of the

outcome variable for the treatment group is, on average, higher than that for the control

group. As noted above, this difference does not compromise the internal validity of the DD

estimator because these differences are captured by the d indicator. However, different levels

of the outcome variable increases the sensitivity of the DD estimator to the functional form

assumption.

To illustrate, consider a case in which the average outcome for the treatment group

increases from 40% to 60% between the pre- and post-treatment periods. Likewise, the

average outcome for the control group increases from 10% to 20%. The DD estimate is (60%

- 40%) - (20% - 10%) = 10%. However, if we consider the natural log of the outcome variable

instead of the level, the DD estimator is: (ln(60%) - ln(40%)) - (ln(20%) - ln(10%)) = -0.29.

This example shows that the outcome increased by more for the treatment group than the

control group in absolute terms (20% versus 10%). But, in relative terms, the increase in

outcomes for the treatment group is relatively small when compared to the control group

(41% versus 70%). Which answer is correct depends upon the question being asked.

4.4 Checking Internal Validity

Because the key assumption behind the DD estimator, the parallel trends assumption, is

untestable, a variety of sensitivity or robustness tests should be performed. We present a

laundry list of such tests here, though we suspect only a few apply or are necessary for any

given study.

• Falsification Test #1: Repeat the DD analysis on pre-event years. Falsely as-

sume that the onset of treatment occurs one (two, three, . . . ) year before it actually

does. Repeat the estimation. The estimated treatment effect should be statistically

indistinguishable from zero to ensure that the observed change is more likely due to
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the treatment, as opposed to some alternative force. This exercise is undertaken by

Almeida et al. (2012) who examine the link between corporate debt maturity structure

and investment in the wake of the credit crisis. Loosely speaking, one can think of the

treatment and control groups in their study as being comprised of firms with a lot or

a little debt maturing shortly after the onset of the crisis, respectively. The treatment

is the crisis itself, whose onset began in 2007.

A simplified version of their model is

y = β0 + β1d× p+ β2d+ β3p+ u,

where y is fixed investment, d equals one for firms in the treatment group and zero for

firms in the control group, and p equals one from 2007 onward and zero prior to 2007.

By changing the breakpoint defining p from 2007 to 2006 and 2005, they are able to

show that the effect is isolated to periods occurring only after the onset of the crisis.

Bertrand and Mullainathan (2003) carry out a similar exercise in their study of wages

and state antitakeover laws. A simplified version of their model is

y = β0 + β1d× p−1 + β2d× p0 + β3d× p1 + β4d+ β5p−1 + β6p0 + β7p1 + u,

where y is wages, d equals one if the state in which the firm is registered passed an

antitakeover law and zero otherwise, p1 is an indicator variable equal to one during the

period just after the passage of the law, and zero otherwise, p−1 is an indicator variable

equal to one during the period before the passage of the law, and zero otherwise, p0

is an indicator variable equal to one during the period in which the law was passed,

and zero otherwise, and they show that β̂1 is indistinguishable from zero and β̂2 is

significantly smaller than the estimated treatment effect β̂3.

• Falsification Test #2: Make sure that variables that should be unaffected by the

event are unaffected by the event. To do so, replace the outcome variable of interest

in the empirical model, y, (e.g., Eqn (32)) with these other variables.

• Multiple Treatment and Control Groups: Multiple treatment and control groups

reduce any biases and noise associated with just one comparison. While the treatment

and control groups should be similar along outcome relevant dimensions, differences

across the groups within each category (treatment or control) are helpful in so far as

these differences are likely to come with different biases. Bertrand and Mullainathan

(2003) effectively use a variety of treatment and control groups in their analysis since

states passed antitakeover laws at different dates. Jayaratne and Strahan (1996) are
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similar in their analysis of bank branch deregulations, which occurred at different times

for different states.

• Difference-in-Differences-in-DifferencesWith multiple treatment or control groups

one can perform a triple difference, which is the difference in two difference-in-difference

estimates. While useful, the triple difference may be more trouble than it is worth.

For example, consider the case with one treatment group and two control groups. If

one of the DD estimates is zero, the additional differencing sacrifices statistical power

and inflates the standard error on the estimated treatment effect. If the other DD

estimate is not zero, then one must wonder about the internal validity of the original

DD estimate. Tsoutsoura (2010) and Morse (2011) provide corporate finance examples

of triple differences.

• Balanced Treatment and Control Groups: The treatment and control groups

should be relatively similar along observable dimensions relevant for treatment, i.e.,

balanced. If not, then incorporating control variables in the regression specification

can help. However, if the groups differ significantly along observables, chances are that

they may differ along unobservables. Simple pairwise t-tests or a regression of the

treatment indicator on observables should reveal no statistically significant results if

the groups are balanced.

• Timing of Behavior Change: The change in treatment group behavior should be

concentrated around the onset of treatment. Moving further away from this event al-

lows other confounding factors to influence outcomes and threaten the internal validity

of the study.

• Control by Systematic Variation: This notion is related to the use of multiple

control groups, and is discussed in Rosenbaum (1987). Imagine that the treatment and

control groups differ along some unobservable dimension, call it U . If another control

group exists that differs significantly from the first along the unobserved dimension,

then this second group can provide a test of the relevance of the omitted variable for

the treatment effect. Intuitively, if U is important for the outcome, then variation

in U should impact the estimated treatment effect. Because U is unobservable, a

direct measure (e.g., explanatory variable) cannot be incorporated into the regression.

However, we can use the two control groups as a means to test the relevance of variation

in U as a confounder for the treatment effect.

• Treatment Reversal If the onset of treatment causes a change in behavior, then, all

else equal, the reversal of that treatment should cause a return to the pre-treatment
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behavior. For example, Leary (2009) examines an expansion and subsequent contrac-

tion in the supply of bank credit using the emergence of the market for certificates of

deposit (CDs) in 1961 and the credit crunch of 1966, respectively. He shows that the

debt issuances and leverage ratios of bank-dependent borrowers experienced significant

increases and decreases relative to non-bank-dependent borrowers in response to the

two events.

4.5 Further Reading

Other examples of DD estimations in finance include: Agrawal (2009), Asker and Ljungqvist

(2010), Gormley and Matsa (2011), Melzer (2010), and Becker and Stromberg (2010). Text-

book treatments of natural experiments and difference-in-differences estimators can be found

in Chapters 6 and 10 in Wooldridge (2002), chapters 10 and 13 in Stock and Watson (2007),

and chapter 5 of Angrist and Pischke (2010). Meyer (1995) provides an excellent discussion

of these topics using the labor literature as an illustrative vehicle, as does the survey of

empirical methods in labor economics by Angrist and Krueger (1999). The empirical meth-

ods mimeo by Esther Duflo,24 while terse, presents a number of tips and examples of these

methods, using examples from labor, development, and public finance.

5. Regression Discontinuity Design

Regression discontinuity design (RDD) is another quasi-experimental technique. Unlike nat-

ural experiments, assignment to treatment and control groups in a RDD is not random.

Instead, RDD takes advantage of a known cutoff or threshold determining treatment as-

signment or the probability of receiving treatment. Assuming these assignment rules are

functions of one or more observable continuous variables, the cutoff generates a discontinu-

ity in the treatment recipiency rate at that point. Recipients whose assignment variable is

above the cutoff are assigned to one group (e.g., treatment), those below assigned to the other

(e.g., control). To be clear, in this context “recipients” refers to any economic agents—firms,

managers, investors—that are affected by the assignment rule.

For example, Chava and Roberts (2008) examine the link between financing and in-

vestment using violations of financial covenants in bank loans. Financial covenants specify

thresholds for certain accounting variables above or below which a firm is deemed to be in vi-

24See http://piketty.pse.ens.fr/fichiers/enseig/ecoineg/article/Duflo2002.pdf.
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olation of the contract terms. These covenant thresholds provide a deterministic assignment

rule distinguishing treatment (in violation) and control (not in violation) groups.25

Another feature of RDD that distinguishes it from natural experiments is that one need

not assume that the cutoff generates variation that is as good as randomized. Instead, ran-

domized variation is a consequence of RDD so long as agents are unable to precisely control

the assignment variable(s) near the cutoff (Lee, 2008). For example, if firms could perfectly

manipulate the net worth that they report to lenders, or if consumers could perfectly manip-

ulate their FICO scores, then a RDD would be inappropriate in these settings. More broadly,

this feature makes RDD studies particularly appealing because they rely on relatively mild

assumptions compared to other non-experimental techniques (Lee and Lemieux, 2010).

There are several other appealing features of RDD. RDDs abound once one looks for

them. Program resources are often allocated based on formulas with cutoff structures. RDD

is intuitive and often easily conveyed in a picture, much like the difference-in-differences

approach. In RDD, the picture shows a sharp change in outcomes around the cutoff value,

much like the difference-in-differences picture shows a sharp change in outcomes for the

treatment group after the event.

The remainder of this section will outline the RDD technique, which comes in two flavors:

sharp and fuzzy. We first clarify the distinction between the two. We then discuss how to

implement RDD in practice. Unfortunately, applications of RDD in corporate finance are

relatively rare. Given the appeal of RDD, we anticipate that this dearth will change in the

coming years. For now, we focus attention on the few existing studies, occasionally referring

to examples from the labor literature as needed, in order to illustrate the concepts discussed

below.

5.1 Sharp RDD

In a sharp RDD, subjects are assigned to or selected for treatment solely on the basis of a

cutoff value of an observed variable.26 This variable is referred to by a number of names in

25Other corporate finance studies incorporating RDDs include Keys et al. (2010), which examines the link
between securitization and lending standards using a guideline established by Fannie Mae and Freddie Mac
that limits securitization to loans to borrowers with FICO scores above a certain limit. This rule generates
a discontinuity in the probability of securitization occurring precisely at the 620 FICO score threshold. In
addition, Baker and Xuan (2009) examine the role reference points play in corporate behavior, Roberts and
Sufi (2009a) examine the role of covenant violations in shaping corporate financial policy, and Black and
Kim (2011) examine the effects on corporate governance of a rule stipulating a minimum fraction of outside
directors.

26The requirement that the variable be observable rules out situations, such as accounting disclosure rules,
in which the variable is observable on only one side of the cutoff.
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the econometrics literature including: assignment, forcing, selection, running, and ratings.

In this paper, we will use the term forcing. The forcing variable can be a single variable,

such as a borrower’s FICO credit score in Keys et al. (2010) or a firm’s net worth as in

Chava and Roberts (2008). Alternatively, the forcing variable can be a function of a single

variable or several variables.

What makes a sharp RDD sharp is the first key assumption.

Sharp RDD Key Assumption # 1: Assignment to treatment occurs through

a known and measured deterministic decision rule:

d = d(x) =

{
1 if x ≥ x′

0 otherwise.
(34)

where x is the forcing variable and x′ the threshold.

