Linear Panel Data Models

Michael R. Roberts

Department of Finance The Wharton School University of Pennsylvania

October 5, 2009

Example

- Link between crime and unemployment. Data for 46 cities in 1982 and 1987.
- Consider CS regression using 1987 data

$$\widehat{crimeRate} = 128.38 - 4.16unem, R^2 = 0.033$$

(20.76) (3.42)

- Higher unemployment decreases the crime rate (insignificantly)?!?!?!
- Problem = omitted variables
- Solution = add more variables (age distribution, gender distribution, education levels, law enforcement, etc.)
- Use like lagged crime rate to control for unobservables

Panel Data Approach

- Panel data approach to unobserved factors. 2 types:
 - constant across time
 - vary across time

$$y_{it} = \beta_0 + \delta_0 d2_t + \beta_1 x_{it} + a_i + u_{it}, \quad t = 1, 2$$

where d2 = 1 when t = 2 and 0 when t = 1

- Intercept for period 1 is β_0 , for period 2 $\beta_0 + \delta_0$
- Allowing intercept to change over time is important to capture secular trends.
- a_i captures all variables that are constant over time but different across cross-sectional units. (a.k.a. unobserved effect, unobserved heterogeneity)
- u_{it} is **idiosyncratic error** or time-varying error and represents unobserved factors that change over time and effect y_{it}

Example (Cont)

Panel approach to link between crime and unemployment.

$$crimeRate_{it} = \beta_0 + \delta_0 d78_t + \beta_1 unem_{it} + a_i + u_{it}$$

where d87 = 1 if year is 1987, 0 otherwise, and a_i is an unobserved city effect that doesn't change over time or are roughly constant over the 5-year window.

- Examples:
 - Geographical features of city
 - 2 Demographics (race, age, education)
 - Orime reporting methods

Pooled OLS Estimation

- How do we estimate β_1 on the variable of interest?
- Pooled OLS. Ignore a_i . But we have to assume that a_i is \perp to *unem* since it would fall in the error term.

$$crimeRate_{it} = \beta_0 + \delta_0 d78_t + \beta_1 unem_{it} + v_{it}$$

where $v_{it} = a_i + u_{it}$. SRF:

$$\widehat{crimeRate} = 93.42 + 7.94d87 + 0.427unem, R^2 = 0.012$$
 (12.74) (7.98) (1.188)

Positive coef on unem but insignificant

First Difference Estimation

 Difference the regression equation across time to get rid of fixed effect and estimate differenced equation via OLS.

$$y_{i2} = (\beta_0 + \delta_0) + \beta_1 x_{i2} + a_i + u_{i2}, (t = 2)$$

$$y_{i1} = \beta_0 + \beta_1 x_{i1} + a_i + u_{i1}, (t = 1)$$

Differencing yields

$$\Delta y_i = \delta_0 + \beta_1 \Delta x_i + \Delta u_i$$

where Δ denotes period 2 minus period 1.

- Key assumption: $\Delta x_i \perp \Delta u_i$, which holds if at each time t, $u_{it} \perp x_{it} \forall t$. (i.e., strict exogeneity).
- This rules out lagged dependent variables.
- Key assumption: Δx_i must vary across some i

First Difference Example

Reconsider crime example:

$$\widehat{crimeRate} = 15.40 + 2.22 \Delta unem, R^2 = 0.012$$
(4.70) (0.88)

- Now positive and significant effect of unemployment on crime
- This reflects secular increase in crime rate from 1982 to 1987

Practical Issues

- Differencing can really reduce variation in x
- x may vary greatly in cross-section but Δx may not
- Less variation in explanatory variable means larger standard errors on corresponding coefficient
- Can combat by either
 - Increasing size of cross-section (if possible)
 - Taking longer differences (over several periods as opposed to adjacent periods)

Example

 Michigan job training program on worker productivity of manufacturing firms in 1987 and 1988

$$scrap_i t = \beta_0 + \delta_0 y 88_t + \beta_1 grant_i t + a_i + u_i t$$

where i, t index firm-year, scrap = scrap rate = # of items per 100 that must be tossed due to defects, grant = 1 if firm i in year t received job training grant.