In other words, assignment to treatment occurs if the value of the forcing variable x

meets or exceeds the threshold x′.27 Graphically, the assignment relation defining a sharp

RDD is displayed in Figure 3, which has been adapted from Figure 3 in Imbens and Lemieux

(2008). In the context of Chava and Roberts (2008), when a firm’s debt-to-EBITDA ratio,

Figure 3: Probability of Treatment Assignment in Sharp RDD
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for example, (x) rises above the covenant threshold (x′), the firm’s state changes from not

in violation (control) to in violation (treatment) with certainty.

27We refer to a scalar variable x and threshold x′ only to ease the discussion. The weak inequality is
unimportant since x is assumed to be continuous and therefore Pr(x = x′) = 0. The direction of the
inequality is unimportant, arbitrarily chosen for illustrative purposes. However, we do assume that x has a
positive density in the neighborhood of the cutoff x′.
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5.1.1 Identifying Treatment Effects

Given the delineation of the data into treatment and control groups by the assignment rule,

a simple, albeit naive, approach to estimation would be a comparison of sample averages.

As before, this comparison can be accomplished with a simple regression

y = α + βd+ u (35)

where d = 1 for treatment observations and zero otherwise. However, this specification as-

sumes that treatment assignment d and the error term u are uncorrelated so that assignment

is as if it is random with respect to potential outcomes.

In the case of RDD, assignment is determined by a known rule that ensures treatment

assignment is correlated with the forcing variable, x, so that d is almost surely correlated

with u and OLS will not recover a treatment effect of interest (e.g., ATE, ATT). For example,

firms’ net worths and current ratios (i.e., current assets divided by current liabilities), are

the forcing variables in Chava and Roberts (2008). A comparison of investment between

firms in violation of their covenants and those not in violation will, by construction, be a

comparison of investment between two groups of firms with very different net worths and

current ratios. However, the inability to precisely measure marginal q may generate a role

for these accounting measures in explaining fixed investment (Erickson and Whited, 2000;

Gomes, 2001). In other words, the comparison of sample averages is confounded by the

forcing variables, net worth and current ratio.28

One way to control for x is to include it in the regression as another covariate:

y = α + βd+ γx+ u (36)

However, this approach is also unappealing because identification of the parameters comes

from all of the data, including those points that are far from the discontinuity. Yet, the

variation on which RDD relies for proper identification of the parameters is that occurring

precisely at the discontinuity. This notion is formalized in the second key assumption of

sharp RDD, referred to as the local continuity assumption.

28One might think that matching would be appropriate in this instance since a sharp RDD is just a special
case of selection on observables (Heckman and Robb, 1985). However, in this setting there is a violation
of the second strong ignorability conditions (Rosenbaum and Rubin, 1983), which require (1) that u be
independent of d conditional on x (unconfoundedness), and (2) that 0 < Pr(d = 1|x) < 1 (overlap). Clearly,
the overlap assumption is a violation since Pr(d = 1|x) ∈ {0, 1}. In other words, at each x, every observation
is either in the treatment or control group, but never both.
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RDDKey Assumption # 2: Both potential outcomes, E(y(0)|x) and E(y(1)|x),
are continuous in x at x′. Equivalently, E(u|x) is continuous in x at x′.29

Local continuity is a general assumption invoked in both sharp and fuzzy RDD. As such,

we do not preface this assumption with “Sharp,” as in the previous assumption.

Assuming a positive density of x in a neighborhood containing the threshold x′, local

continuity implies that the limits of the conditional expectation function around the threshold

recover the ATE at x′. Taking the difference between the left and right limits in x of Eqn

(35) yields,

lim
x↓x′

E(y|x)− lim
x↑x′

E(y|x) =
[
lim
x↓x′

E(βd|x) + lim
x↓x′

E(u|x)
]
−
[
lim
x↑x′

E(βd|x) + lim
x↑x′

E(u|x)
]

= β, (37)

where the second line follows because continuity implies that lim
x↓x′

E(u|x) − lim
x↑x′

E(u|x) = 0.

In other words, a comparison of average outcomes just above and just below the threshold

identifies the ATE for subjects sufficiently close to the threshold. Identification is achieved

assuming only smoothness in expected potential outcomes at the discontinuity. There are

no parametric functional form restrictions.

Consider Figure 4, which is motivated from Figure 2 of Imbens and Lemieux (2008).

On the vertical axis is the conditional expectation of outcomes, on the horizontal axis the

forcing variable. Conditional expectations of potential outcomes, E(y(0)|x) and E(y(1)|x),
are represented by the continuous curves, part of which are solid and part of which are

dashed. The solid parts of the curve correspond to the regions in which the potential outcome

is observed, and the dashed parts are the counterfactual. For example, y(1) is observed

only when the forcing variable is greater than the threshold and the subject is assigned to

treatment. Hence, the part of the curve to the right of x′ is solid for E(y(1)|x) and dashed

for E(y(0)|x).

The local continuity assumption is that the conditional expectations representing poten-

tial outcomes are smooth (i.e., continuous) around the threshold, as illustrated by the figure.

What this continuity ensures is that the average outcome is similar for subjects close to but

on different sides of the threshold. In other words, in the absence of treatment, outcomes

would be similar. However, the conditional expectation of the observed outcome, E(y|x), is

29This is a relatively weak but unrealistic assumption as continuity is only imposed at the threshold.
As such, two alternative, stronger assumptions are sometimes made. The first is continuity of conditional
regression functions, such that E(y(0)|x) and E(y(1)|x) are continuous in x,∀x. The second is continuity of
conditional distribution functions, such that F (y(0)|x) and F (y(1)|x) are continuous in x,∀x.
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Figure 4: Conditional Expectation of Outcomes in Sharp RDD
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represented by the all solid line that is discontinuous at the threshold, x′. Thus, continuity

ensures that the only reason for different outcomes around the threshold is the treatment.

While a weak assumption, local continuity does impose limitations on inference. For

example, consider a model with heterogeneous effects,

y = α + β̃d+ u (38)

where β̃ is a random variable that can vary with each subject. In this case, we also require

local continuity of E(β̃|x) at x′. Though we can identify the treatment effect under this

assumption, we can only learn about that effect for the subpopulation that is close to the

cutoff. This may be a relatively small group, suggesting little external validity. Further,

internal validity may be threatened if there are coincidental functional discontinuities. One

must be sure that there are no other confounding forces that induce a discontinuity in the

outcome variable coincident with that induced by the forcing variable of interest.

5.2 Fuzzy RDD

The primary distinction from a sharp RDD is captured by the first key assumption of a fuzzy

RDD.

Fuzzy RDD Key Assumption # 1: Assignment to treatment occurs in

a stochastic manner where the probability of assignment (a.k.a. propensity

score) has a known discontinuity at x′.

0 < lim
x↓x′

Pr(d = 1|x)− lim
x↑x′

Pr(d = 1|x) < 1.
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Instead of a 0-1 step function, as in the sharp RDD case, the treatment probability as a

function of x in a fuzzy RDD can contain a jump at the cutoff that is less than one. This

situation is illustrated in Figure 5, which is analogous to figure 3 in the sharp RDD case.

Figure 5: Probability of Treatment Assignment in Fuzzy RDD
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An example of a fuzzy RDD is given in Keys et al. (2010). Loans with FICO scores

above 620 are only more likely to be securitized. Indeed securitization occurs both above

and below this threshold. Thus, one can also think of fuzzy RDD as akin to mis-assignment

relative to the cutoff value in a sharp RDD. This mis-assignment could be due to the use of

additional variables in the assignment that are unobservable to the econometrician. In this

case, values of the forcing variable near the cut-off appear in both treatment and control

groups.30 Likewise, Bakke, et al. (in press) is another example of a fuzzy RDD because

some of the causes of delisting, such as governance violations, are not observable to the

econometrician. Practically speaking, one can imagine that the incentives to participate in

the treatment change discontinuously at the cutoff, but they are not powerful enough to

move all subjects from non-participant to participant status.

In a fuzzy RDD one would not want to compare the average outcomes of treatment and

control groups, even those close to the threshold. The fuzzy aspect of the RDD suggests that

subjects may self-select around the threshold and therefore be very different with respect

to unobservables that are relevant for outcomes. To illustrate, reconsider the Bakke, et al.

(in press) study. First, comparing firms that delist to those that do not delist is potentially

30Fuzzy RDD is also akin to random experiments in which there are members of the treatment group that
do not receive treatment (i.e., “no-shows”), or members of the control group who do receive treatment (i.e.,
“cross-overs”).
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confounded by unobserved governance differences, which are likely correlated with outcomes

of interest (e.g., investment, financing, employment, etc.).

5.2.1 Identifying Treatment Effects

Maintaining the assumption of local continuity and a common treatment effect,

lim
x↓x′

E(y|x)− lim
x↑x′

E(y|x) =
[
lim
x↓x′

E(βd|x) + lim
x↓x′

E(u|x)
]
−
[
lim
x↑x′

E(βd|x) + lim
x↑x′

E(u|x)
]

= β

[
lim
x↓x′

E(d|x)− lim
x↑x′

E(d|x)
]
.

This result implies that the treatment effect, common to the population, β, is identified by

β =

lim
x↓x′

E(y|x)− lim
x↑x′

E(y|x)

lim
x↓x′

E(d|x)− lim
x↑x′

E(d|x)
. (39)

In other words, the common treatment effect is a ratio of differences. The numerator is

the difference in expected outcomes near the threshold. The denominator is the change in

probability of treatment near the threshold. The denominator is always non-zero because

of the assumed discontinuity in the propensity score function (Fuzzy RDD Key Assumption

#1). Note that Eqn (39) is equal to Eqn (37) when the denominator equals one. This

condition is precisely the case in a sharp RDD. (See Sharp RDD Key Assumption #1.)

When the treatment effect is not constant, β̃, we must maintain that E(β̃|x) is locally

continuous at the threshold, as before. In addition, we must assume local conditional in-

dependence of β̃ and d, which requires d to be independent of β̃ conditional on x near x′

(Hahn, Todd, and van der Klaauw, 2001). In this case,

lim
x↓x′

E(y|x)− lim
x↑x′

E(y|x) =
[
lim
x↓x′

E(β̃d|x) + lim
x↓x′

E(u|x)
]
−
[
lim
x↑x′

E(β̃d|x) + lim
x↑x′

E(u|x)
]

= lim
x↓x′

E(β̃|x)lim
x↓x′

E(d|x)− lim
x↑x′

E(β̃|x)lim
x↑x′

E(d|x)

By continuity of E(β̃|x), this result implies that the ATE can be recovered with the same

ratio as in Eqn (39). That is,

E(β̃|x) =
lim
x↓x′

E(y|x)− lim
x↑x′

E(y|x)

lim
x↓x′

E(d|x)− lim
x↑x′

E(d|x)
. (40)

The practical problem with heterogeneous treatment effects involves violation of the

conditional independence assumption. If subjects self-select into treatment or are selected on
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the basis of expected gains from the treatment, then this assumption is clearly violated. That

is, the treatment effect for individuals, β̃ is not independent of the treatment assignment,

d. In this case, we must employ an alternative set of assumptions to identify an alternative

treatment effect called a local average treatment effect (LATE) (Angrist and Imbens, 1994).

Maintaining the assumptions of (1) discontinuity in the probability of treatment, (2) local

continuity in potential outcomes, identification of LATE requires two additional assumptions

(Hahn, Todd, and van der Klaauw, 2001). First, (β, d(x)) is jointly independent of x near

x′, where d(x) is a deterministic assignment rule that varies across subjects. Second,

∃ϵ > 0 : d(x′ + δ) ≥ d(x′ − δ) ∀0 < δ < ϵ.

Loosely speaking, this second condition requires that the likelihood of treatment assignment

always be weakly greater above the threshold than below. Under these conditions, the now

familiar ratio,

lim
x↓x′

E(y|x)− lim
x↑x′

E(y|x)

lim
x↓x′

E(d|x)− lim
x↑x′

E(d|x)
, (41)

identifies the LATE, which is defined as

lim
δ→0

E(β|d(x′ + δ)− d(x′ − δ) = 1). (42)

The LATE represents the average treatment effect of the compliers, that is, those subjects

whose treatment status would switch from non-recipient to recipient if their score x crossed

the cutoff. The share of this group in the population in the neighborhood of the cutoff is

just the denominator in Eqn (41).

Returning to the delisting example from Bakke, et al. (in press), assume that delisting is

based on the firm’s stock price relative to a cutoff and governance violations. In other words,

all firms with certain governance violations are delisted and only those non-violating firms

with sufficiently low stock prices are delisted. If governance violations are unobservable, then

the delisting assignment rule generates a fuzzy RDD, as discussed above. The LATE applies

to the subgroup of firms with stock prices close to the cutoff for whom delisting depends on

their stock price’s position relative to the cutoff, i.e., non-violating firms. For more details

on these issues, see studies by van der Klaauw (2008) and Chen and van der Klaauw (2008)

that examine the economics of education and scholarship receipt.
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5.3 Graphical Analysis

Perhaps the first place to start in analyzing a RDD is with some pictures. For example, a plot

of E(y|x) is useful to identify the presence of a discontinuity. To approximate this conditional

expectation, divide the domain of x into bins, as one might do in constructing a histogram.

Care should be taken to ensure that the bins fall on either side of the cutoff x′, and no bin

contains x′ in its interior. Doing so ensures that treatment and control observations are not

mixed together into one bin by the researcher, though this may occur naturally in a fuzzy

RDD. For each bin, compute the average value of the outcome variable y and plot this value

above the mid-point of the bin.

Figure 6 presents two hypothetical examples using simulated data to illustrate what to

look for (Panel A) and what to look out for (Panel B).31 Each circle in the plots corresponds

to the average outcome, y, for a particular bin that contains a small range of x-values. We

also plot estimated regression lines in each panel. Specifically, we estimate the following

regression in Panel A,

y = α+ βd+
5∑

s=1

[βsx
s + γsd · xs] + u

and a cubic version in Panel B.

Figure 6: RDD Examples
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Focusing first on Panel A, there are several features to note, as suggested by Lee and

Lemieux (2010). First, the graph provides a simple means of visualizing the functional

31Motivation for these figures and their analysis comes from Chapter 6 of Angrist and Pischke (2009).
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form of the regression, E(y|x) because the bin means are the nonparametric estimate of the

regression function. In Panel A, we note that a fifth-order polynomial is needed to capture

the features of the conditional expectation function. Further, the fitted line reveals a clear

discontinuity. In contrast, in Panel B a cubic, maybe a quadratic, polynomial is sufficient

and no discontinuity is apparent.

Second, a sense of the magnitude of the discontinuity can be gleaned by comparing the

mean outcomes in the two bins on both sides of the threshold. In Panel A, this magnitude

is represented by the jump in E(y|x) moving from just below x′ to just above. Panel B

highlights the importance of choosing a flexible functional form for the conditional expecta-

tion. Assuming a linear functional form, as indicated by the dashed lines, would incorrectly

reveal a discontinuity. In fact, the data reveal a nonlinear relation between the outcome and

forcing variables.

Finally, the graph can also show whether there are similar discontinuities in E(y|x) at

points other than x′. At a minimum, the existence of other discontinuities requires an

explanation to ensure that what occurs at the threshold is in fact due to the treatment and

not just another “naturally occurring” discontinuity.

As a practical matter, there is a question of how wide the bins should be. As with most

nonparametrics, this decision represents a tradeoff between bias and variance. Wider bins

will lead to more precise estimates of E(y|x), but at the cost of bias since wide bins fail to

take into account the slope of the regression line. Narrower bins mitigate this bias, but lead

to noisier estimates as narrow bins rely on less data. Ultimately, the choice of bin width

is subjective but should be guided by the goal of creating a figure that aids in the analysis

used to estimate treatment effects.

Lee and Lemieux (2010) suggest two approaches. The first is based on a standard regres-

sion F-test. Begin with some number of bins denoted K and construct indicator variables

identifying each bin. Then divide each bin in half and construct another set of indicator

variables denoting these smaller bins. Regress y on the smaller bin indicator variables and

conduct an F-test to see if the additional regressors (i.e., smaller bins) provide significant

additional explanatory power. If not, then the original K bins should be sufficient to avoid

oversmoothing the data.

The second test adds a set of interactions between the bin dummies, discussed above,

and the forcing variable, x. If the bins are small enough, there should not be a significant

slope within each bin. Recall that plotting the mean outcome above the midpoint of each

bin presumes an approximately zero slope within the bin. A simple test of this hypothesis

is a joint F-test of the interaction terms.
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In the case of fuzzy RDD, it can also be useful to create a similar graph for the treatment

dummy, di, instead of the outcome variable. This graph can provide an informal way of

estimating the magnitude of the discontinuity in the propensity score at the threshold. The

graph can also aid with the choice of functional form for E(d|x) = Pr(d|x).

Before discussing estimation, we mention a caveat from Lee and Lemieux (2010). Graph-

ical analysis can be helpful but should not be relied upon. There is too much room for

researchers to construct graphs in a manner that either conveys the presence of treatment

effects when there are none, or masks the presence of treatment effects when they exist.

Therefore, graphical analysis should be viewed as a tool to guide the formal estimation,

rather than as a necessary or sufficient condition for the existence of a treatment effect.

5.4 Estimation

As is clear from Eqns (37), (40), and (41), estimation of various treatment effects requires

estimating boundary points of conditional expectation functions. Specifically, we need to

estimate four quantities:

1) lim
x↓x′

E(yi|x),

2) lim
x↑x′

E(yi|x),

3) lim
x↓x′

E(di|x), and

4) lim
x↑x′

E(di|x).

The last two quantities are only relevant for the fuzzy RDD, since a sharp design assumes

that lim
x↓x′

E(di|x) = 1 and lim
x↑x′

E(di|x) = 0.

5.4.1 Sharp RDD

In theory, with enough data one could focus on the area just around the threshold, and

compare average outcomes for these two groups of subjects. In practice, this approach

is problematic because a sufficiently small region will likely run into power problems. As

such, widening the area of analysis around the threshold to mitigate power concerns is

often necessary. Offsetting this benefit of extrapolation is an introduction of bias into the

estimated treatment effect as observations further from the discontinuity are incorporated

into the estimation. Thus, the tradeoff researchers face when implementing a RDD is a

common one: bias versus variance.
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One way of approaching this problem is to emphasize power by using all of the data and

to try to mitigate the bias through observable control variables, and in particular the forcing

variable, x. For example, one could estimate two separate regressions on each side of the

cutoff point:

yi = βb + f(xi − x′) + εbi (43)

yi = βa + g(xi − x′) + εai (44)

where the superscripts denote below (“b”) and above (“a”) the threshold, x′, and f and g are

continuous functions (e.g., polynomials). Subtracting the threshold from the forcing variable

means that the estimated intercepts will provide the value of the regression functions at the

threshold point, as opposed to zero. The estimate treatment effect is just the difference

between the two estimated intercepts, (βa − βb).
32

An easier way to perform inference is to combine the data on both sides of the threshold

and estimate the following pooled regression:

yi = α + βdi + f(xi − x′) + di · g(xi − x′) + εi (45)

where f and g are continuous functions. The treatment effect is β, which equals (βa − βb).

Note, this approach maintains the functional form flexibility associated with estimating two

separate regressions by including the interaction term di · g(xi − x′). This is an important

feature since there is rarely a strong a priori rationale for constraining the functional form

to be the same on both sides of the threshold.33

The functions f and g can be specified in a number of ways. A common choice is

polynomials. For example, if f and g are quadratic polynomials, then Eqn (45) is:

yi = α + βdi + γb1(xi − x′) + γb2(xi − x′)2 + γa3di(xi − x′) + γa4di(xi − x′)2 + εi

This specification fits a different quadratic curve to observations above and below the thresh-

old. The regression curves in Figure 6 are an example of this approach using quintic (and

cubic) polynomials for f and g.

An important consideration when using a polynomial specification is the choice of poly-

nomial order. While some guidance can be obtained from the graphical analysis, the correct

32This approach of incorporating controls for x as a means to correct for selection bias due to selection
on observables is referred to as the control function approach (Heckman and Robb, 1985). A drawback of
this approach is the reduced precision in the treatment effect estimate caused by the collinearity between di
and f and g. This collinearity reduces the independent variation in the treatment status and, consequently,
the precision of the treatment effect estimates (van der Klaauw, 2008).

33There is a benefit of increased efficiency if the restriction is correct. Practically speaking, the potential
bias associated with an incorrect restriction likely outweighs any efficiency gains.
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order is ultimately unknown. There is some help from the statistics literature in the form

of generalized cross-validation procedures (e.g., van der Klaauw, 2002; Black, Galdo, and

Smith, 2007), and the joint test of bin indicators described in Lee and Lemieux (2010). This

ambiguity suggests the need for some experimentation with different polynomial orders to

illustrate the robustness of the results.

An alternative to the polynomial approach is the use of local linear regressions. Hahn,

Todd, and van der Klaauw (2001) show that they provide a nonparametric way of consistently

estimating the treatment effect in an RDD. Imbens and Lemieux (2008) suggest estimating

linear specifications on both sides of the threshold while restricting the observations to those

falling within a certain distance of the threshold (i.e., bin width).34 Mathematically, the

regression model is

yi = α+ βdi + γb1(xi − x′) + γa2di(xi − x′) + εi, where x
′ − h ≤ x ≤ x′ + h (46)

for h > 0. The treatment effect is β.

As with the choice of polynomial order, the choice of window width (bandwidth), h, is

subjective. Too wide a window increases the accuracy of the estimate, by including more

observations, but at the risk of introducing bias. Too narrow a window and the reverse occurs.

Fan and Gijbels, 1996) provide a rule of thumb method for estimating the optimal window

width. Ludwig and Miller (2007) and Imbens and Lemieux (2008) propose alternatives based

on cross-validation procedures. However, much like the choice of polynomial order, it is best

to experiment with a variety of window widths to illustrate the robustness of the results.

Of course, one can combine both polynomial and local regression approaches by searching

for the optimal polynomial for each choice of bandwidth. In other words, one can estimate

the following regression model

yi = α + βdi + f(xi − x′) + di · g(xi − x′) + εi, where x
′ − h ≤ x ≤ x′ + h (47)

for several choices of h > 0, choosing the optimal polynomial order for each choice of h based

on one of the approaches mentioned earlier.

One important intuitive point that applies to all of these alternative estimation methods

is the tradeoff between bias and efficiency. For example, in terms of the Chava and Roberts

(2008) example, Eqn (36) literally implies that the only two variables that are relevant for

investment are a bond covenant violation and the distance to the cutoff point for a bond

34This local linear regression is equivalent to a nonparametric estimation with a rectangular kernel. Al-
ternative kernel choices may improve efficiency, but at the cost of less transparent estimation approaches.
Additionally, the choice of kernel typically has little impact in practice.
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covenant violation. Such a conclusion is, of course, extreme, but it implies that the error term

in this regression contains many observable and unobservable variables. Loosely speaking, as

long as none of these variables are discontinuous at the exact point of a covenant violation,

estimating the treatment effect on a small region around the cutoff does not induce bias.

In this small region RDD has both little bias and low efficiency. On the other hand, this

argument no longer follows when one uses a large sample, so it is important to control for

the differences in characteristics between those observations that are near and far from the

cutoff. In this case, because it is nearly impossible in most corporate finance applications

to include all relevant characteristics, using RDD on a large sample can result in both high

efficiency but also possibly large bias.

One interesting result from Chava and Roberts (2008) that mitigates this second concern

is that the covenant indicator variable is largely orthogonal to the usual measures of invest-

ment opportunities. Therefore, even though it is hard to control for differences between firms

near and far from the cutoff, this omitted variables problem is unlikely to bias the coefficient

on the covenant violation indicator. In contrast, in Bakke, et al. (in press) the treatment

indicator is not orthogonal to the usual measures of investment opportunities; so inference

can only be drawn for the sample of firms near the cutoff and cannot be extrapolated to the

rest of the sample. In general, checking orthogonality of the treatment indicator to other

important regression variables is a useful diagnostic.

5.4.2 Fuzzy RDD

In a fuzzy RDD, the above estimation approaches are typically inappropriate. When the

fuzzy RDD arises because of misassignment relative to the cutoff, f(x − x′) and g(x − x′)

are inadequate controls for selection biases.35 More generally, the estimation approaches

discussed above will not recover unbiased estimates of the treatment effect because of cor-

relation between the assignment variable di and ε. Fortunately, there is an easy solution to

this problem based on instrumental variables.

Recall that including f and g in Eqn (45) helps mitigate the selection bias problem. We

can take a similar approach here in solving the selection bias in the assignment indicator,

di, using the discontinuity as an instrument. Specifically, the probability of treatment can

be written as,

E(di|xi) = δ + ϕT + g(x− x′) (48)

35An exception is when the assignment error is random, or independent of ε conditional on x (Cain, 1975).
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where T is an indicator equal to one if x ≥ x′ and zero otherwise, and g a continuous function.

Note that the indicator T is not equal to di in the fuzzy RDD because of misassignment or

unobservables. Rather,

di = Pr(di|xi) + ω

where ω is a random error independent of x. Therefore, a fuzzy RDD can be described by a

two equation system:

yi = α + βdi + f(xi − x′) + εi, (49)

di = δ + ϕTi + g(xi − x′) + ωi. (50)

Estimation of this system can be carried out with two stage least squares, where di is

the endogenous variable in the outcome equation and Ti is the instrument. The standard

exclusion restriction argument applies: Ti is only relevant for outcomes, yi, through its impact

on assignment, di. The estimated β will be equal to the average local treatment effect,

E(βi|x′). Or, if one replaces the local independence assumption with the local monotonicity

condition of Angrist and Imbens, 1994), β estimates the LATE.

The linear probability model in Eqn (50) may appear restrictive, but g (and f) are

unrestricted on both sides of the discontinuity, permitting arbitrary nonlinearities. However,

one must now choose two bandwidths and polynomial orders corresponding to each equation.

Several suggestions for these choices have arisen (e.g., Imbens and Lemieux, 2008). However,

practical considerations suggest choosing the same bandwidth and polynomial order for both

equations. This restriction eases the computation of the standard errors, which can be

obtained from most canned 2SLS routines. It also cuts down on the number of parameters

to investigate since exploring different bandwidths and polynomial orders to illustrate the

robustness of the results is recommended.

5.4.3 Semiparametric Alternatives

We focused on parametric estimation above by specifying the control functions f and g as

polynomials. The choice of polynomial order, or bandwidth, is subjective. As such, we

believe that robustness to these choices can be fairly compelling. However, for completeness,

we briefly discuss several alternative nonparametric approaches to estimating f and g here.

Interested readers are referred to the original articles for further details.

Van der Klaauw (2002) uses a power series approximation for estimating these func-

tions, where the number of power functions is estimated from the data by generalized cross-

validation as in Newey et al., 1990). Hahn, Todd, and van der Klaauw (2001) consider
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kernel methods using Nadaraya-Watson estimators to estimate the right- and left-hand side

limits of the conditional expectations in Eqn (39). While consistent and more robust than

parametric estimators, kernel estimators suffer from poor asymptotic bias behavior when es-

timating boundary points.36 This drawback is common to many nonparametric estimators.

Alternatives to kernel estimators that improve upon boundary value estimation are explored

by Hahn, Todd, and van der Klaauw (2001) and Porter (2003), both of whom suggest using

local polynomial regression (Fan, 1992; Fan and Gijbels, 1996).

5.5 Checking Internal Validity

We have already mentioned some of the most important checks on internal validity, namely,

showing the robustness of results to various functional form specifications and bandwidth

choices. This section lists a number of additional checks. As with the checks for natural

experiments, we are not advocating that every study employing a RDD perform all of the

following tests. Rather, this list merely provides a menu of options.

5.5.1 Manipulation

Perhaps the most important assumption behind RDD is local continuity. In other words, the

potential outcomes for subjects just below the threshold is similar to those just above the

threshold (e.g., see Figure 3). As such, an important consideration is the ability of subjects to

manipulate the forcing variable and, consequently, their assignment to treatment and control

groups. If subjects can manipulate their value of the forcing variable or if administrators (i.e.,

those who assign subjects to treatment) can choose the forcing variable or its threshold, then

local continuity may be violated. Alternatively, subjects on different sides of the threshold,

no matter how close, may not be comparable because of sorting.

For this reason, it is crucial to examine and discuss agents’ and administrators’ incentives

and abilities to affect the values of the forcing variable. However, as Lee and Lemieux (2010)

note, manipulation of the forcing variable is not de facto evidence invalidating an RDD.

What is crucial is that agents cannot precisely manipulate the forcing variable. Chava and

Roberts (2008) provide a good example to illustrate these issues.

36As van der Klaauw (2008) notes, if f has a positive slope near x′, the average outcome for observations
just to the right of the threshold will typically provide an upward biased estimate of lim

x↓x′
E(yi|x). Likewise,

the average outcome of observations just to the left of the threshold would provide a downward biased
estimate of lim

x↑x′
E(yi|x). In a sharp RDD, these results generate a positive finite sample bias.
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Covenant violations are based on financial figures reported by the company, which has

a clear incentive to avoid violating a covenant if doing so is costly. Further, the threshold

is chosen in a bargaining process between the borrower and the lender. Thus, possible ma-

nipulation is present in both regards: both agents (borrowers) and administrators (lenders)

influence the forcing variable and threshold.

To address these concerns, Chava and Roberts (2008) rely on institutional details and

several tests. First, covenant violations are not determined from SEC filings, but from private

compliance reports submitted to the lender. These reports often differ substantially from

publicly available numbers and frequently deviate from GAAP conventions. These facts mit-

igate the incentives of borrowers to manipulate their reports, which are often shielded from

public view because of the inclusion of material nonpublic information. Further mitigating

the ability of borrowers to manipulate their compliance reports is the repeated nature of

corporate lending, the importance of lending relationships, and the expertise and monitor-

ing role of relationship lenders. Thus, borrowers cannot precisely manipulate the forcing

variable, nor is it in their interest to do so.

Regarding the choice of threshold by the lender and borrower, the authors show that

violations occur on average almost two years after the origination of the contract. So, this

choice would have to contain information about investment opportunities two years hence,

which is not contained in more recent measures. While unlikely, the authors include the

covenant threshold as an additional control variable, with no effect on their results.

Finally, the authors note that any manipulation is most likely to occur when investment

opportunities are very good. This censoring implies that observed violations tend to occur

when investment opportunities are particularly poor, so that the impact on investment of

the violation is likely understated (see also Roberts and Sufi (2009a)). Further, the authors

show that when firms violate, they are more likely to violate by a small amount than a large

amount. This is at odds with the alternative that borrowers manipulate compliance reports

by “plugging the dam” until conditions get so bad that violation is unavoidable.

A more formal two-step test is suggested by McCrary (2008). The first step of this

procedure partitions the forcing variable into equally-spaced bins. The second step uses

the frequency counts across the bins as a dependent variable in a local linear regression.

Intuitively, the test looks for the presence of a discontinuity at the threshold in the density of

the forcing variable. Unfortunately, this test is informative only if manipulation is monotonic.

If the treatment induces some agents to manipulate the forcing variable in one direction and

some agents in the other direction, the density may still appear continuous at the threshold,

despite the manipulation. Additionally, manipulation may still be independent of potential
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outcomes, so that this test does not obviate the need for a clear understanding and discussion

of the relevant institutional details and incentives.

5.5.2 Balancing Tests and Covariates

Recall the implication of the local continuity assumption. Agents close to but on different

sides of the threshold should have similar potential outcomes. Equivalently, these agents

should be comparable both in terms of observable and unobservable characteristics. This

suggests testing for balance (i.e., similarity) among the observable characteristics. There are

several ways to go about executing these tests.

One could perform a visual analysis similar to that performed for the outcome variable.

Specifically, create a number of nonoverlapping bins for the forcing variable, making sure

that no bin contains points from both above and below the threshold. For each bin, plot

the average characteristic over the midpoint for that bin. The average characteristic for the

bins close to the cutoff should be similar on both sides of the threshold if the two groups

are comparable. Alternatively, one can simply repeat the RDD analysis by replacing the

outcome variable with each characteristic. Unlike the outcome variable, which should exhibit

a discontinuity at the threshold, each characteristic should have an estimated treatment effect

statistically, and economically, indistinguishable from zero.

Unfortunately, these tests do not address potential discontinuities in unobservables. As

such, they cannot guarantee the internal validity of a RDD. Similarly, evidence of a discon-

tinuity in these tests does not necessarily invalidate an RDD (van der Klaauw, 2008). Such

a discontinuity is only relevant if the observed characteristic is related to the outcome of

interest, y. This caveat suggests another test that examines the sensitivity of the treatment

effect estimate to the inclusion of covariates other than the forcing variable. If the local con-

tinuity assumption is satisfied, then including covariates should only influence the precision

of the estimates by absorbing residual variation. In essence, this test proposes expanding

the specifications in Eqn (45), for sharp RDD,

yi = α + βdi + f(xi − x′) + di · g(xi − x′) + h(Zi) + εi,

and Eqns (49) and (50), for fuzzy RDD:

yi = α + βdi + f(xi − x′) + hy(Zi) + εi,

di = δ + ϕTi + g(xi − x′) + hd(Zi) + ωi,

where h, hy, and hd are continuous functions of an exogenous covariate vector, Zi. For

example, Chava and Roberts (2008) show that their treatment effect estimates are largely
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unaffected by inclusion of additional linear controls for firm and period fixed effects, cash

flow, firm size, and several other characteristics. Alternatively, one can regress the outcome

variable on the vector of observable characteristics and repeat the RDD analysis using the

residuals as the outcome variable, instead of the outcome variable itself (Lee, 2008).

5.5.3 Falsification Tests

There may be situations in which the treatment did not exist or groups for which the treat-

ment does not apply, perhaps because of eligibility considerations. In this case, one can

execute the RDD for this era or group in the hopes of showing no estimated treatment ef-

fect. This analysis could reinforce the assertion that the estimated effect is not due to a

coincidental discontinuity or discontinuity in unobservables.

Similarly, Kane (2003) suggests testing whether the actual cutoff fits the data better than

other nearby cutoffs. To do so, one can estimate the model for a series of cutoffs and plot the

corresponding log-likelihood values. A spike in the log-likelihood at the actual cutoff relative

to the alternative false cutoffs can alleviate concerns that the estimated relation is spurious.

Alternatively, one could simply look at the estimated treatment effects for each cutoff. The

estimate corresponding to the true cutoff should be significantly larger than those at the

alternative cutoffs, all of which should be close to zero.

6. Matching Methods

Matching methods estimate the counterfactual outcomes of subjects by using the outcomes

from a subsample of “similar” subjects from the other group (treatment or control). For

example, suppose we want to estimate the effect of a diet plan on individuals’ weights. For

each person that participated in the diet plan, we could find a “match,” or similar person

that did not participate in the plan, and, vice versa for each person that did not participate

in the plan. By similar, we mean similar along weight-relevant dimensions, such as weight

before starting the diet, height, occupation, health, etc. The weight difference between a

person that undertook the diet plan and his match that did not undertake the plan measures

the effect of the diet plan for that person.

One can immediately think of extensions to this method, as well as concerns. For in-

stance, instead of using just one match per subject, we could use several matches. We

could also weight the matches as a function of the quality of the match. Of course, how to
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measure similarity and along which dimensions one should match are central to the proper

implementation of this method.

Perhaps more important is the recognition that matching methods do not rely on a clear

source of exogenous variation for identification. This fact is important and distinguishes

matching from the methods discussed in sections 3 through 5. Matching does alleviate some

of the concerns associated with linear regression, as we make clear below, and can mitigate

asymptotic biases arising from endogeneity or self-selection. As such, matching can provide

a useful robustness test for regression based analysis. However, matching by itself is unlikely

to solve an endogeneity problem since it relies crucially on the ability of the econometrician

to observe all outcome relevant determinants. Smith and Todd (2005) put it most directly,

“ . . . matching does not represent a ‘magic bullet’ that solves the selection problem in every

context.” (page 3).

The remainder of the sections follows closely the discussion in Imbens (2004), to which

we refer the reader for more details and further references. Some examples of matching

estimators used in corporate finance settings include: Villalonga (2004), Colak and Whited

(2007), Hellman, Lindsey, and Puri (2008), and Lemmon and Roberts (2010).

6.1 Treatment Effects and Identification Assumptions

The first important assumption for the identification of treatment effects (i.e., ATE, ATT,

ATU) is referred to as unconfoundedness:

(y(0), y(1)) ⊥ d|X. (51)

This assumption says that the potential outcomes (y(0) and y(1)) are statistically inde-

pendent (⊥) of treatment assignment (d) conditional on the observable covariates, X =

(x1, . . . , xk).
37 In other words, assignment to treatment and control groups is as though it

were random, conditional on the observable characteristics of the subjects.

This assumption is akin to a stronger version of the orthogonality assumption for re-

gression (assumption 4 from section 2.1). Consider the linear regression model assuming a

constant treatment effect β1,

y = β0 + β1d+ β2x1 + · · ·+ βk+1xk + u.

37This assumption is also referred to as “ignorable treatment assignment” (Rosenbaum and Rubin, 1983),
“conditional independence” (Lechner, 1999), and “selection on observables” (Barnow, Cain, and Goldberger,
1980). An equivalent expression of this assumption is that Pr(d = 1|y(0), y(1), X) = Pr(d = 1|X).
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Unconfoundedness is equivalent to statistical independence of d and u conditional on (x1, . . . , xk),

a stronger assumption than orthogonality or mean independence.

The second identifying assumption is referred to as overlap:

0 < Pr(d = 1|X) < 1.

This assumption says that for each value of the covariates, there is a positive probability

of being in the treatment group and in the control group. To see the importance of this

assumption, imagine if it did not hold for some value of X, say X ′. Specifically, if Pr(d =

1|X = X ′) = 1, then there are no control subjects with a covariate vector equal to X ′.

Practically speaking, this means that there are no subjects available in the control group

that are similar in terms of covariate values to the treatment subjects with covariates equal to

X ′. This makes estimation of the counterfactual problematic since there are no comparable

control subjects. A similar argument holds when Pr(d = 1|X = X ′) = 0 so that there are

no comparable treatment subjects to match with controls at X = X ′.

Under unconfoundedness and overlap, we can use the matched control (treatment) sub-

jects to estimate the unobserved counterfactual and recover the treatment effects of interest.

Consider the ATE for a subpopulation with a certain X = X ′.

ATE(X ′) ≡ E [y(1)− y(0)|X = X ′]

= E [y(1)− y(0)|d = d′, X = X ′]

= E [y|d = 1, X = X ′]− E [y|d = 0, X = X ′]

The first equality follows from unconfoundedness, and the second from y = dy(1)+(1−d)y(0).
To estimate the expectations in the last expression requires data for both treatment and

control subjects at X = X ′. This requirement illustrates the importance of the overlap

assumption. To recover the unconditional ATE, one merely need integrate over the covariate

distribution X.

6.2 The Propensity Score

An important result due to Rosenbaum and Rubin (1983) is that if one is willing to assume

unconfoundedness, then conditioning on the entire k-dimensional vector X is unnecessary.

Instead, one can condition on the 1-dimensional propensity score, ps(x), defined as the

probability of receiving treatment conditional on the covariates,

ps(x) ≡ Pr(d = 1|X) = E(d|X).
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Researchers should be familiar with the propensity score since it is often estimated using

discrete choice models, such as a logit or probit. In other words, unconfoundedness (Eqn (51))

implies that the potential outcomes are independent of treatment assignment conditional on

ps(x).

For more intuition on this result, consider the regression model

y = β0 + β1d+ β2x1 + · · ·+ βk+1xk + u.

Omitting the controls (x1, . . . , xk) will lead to bias in the estimated treatment effect, β̂1. If

one were instead to condition on the propensity score, one removes the correlation between

(x1, . . . , xk) and d because (x1, . . . , xk) ⊥ d|ps(x). So, omitting (x1, . . . , xk) after conditioning

on the propensity score no longer leads to bias, though it may lead to inefficiency.

The importance of this result becomes evident when considering most applications in

empirical corporate finance. If X contains two binary variables, then matching is straight-

forward. Observations would be grouped into four cells and, assuming each cell is populated

with both treatment and control observations, each observation would have an exact match.

In other words, each treatment observation would have at least one matched control obser-

vation, and vice versa, with identical covariates.

This type of example is rarely seen in empirical corporate finance. The dimensionality of

X is typically large and frequently contains continuous variables. This high-dimensionality

implies that exact matches for all observations are typically impossible. It may even be

difficult to find close matches along some dimensions. As a result, a large burden is placed

on the choice of weighting scheme or norm to account for differences in covariates. Matching

on the propensity score reduces the dimensionality of the problem and alleviates concerns

over the choice of weighting schemes.

6.3 Matching on Covariates and the Propensity Score

How can we actually compute these matching estimators in practice? Start with a sample of

observations on outcomes, covariates, and assignment indicators (yi, Xi, di). As a reminder,

y and d are univariate random variables representing the outcome and assignment indicator,

respectively; X is a k-dimensional vector of random variables assumed to be unaffected by

the treatment. Let lm(i) be the index such that

dl ̸= di, and∑
j|dj ̸=di

l(||Xj −Xi|| ≤ ||Xl −Xi||) = m.
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In words, if i is the observation of interest, then lm(i) is the index of the observation in the

group—treatment or control—that i is not in (hence, dl ̸= di), and that is the mth closest in

terms of the distance measure based on the norm || · ||. To clarify this idea, consider the 4th

observation (i = 4) and assume that it is in the treatment group. The index l1(4) points to

the observation in the control group that is closest (m = 1) to the 4th observation in terms

of the distance between their covariates. The index l2(4) points to the observation in the

control group that is next closest (m = 2) to the 4th observation. And so on.

Now define LM(i) = {l1(i), . . . , lM(i)} to be the set of indices for the first M matches to

unit i. The estimated or imputed potential outcomes for observation i are:

ŷi(0) =

{
yi if di = 0

1
M

∑
j∈LM (i) yj if di = 1

ŷi(1) =

{
1
M

∑
j∈LM (i) yj if di = 0

yi if di = 1

When observation i is in the treatment group di = 1, there is no need to impute the potential

outcome yi(1) because we observe this value in yi. However, we do not observe yi(0), which

we estimate as the average outcome of the M closest matches to observation i in the control

group. The intuition is similar when observation i is in the control group.

With estimates of the potential outcomes, the matching estimator of the average treat-

ment effect (ATE) is:

1

N

N∑
i=1

[ŷi(1)− ŷi(0)] .

The matching estimator of the average treatment effect for the treated (ATT) is:

1

N1

∑
i:di=1

[yi − ŷi(0)] ,

where N1 is the number of treated observations. Finally, the matching estimator of the

average treatment effect for the untreated (ATU) is:

1

N0

∑
i:di=0

[ŷi(1)− yi]

whereN0 is the number of untreated (i.e., control) observations. Thus, the ATT and ATU are

simply average differences over the subsample of observations that are treated or untreated,

respectively.
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Alternatively, instead of matching directly on all of the covariates X, one can just match

on the propensity score. In other words, redefine lm(i) to be the index such that

dl ̸= di, and∑
j|dj ̸=di

l(|p̂s(Xj)− p̂s(Xi)| ≤ |p̂s(Xl)− p̂s(Xi)|) = m

This form of matching is justified by the result of Rosenbaum and Rubin (1983) discussed

above. Execution of this procedure follows immediately from the discussion of matching on

covariates.

In sum, matching is fairly straightforward. For each observation, find the best matches

from the other group and use them to estimate the counterfactual outcome for that obser-

vation.

6.4 Practical Considerations

This simple recipe obfuscates a number of practical issues to consider when implementing

matching. Are the identifying assumptions likely met in the data? Which distance metric

|| · || should be used? How many matches should one use for each observation (i.e., what

shouldM be?)? Should one match with replacement or without? Which covariates X should

be used to match? Should one find matches for just treatment observations, just control, or

both?

6.4.1 Assessing Unconfoundedness and Overlap

The key identifying assumption behind matching, unconfoundedness, is untestable because

the counterfactual outcome is not observable. The analogy with regression estimators is

immediate; the orthogonality between covariates and errors is untestable because the errors

are unobservable. While matching avoids the functional form restrictions imposed by re-

gression, it does require knowledge and measurement of the relevant covariates X, much like

regression. As such, if selection occurs on unobservables, then matching falls prey to the

same endogeneity problems in regression that arise from omitted variables. From a practical

standpoint, matching will not solve a fundamental endogeneity problem. However, it can

offer a nice robustness test.

That said, one can conduct a number of falsification tests to help alleviate concerns over

violation of the unconfoundedness assumption. Rosenbaum (1987) suggests estimating a
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treatment effect in a situation where there should not be an effect, a task accomplished in

the presence of multiple control groups. These tests and their intuition are exactly analogous

to those found in our discussion of natural experiments.

One example can be found in Lemmon and Roberts (2010) who use propensity score

matching in conjunction with difference-in-differences estimation to identify the effect of

credit supply contractions on corporate behavior. One result they find is that the contraction

in borrowing among speculative-grade firms associated with the collapse of the junk bond

market and regulatory reform in the early 1990s was greater among those firms located in

the northeast portion of the country.

The identification concern is that aggregate demand fell more sharply in the northeast

relative to the rest of the country so that the relatively larger contraction in borrowing among

speculative grade borrowers was due to declining demand, and not a contraction in supply. To

exclude this alternative, the authors re-estimate their treatment effect on investment-grade

firms and unrated firms. If the contraction was due to more rapidly declining investment

opportunities in the Northeast, one might expect to see a similar treatment effect among

these other firms. The authors find no such effect among these other control groups.

The other identifying assumption is overlap. One way to inspect this assumption is to

plot the distributions of covariates by treatment group. In one or two dimensions, this

is straightforward. In higher dimensions, one can look at pairs of marginal distributions.

However, this comparison may be uninformative about overlap because the assumption is

about the joint, not marginal, distribution of the covariates.

Alternatively, one can inspect the quality of the worst matches. For each variable xk of

X, one can examine

maxi|xik −Xl1(i),k|. (52)

This expression is the maximum over all observations of the matching discrepancy for com-

ponent k of X. If this difference is large relative to the standard deviation of the xk, then

one might be concerned about the quality of the match.

For propensity score matching, one can inspect the distribution of propensity scores in

treatment and control groups. If estimating the propensity score nonparametrically, then

one may wish to undersmooth by choosing a bandwidth smaller than optimal or by including

higher-order terms in a series expansion. Doing so may introduce noise but at the benefit of

reduced bias.

There are several options for addressing a lack of overlap. One is to simply discard bad

matches, or accept only matches with a propensity score difference below a certain threshold.
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Likewise, one can drop all matches where individual covariates are severely mismatched

using Eqn (52). One can also discard all treatment or control observations with estimated

propensity scores above or below a certain value. What determines a “bad match” or how to

choose the propensity score threshold is ultimately subjective, but requires some justification.

6.4.2 Choice of Distance Metric

When matching on covariates, there are several options for the distance metric. A starting

point is the standard Euclidean metric:

||Xi −Xj|| =
√

(Xi −Xj)′(Xi −Xj)

One drawback of this metric is its ignorance of variable scale. In practice, the covariates are

standardized in one way or another. Abadie and Imbens (2006) suggest using the inverse of

the covariates’ variances:

||Xi −Xj|| =
√
(Xi −Xj)′ diag(Σ

−1
X )(Xi −Xj)

where ΣX is the covariance matrix of the covariates, and diag(Σ−1
X ) is a diagonal matrix

equal to the diagonal elements of Σ−1
X and zero everywhere else. The most popular metric

in practice is the Mahalanobis metric:

||Xi −Xj|| =
√

(Xi −Xj)′Σ
−1
X (Xi −Xj),

which will reduce differences in covariates within matched pairs in all directions.38

6.4.3 How to Estimate the Propensity Score?

As noted above, modeling of propensity scores is not new to most researchers in empirical

corporate finance. However, the goal of modeling the propensity score is different. In par-

ticular, we are no longer interested in the sign, magnitude, and significance of a particular

covariate. Rather, we are interested in estimating the propensity score as precisely as pos-

sible to eliminate, or at least mitigate, any selection bias in our estimate of the treatment

effect.

There are a number of strategies for estimating the propensity score including: ordinary

least squares, maximum likelihood (e.g., logit, probit), or a nonparametric approach, such

38See footnote 6 of Imbens (2004) for an example in which the Mahalanobis metric can have unintended
consequences. See Rubin and Thomas (1992) for a formal treatment of these distance metrics. See Zhao
(2004) for an analysis of alternative metrics.
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as a kernel estimator, series estimator, sieve estimator, etc.). Hirano, Imbens, and Ridder

(2003) suggest the use of a nonparametric series estimator. The key considerations in the

choice of estimator are accuracy and robustness. Practically speaking, it may be worth

examining the robustness of one’s results to several estimates of the propensity score.

6.4.4 How Many Matches?

We know of no objective rule for the optimal number of matches. Using a single (i.e.,

best) match leads to the least biased and most credible estimates, but also the least precise

estimates. This tension reflects the usual bias-variance tradeoff in estimation. Thus, the

goal should be to choose as many matches as possible, without sacrificing too much in terms

of accuracy of the matches. Exactly what is too much is not well defined—any choice made

by the researcher will have to be justified.

Dehejia and Wahba (2002) and Smith and Todd (2005) suggest several alternatives for

choosing matches. Nearest neighbor matching simply chooses themmatches that are closest,

as defined by the choice of distance metric. Alternatively, one can use caliper matching, in

which all comparison observations falling within a defined radius of the relevant observation

are chosen as matches. For example, when matching on the propensity score, one could

choose all matches within ±1%. An attractive property of caliper matching is that it relies

on all matches falling within the caliper. This permits variation in the number of matched

observations as a function of the quality of the match. For some observations, there will be

many matches, for others few, all determined by the quality of the match.

In practice, it may be a good idea to examine variation in the estimated treatment effect

for several different choices of the number of matches or caliper radii. If bias is a relevant

concern among the choices, then one would expect to see variation in the estimated effect.

If bias is not a concern, then the magnitude of the estimated effect should not vary much,

though the precision (i.e., standard errors) may vary.

6.4.5 Match with or without Replacement?

Should one match with or without replacement? Matching with replacement means that

each matching observation may be used more than once. This could happen if a particular

control observation is a good match for two distinct treatment observations, for example.

Matching with replacement allows for better matches and less bias, but at the expense of

precision. Matching with replacement also has lower data requirements since observations
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can be used multiple times. Finally, matching without replacement may lead to situations

in which the estimated effect is sensitive to the order in which the treatment observations

are matched (Rosenbaum, 1995).

We prefer to match with replacement since the primary objective of most empirical

corporate finance studies is proper identification. Additionally, many studies have large

amounts of data at their disposal, suggesting that statistical power is less of a concern.

6.4.6 Which Covariates?

The choice of covariates is obviously dictated by the particular phenomenon under study.

However, some general rules apply when selecting covariates. First, variables that are affected

by the treatment should not be included in the set of covariates X. Examples are other

outcome variables or intermediate outcomes.

Reconsider the study of Lemmon and Roberts (2010). One of their experiments con-

siders the relative behavior of speculative-grade rated firms in the Northeast (treatment)

and speculative-grade rated firms elsewhere in the country (control). The treatment group

consists of firms located in the Northeast and the outcomes of interest are financing and in-

vestment policy variables. Among their set of matching variables are firm characteristics and

growth rates of outcome variables, which are used to ensure pre-treatment trend similarities.

All of their matching variables are measured prior to the treatment in order to ensure that

the matching variables are unaffected by the treatment.

Another general guideline suggested by Heckman et al., 1998) is that in order for match-

ing estimators to have low bias, a rich set of variables related to treatment assignment and

outcomes is needed. This is unsurprising. Identification of the treatment effects turns cru-

cially on the ability to absorb all outcome relevant heterogeneity with observable measures.

6.4.7 Matches for Whom?

The treatment effect of interest will typically determine for which observations matches are

needed. If interest lies in the ATE, then estimates of the counterfactuals for both treatment

and control observations are needed. Thus, one need find matches for both observations in

both groups. If one is interested only in the ATT, then we need only find matches for the

treatment observations, and vice versa for the ATU. In many applications, emphasis is on

the ATT, particularly program evaluation which is targeted toward a certain subset of the

population. In this case, a deep pool of control observations relative to the pool of treatment

observations is most relevant for estimation.
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7. Panel Data Methods

Although a thorough treatment of panel data techniques is beyond the scope of this chapter,

it is worth mentioning what these techniques actually accomplish in applied settings in cor-

porate finance. As explained in Section 2.1.1, one of the most common causes of endogeneity

in empirical corporate finance is omitted variables, and omitted variables are a problem be-

cause of the considerable heterogeneity present in many empirical corporate finance settings.

Panel data can sometimes offer a partial, but by no means complete and costless, solution

to this problem.

7.1 Fixed and Random Effects

We start with a simplified and sample version of Eqn (1) that contains only one regressor

but in which we explicitly indicate the time and individual subscripts on the variables,

yit = β0 + β1xit + uit, (i = 1, . . . , N ; t = 1, . . . , T ) (53)

where the error term, uit, can be decomposed as

uit = ci + eit.

The term ci can be interpreted as capturing the aggregate effect of all of the unobservable,

time-invariant explanatory variables for yit. To focus attention on the issues specific to panel

data, we assume that eit has a zero mean conditional on xit and ci for all t.

The relevant issue from an estimation perspective is whether ci and xit are correlated. If

they are, then ci is referred to as a “fixed effect.” If they are not, then ci is referred to as a

“random effect.” In the former case, endogeneity is obviously a concern since the explanatory

variable is correlated with a component of the error term. In the latter, endogeneity is not

a concern; however, the computation of standard errors is affected.39

Two possible remedies to the endogeneity problem in the case of fixed effects is to run

what is called a least squares dummy variable regression, which is simply the inclusion of

firm-specific intercepts in Eqn (53). However, in many moderately large data sets, this

approach is infeasible, so the usual and equivalent remedy is to apply OLS to the following

deviations-from-individual-means regression:

39Feasible Generalized Least Squares is often employed to estimate parameters in random effects situations.
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(
yit −

1

T

T∑
t=1

yit

)
= β1

(
xit −

1

T

T∑
t=1

xit

)
+

(
eit −

1

T

T∑
t=1

eit

)
. (54)

The regression Eqn (54) does not contain the fixed effect, ci, because
(
ci − T−1

∑T
t=1 ci

)
= 0,

so this transformation solves this particular endogeneity problem. Alternatively, one can

remove the fixed effects through differencing and estimating the resulting equation by OLS

∆yit = β1∆xit +∆eit.

Why might fixed effects arise? In regressions aimed at understanding managerial or

employee behavior, any time-invariant individual characteristic that cannot be observed in

the data at hand, such as education level, could contribute to the presence of a fixed effect.

In regressions aimed at understanding firm behavior, specific sources of fixed effects depend

on the application. In capital structure regressions, for example, a fixed effect might be

related to unobservable technological differences across firms. In general, a fixed effect can

capture any low frequency, unobservable explanatory variable, and this tendency is stronger

when the regression has low explanatory power in the first place—a common situation in

corporate finance.

Should a researcher always run Eqn (54) instead of Eqn (53) if panel data are available?

The answer is not obvious. First, one should always try both specifications and check for

statistical significance with a standard Hausman test in which the null is random effects and

the alternative is fixed effects. However, one should also check to see whether the inclusion

of fixed effects changes the coefficient magnitudes in an economically meaningful way. The

reason is that including fixed effects reduces efficiency. Therefore, even if a Hausman test

rejects the null of random effects, if the economic significance is little changed, the qualitative

inferences from using pooled OLS on Eqn (53) can still be valid.

Fixed effects should be used with caution for additional reasons. First, including fixed

effects can exacerbate measurement problems (Griliches and Mairesse, 1995). Second, if

the dependent variable is a first differenced variable, such as investment or the change in

corporate cash balances, and if the fixed effect is related to the level of the dependent variable,

then the fixed effect has already been differenced out of the regression, and using a fixed-

effects specification reduces efficiency. In practice, for example, fixed effects rarely tend to

make important qualitative differences on the coefficients in investment regressions (Erickson

and Whited, 2012), because investment is (roughly) the first difference of the capital stock.

However, fixed effects do make important differences in the estimated coefficients in leverage
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regressions (Lemmon, Roberts, and Zender, 2008), because leverage is a level and not a

change.

Second, if the research question is inherently aimed at understanding cross-sectional

variation in a variable, then fixed effects defeat this purpose. In the regression Eqn (54)

all variables are forced to have the same mean (of zero). Therefore, the data variation that

identifies β1 is within-firm variation, and not the cross-sectional variation that is of interest.

For example, Gan (2007) examines the effect on investment of land value changes in Japan

in the early 1990s. The identifying data information is sharp cross sectional differences in

the fall in land values for different firms. In this setting, including fixed effects would force

all firms to have the same change in land values and would eliminate the data variation of

interest. On the other hand, Khwaja and Mian (2008) specifically rely on firm fixed effects

in order to identify the transmission of bank liquidity shocks onto borrowers’ behaviors.

Third, suppose the explanatory variable is a lagged dependent variable, yi,t−1. In this

case the deviations-from-means transformation in Eqn (54) removes the fixed effect, but it

induces a correlation between the error term
(
eit − T−1

∑T
t=1 eit

)
and yi,t−1 because this

composite error contains the term ei,t−1.

In conclusion, fixed effects can ameliorate endogeneity concerns, but, as is the case with

all econometric techniques, they should be used only after thinking carefully about the eco-

nomic forces that might cause fixed effects to be an issue in the first place. Relatedly, fixed

effects cannot remedy any arbitrary endogeneity problem and are by no means an endogene-

ity panacea. Indeed, they do nothing to address endogeneity associated with correlation

between xit and eit. Further, in some instances fixed effects eliminate the most interesting

or important variation researchers wish to explain. Examples in which fixed effects play a

prominent role in identification include Khwaja and Mian (2008) and Hortacsu et al. (2010).

8. Econometric Solutions to Measurement Error

The use of proxy variables is widespread in empirical corporate finance, and the popularity

of proxies is understandable, given that a great deal of corporate finance theory is couched in

terms of inherently unobservable variables, such as investment opportunities or managerial

perk consumption. In attempts to test these theories, most empirical studies therefore use

observable variables as substitutes for these unobservable and sometimes nebulously defined

quantities.

One obvious, but often costly, approach to addressing the proxy problem is to find bet-

ter measures. Indeed, there are a number of papers that do exactly that. Graham (1996a,
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1996b) simulates marginal tax rates in order to quantify the tax benefits of debt. Benm-

elech, Garmaise, and Moskowitz (2005) use information from commercial loan contracts to

assess the importance of liquidation values on debt capacity. Benmelech (2009) uses detailed

information on rail stock to better measure asset salability and its role in capital structure.

However, despite these significant improvements, measurement error still persists.

It is worth asking why researchers should care, and whether proxies provide roughly the

same inference as true unobservable variables. On one level, measurement error (the discrep-

ancy between a proxy and its unobserved counterpart) is not a problem if all that one wants

to say is that some observable proxy variable is correlated with another observable variable.

For example, most leverage regressions typically yield a positive coefficient on the ratio of

fixed assets to total assets. However, the more interesting questions relate to why firms with

highly tangible assets (proxied by the ratio of fixed to total assets) have higher leverage.

Once we start interpreting proxies as measures of some interesting economic concept, such

as tangibility, then studies using these proxies become inherently more interesting, but all

of the biases described in Section 2 become potential problems.

In this section, we outline both formal econometric techniques to deal with measurement

error and informal but useful diagnostics to determine whether measurement error is a prob-

lem. We conclude with a discussion of strategies to avoid the use of proxies and how to use

proxies when their use is unavoidable.

8.1 Instrumental Variables

For simplicity, we consider a version of the basic linear regression Eqn (1) that has only one

explanatory variable:

y = β0 + β1x
∗ + u. (55)

We assume that the error term is uncorrelated with the regressors. Instead of observing x∗,

we observe

x = x∗ + w, (56)

where w is uncorrelated with x∗. Suppose that one can find an instrument, z, that (i) is

correlated with x∗ (instrument quality), (ii) is uncorrelated with w (instrument validity),

and (iii) is uncorrelated with u. This last condition intuitively means that z only affects

y through its correlation with x∗. The IV estimation is straightforward, and can even be

done in nonlinear regressions by replacing (ii) with an independence assumption (Hausman,

Ichimura, Newey, and Powell, 1991, and Hausman, Newey, and Powell, 1995).
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While it is easy to find variables that satisfy the first condition, and while it is easy to find

variables that satisfy the second and third conditions (any irrelevant variables will do), it is

very difficult to find variables that satisfy all three conditions at once. Finding instruments

for measurement error in corporate finance is more difficult than finding instruments for

simultaneity problems. The reason is that economic intuition or formal models can be used

to find instruments in the case of simultaneity, but in the case of measurement error, we

often lack any intuition for why there exists a gap between proxies included in a regression

and the variables or concepts they represent.

For example, it is extremely hard to find instruments for managerial entrenchment indices

based on counting antitakeover provisions (Gompers, Ishii, Metrick, 2003 and Bebchuck, Co-

hen, and Farrell, 2009). Entrenchment is a nebulous concept, so it is hard to conceptualize

the difference between entrenchment and any one antitakeover provision, much less an un-

weighted count of several. Another example is the use of the volatility of a company’s stock

as a proxy for asymmetric information, as in Fee, Hadlock, and Thomas (2006). A valid

instrument for this proxy would have to be highly correlated with asymmetric information

but uncorrelated with the gap between asymmetric information and stock market volatility.

Several authors, beginning with Griliches and Hausman (1986), have suggested using

lagged mismeasured regressors as instruments for the mismeasured regressor. Intuitively,

this type of instrument is valid only if the measurement error is serially uncorrelated. How-

ever, it is hard to think of credible economic assumptions that could justify these econometric

assumptions. One has to have good information about how measurement is done in order

to be able to say much about the serial correlation of errors. Further, in many instances it

is easy to think of credible reasons that the measurement error might be serially correlated.

For example, Erickson and Whited (2000) discuss several of the sources of possible measure-

ment error in Tobin’s q and point out that many of these sources imply serially correlated

measurement errors. In this case, using lagged instruments is not innocuous. Erickson and

Whited (2012) demonstrate that in the context of investment regressions, using lagged values

of xit as instruments can result in the same biased coefficients that OLS produces if the nec-

essary serial correlation assumptions are violated. Further, the usual tests of overidentifying

restrictions have low power to detect this bias.

One interesting but difficult to implement remedy is repeated measurements. Suppose

we replace Eqn (56) above with two measurement equations

x11 = x∗ + w1,

x12 = x∗ + w2,
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where w1 and w2 are each uncorrelated with x∗, and uncorrelated with each other. Then

it is possible to use x12 as an instrument for x11. We emphasize that this remedy is only

available if the two measurements are uncorrelated, and that this type of situation rarely

presents itself outside an experimental setting. So although there are many instances in

corporate finance in which one can find multiple proxies for the same unobservable variable,

because these proxies are often constructed in similar manners or come from similar thought

processes, the measurement errors are unlikely to be uncorrelated.

8.2 High Order Moment Estimators

One measurement error remedy that has been used with some success in investment and cash

flow studies is high order moment estimators. We outline this technique using a stripped-

down variant of the classic errors-in-variables model in Eqns (55) and (56) in which we set

the intercept to zero. It is straightforward to extend the following discussion to the case in

which Eqn (55) contains an intercept and any number of perfectly measured regressors.

The following assumptions are necessary: (i) (u,w, x∗) are i.i.d, (ii) u, w, and x∗ have

finite moments of every order, (iii) E(u) = E(w) = 0, (iv) u and w are distributed inde-

pendently of each other and of x∗, and (v) β ̸= 0 and x∗ is non-normally distributed.

Assumptions (i)–(iii) are standard, but Assumption (iv) is stronger than the usual condi-

tions on zero correlations or zero conditional expectations but is standard in most nonlinear

error-in-variables estimators (e.g. Schennach, 2004).

To see the importance of Assumption (v), we square Eqn (55), multiply the result by

Eqn (56), and take expectations of both sides. We obtain

E
(
y2x
)
= β2E

(
x∗3
)
. (57)

Analogously, if we square Eqn (56), multiply the result by (55), and take expectations of

both sides, we obtain

E
(
yx2
)
= βE

(
x∗3
)
. (58)

As shown in Geary (1942), if β ̸= 0 and E (x∗3) ̸= 0, dividing Eqn (57) by Eqn (58) produces

a consistent estimator for β:

β̂ = E
(
y2x
)
/E
(
yx2
)
. (59)

The estimator given by Eqn (59) is a third-order moment estimator. Inspection of Eqn (59)

shows that the assumptions β ̸= 0 and E (x∗3) ̸= 0 are necessary for identification because

one cannot divide by zero.
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The estimators in Erickson and Whited (2002) build and improve upon this old result

by combining the information in the third-order moment conditions (57) and (58) with

the information in second- through seventh-order moment equations via GMM. High order

moments cannot be estimated with as much precision as the second order moments on

which conventional regression analysis is based. It is therefore important that the high order

moment information be used as efficiently as possible. The third order moment estimator

given by Eqn (59), although consistent, does not necessarily perform well in finite samples

(Erickson and Whited, 2000, 2002), but the GMM estimators that combine information in

many orders of moments can perform well on simulated data that resembles firm-level data

on investment and Tobin’s q.

One particular advantage of this technique is its potential usefulness. The GMM test of

the overidentifying restrictions of the model has reasonable power to detect many types of

misspecification that might plague regressions, such as heteroskedasticity and nonlinearity.

A second useful feature is that it is possible to estimate the R2 of Eqn (56), which can be

expressed as E (x∗2) / (E (x∗2) + E (w2)). As explained in section 2.1.3, this quantity is a

useful index of proxy quality.

The economic intuition behind the Erickson and Whited estimators is easiest to see by

observing that the estimator given by Eqn (59) has an instrumental variables interpretation.

Recall that the problem for OLS in the classical errors-in-variable model can be shown by

using Eqns (55) and (56) to write the relationship between the observable variables as

ẏ = β0 + βx+ (u− βw), (60)

and then noting that x and the composite error u − βw are correlated because they both

depend on w. A valid instrument is one that satisfies the exclusion restriction that it not be

correlated with u−βw and that also satisfies the condition that it be highly correlated with

x. The instrument z = yx leads to exactly the same estimator as Eqn (59), and economic

reasoning can be used as it would for any proposed instrument to verify whether it satisfies

the conditions for instrument validity and relevance.

Straightforward algebra shows that the exclusion restrictions holds if the assumptions of

the classical errors-in-variables model also hold. Therefore, using this instrument requires

understanding the economic underpinnings of these assumptions. For example, Erickson

and Whited (2000) provide a discussion of the assumptions necessary to apply high order

moment estimators to investment regressions.

Straightforward algebra also shows that the condition for instrument relevance hinges on

the assumption that x∗ be skewed. The technique therefore works well when the mismeasured
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regressor in question is marginal q. True marginal q is a shadow value, cannot therefore be

negative, and must therefore be skewed. In addition, several models, such as Abel (1983)

imply that marginal q, like many valuation ratios in finance, is highly skewed. Therefore,

although this technique has been used successfully in studies that use an observable measure

of Tobin’s q for marginal q, (e.g. Erickson and Whited, 2000; Chen and Chen, 2012, and

Riddick and Whited, 2009), it is by no means universally applicable.

8.3 Reverse Regression Bounds

One of the central themes of this section is that it is very difficult in most cases to find

econometric remedies for measurement error. This situation therefore begs for diagnostics

to determine whether measurement error might be biasing a coefficient of interest in a re-

gression. One such useful diagnostic is reverse regressions bounds. We consider the case of

one mismeasured regressor, x∗1, and one perfectly measured regressor, x2. The regression and

measurement equations are

y = β0 + β1x
∗
1 + β2x2 + u (61)

x1 = x∗1 + w, (62)

where, without loss of generality, β1 > 0 and β2 > 0. Now, suppose we use the noisy proxy,

x1, in place of x∗1 in Eqn (61) and then run the following two OLS regressions:

y = x1b1 + x2b2 + u (63)

x1 = y

(
1

br1

)
+ x2

(
−br2
br1

)
+ u

(
−1

br1

)
. (64)

Gini (1921) showed that the true coefficients (β1, β2) must lie, respectively, in the two in-

tervals: (b1, b
r
1) and (b2, b

r
2). To estimate the reverse regression coefficients, simply estimate

Eqn (64) as a linear regression of x1 on y and x2, use the estimated parameters to solve for

br1 and br2, and use the delta method to calculate standard errors.

This diagnostic is sometimes but not always informative. A useful example is in Erickson

and Whited (2005), who examine a standard leverage regression that contains the market-

to-book ratio, the ratio of fixed to total assets (tangibility), the log of sales, and earnings

before interest and taxes (EBIT). The direct and reverse regression results are as follows.

83

Electronic copy available at: https://ssrn.com/abstract=1748604



Market-to-book Tangibility Log sales EBIT R2

Direct regression
-0.070 0.268 0.026 -0.138 0.216
(0.003) (0.012) (0.001) (0.023)

Reverse regression
-0.738 -0.326 0.021 2.182 0.247
(0.027) (0.039) (0.005) (0.133)

The market-to-book ratio is mismeasured in its role as a proxy for true investment opportu-

nities, and suppose for now that it is the only mismeasured variable in this regression. Then

the attenuation bias on the coefficient on market-to-book can be seen in the result that the

true coefficient must lie in the interval (−0.07,−0.74) and therefore be greater in absolute

value than the OLS estimate. Note that the coefficient on log sales appears to be bounded

above and below very tightly. This result occurs because log sales is only weakly correlated

with market-to-book, and measurement error in one regressor affects the other regressors

through its covariances with the other regressors. If a researcher finds the coefficient on log

sales particularly interesting, then the reverse regression bound is a useful tool.

On the other hand, if the researcher is more interested in the coefficients on tangibility or

EBIT, then the reverse regression intervals contain zero, so that this exercise cannot be used

to determine the signs of these coefficients. It is still possible to obtain information about

the signs of these coefficients by conducting the following thought experiment. Suppose we

measure the proxy quality as the R2 of Eqn (56). Then it is interesting to ask how low this

proxy quality can be before the OLS estimate of a coefficient differs in sign from the true

coefficient. Straightforward algebra shows that this threshold can be calculated as

R2
x + b̂1

ϕx

ϕy

(
1−R2

x

)
,

where R2
x is the R2 from regressing the mismeasured regressors on the other regressors, b̂1 is

the OLS estimate of β1, ϕx is the coefficient on the perfectly measured regressor of interest

(say EBIT) in a regression of the mismeasured regressor on all of the perfectly measured

regressors, and ϕy is the coefficient on the perfectly measured regressor of interest in a

regression of the dependent variable on all of the perfectly measured regressors. This type

of threshold is useful either when it is near zero, which implies that the OLS estimate is

likely giving the correct coefficient sign or when it is near one, which implies that the OLS

estimate is almost certainly not delivering the correct coefficient sign. Erickson and Whited

(2005) estimate these thresholds for tangibility and EBIT as 0.33 and 0.70. The second of

these two thresholds implies that the measurement quality of the market-to-book ratio must

be very high in order to infer a negative coefficient value. However, both of these thresholds
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are difficult to interpret because neither is near and endpoint of the (0, 1) interval, and there

is limited empirical evidence on the measurement quality of market-to-book in its role as a

proxy for investment opportunities.40

8.4 Avoiding Proxies and Using Proxies Wisely

The key point of this section is that measurement error in proxies is difficult to deal with in

most applications. So what is a researcher to do? We offer three suggestions.

• If one finds plausible the assumptions necessary to use one of the measurement error

remedies described above, then use that remedy. Do not, however, blindly use reme-

dies without thinking about the required assumptions. In particular, we recommend

thinking very carefully about using lagged mismeasured regressors as instruments.

• Second, use proxies in such a way that their use makes it more difficult, rather than

easier, to reject a null. In this way, one is more likely to commit a type II error than a

type I error. Attenuation bias on a mismeasured regressor provides a clear example of

this kind of approach if one is actually interested in the coefficient on the mismeasured

regressor. If one is interested in using this approach, it is important, however, to

remember that attenuation bias affects only the coefficient on a mismeasured regressor

in a regression with one mismeasured regressor. The coefficients on other regressors

can be biased in either direction, and in the case of multiple mismeasured regressors,

the direction of coefficient bias is exceedingly hard to determine.

• Third, use the crude information in proxies in a crude way, that is, use a proxy to

compare observations in either tail of the distribution of the proxy. In this case, even

if the proxy conveys only noisy information about some underlying true variable, at

least the observations in one tail of this distribution should be reliably different from

those in the other.

9. Conclusion

This survey has provided a thorough and intuitive introduction to the latest econometric

techniques designed to address endogeneity and identification concerns. Using examples from

corporate finance, we have illustrated the practice and pitfalls associated with implementing

40Whited (2001) estimates a measurement quality index of approximately 0.2.
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these techniques. However, it is worth reemphasizing a message that is relevant for all

techniques. There is no magic in econometrics. This notion is perhaps best summarized by

the famous statistician, David Freedman, in his paper “Statistical Models and Shoe Leather”

(Freedman, 1991):

I do not think that regression can carry much of the burden in a causal argument.

Nor do regression equations, by themselves, give much help in controlling for

confounding variables. Arguments based on statistical significance of coefficients

seem generally suspect; so do causal interpretations of coefficients. More recent

developments . . .may be quite interesting. However, technical fixes do not solve

the problems, which are at a deeper level. (Page 292)

Though Freedman refers to regression, his arguments are just as applicable to some

of the non-regression based methods discussed here (e.g., matching). As Freedman notes,

statistical technique is rarely a substitute for good empirical design, high-quality data, and

careful testing of empirical predictions against reality in a variety of settings. We hope that

researchers will employ the tools discussed in this survey with these thoughts in mind.

Related, we recognize the fundamental subjectivity associated with addressing endogene-

ity concerns. Outside of controlled experiments, there is no way to guarantee that endogneity

problems are eliminated or sufficiently mitigated to ensure proper inferences. Ultimately, ap-

propriately addressing endogeneity rests on the strength of one’s arguments supporting the

identification strategy. To this end, we have stressed the importance of clearly discussing

the relevant endogeneity concern — its causes and consequences — and how the proposed

identification strategy addresses this issue. Only with clear and compelling arguments and

analysis can one overcome endogeneity problems in observational studies.

Finally, we do not want our discussion to dissuade researchers from undertaking more

descriptive studies where addressing endogeneity concerns may not be a first-order con-

sideration. Ultimately, researchers seek to understand the causal forces behind economic

phenomena. For this purpose, appropriately addressing endogeneity concerns is crucial.

However, a first step toward this goal is often an interesting correlation whose interpretation

is not yet clear. Descriptive analysis of new data often plays an integral role at the start of a

research programme that can lay the foundation for future work focused on identifying the

causal interpretations of those correlations.
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