- a_i is firm fixed effect and captures average employee ability, capital, and managerial skill...things constant over 2-year period.
- Difference to zap a_i and run 1st difference (FD) regression

$$\Delta \widehat{scrap} = -0.564 - 0.739 \Delta grant, N = 54, R^2 = 0.022$$
(0.405) (0.683)

Job training grant lowered scrap rate but insignificantly

Example (Cont)

Is level-level model correct?

$$\Delta log(\widehat{scrap}) = -0.57 - 0.317 \Delta grant, N = 54, R^2 = 0.067$$

(0.097) (0.164)

- Job training grant lowered scrap rate by 31.7% (or $27.2\% = \exp(-0.317) 1$).
- Pooled OLS estimate implies insignificant 5.7% reduction
- Large difference between pooled OLS and first difference suggests that firms with lower-ability workers (low a_i) are more likely to receive a grant.
- I.e., $Cov(a_i, grant_{it}) < 0$. Pooled OLS ignores a_i and we get a downward omitted variables bias

Program Evaluation Problem

• Let y = outcome variable, prog = program participation dummy.

$$y_{it} = \beta_0 + \delta_0 d2_t + \beta_1 prog_{it} + a_i + u_{it}$$

Difference regression

$$\Delta y_{it} = \delta_0 + \beta_1 \Delta prog_{it} + \Delta u_{it}$$

• If program participation only occurs in the 2nd period then OLS estimator of β_1 in the differenced equation is just:

$$\hat{\beta}_1 = \overline{\Delta y_{treat}} - \overline{\Delta y_{control}} \tag{1}$$

- Intuition:
 - **1** $\Delta prog_{it} = prog_{i2}$ since participation in 2nd period only. (i.e., $\Delta prog_{it}$ is just an indicator identify the treatment group)
 - 2 Omitted group is non-participants.
 - 3 So β_1 measures the average outcome for the participants *relative* to the average outcome of the nonparticipants

Program Evaluation Problem (Cont)

- Note: This is just a difference-in-differences (dif-in-dif) estimator
- "Equivalent" model:

$$y_{it} = \beta_0 + \delta_0 d2_t + \beta_1 prog_{it} + \beta_2 d2_t \times prog_{it} + a_i + u_{it}$$

where β_2 has same interpretation as β_1 from above.

- If program participation can take place in both periods, we can't write the estimator as in (1) but it has the same interpretation: change in average value of y due to program participation
- Adding additional time-varying controls poses no problem. Just difference them as well. This allows us to control for variables that might be correlated with program designation.

$$y_{it} = \beta_0 + \delta_0 d2_t + \beta_1 prog_{it} + \gamma' X_{it} + a_i + u_{it}$$

Setup

• N individuals, T=3 time periods per individual

$$y_{it} = \delta_1 + \delta_2 d2_t + \delta_3 d3_t + \beta_1 x_{it1} + ... + \beta_k x_{itk} + a_i + u_{it}$$

- Good idea to allow different intercept for each time period (assuming we have small T)
- Base period, t=1, t=2 intercept $=\delta_1+\delta_2$, etc.
- If a_i correlated with any explanatory variables, OLS yields biased and inconsistent estimates. We need

$$Cov(x_{itj}, u_{is}) = 0 \forall t, s, j + \dots + \beta_k x_{itk} + a_i + u_{it}$$
 (2)

(i.e., strict exogeneity after taking out a_i)

 Assumption (2) rules out cases where future explanatory variables react to current changes in idiosyncratic errors (i.e., lagged dependent variables)

Estimation

- If a_i is correlated with x_{itj} then x_{itj} will be correlated with composite error $a_i + u_{it}$
- Eliminate a_i via differencing

$$\Delta y_{it} = \delta_2 \Delta d 2_t + \delta_3 \Delta d 3_t + \beta_1 \Delta x_{it1} + ... + \beta_k \Delta x_{itk} + \Delta u_{it}$$
 for $t = 2, 3$

- Key assumptions is that $Cov(\Delta x_{itj}, \Delta u_{it}) = 0 \forall j$ and t = 2, 3.
- Note no intercept and time dummies have different meaning:

$$t = 2 \implies \Delta d2_t = 1, \Delta d3_t = 0$$

 $t = 3 \implies \Delta d2_t = -1, \Delta d3_t = 1$

Unless time dummies have a specific meaning, better to estimate

$$\Delta y_{it} = \alpha_0 + \alpha_3 \Delta d 3_t + \beta_1 \Delta x_{it1} + ... + \beta_k \Delta x_{itk} + \Delta u_{it}$$
 for $t = 2, 3$ to help with R^2 interpretation

Setup

N individuals, T time periods per individual

$$y_{it} = \delta_1 + \delta_2 d2_t + \delta_3 d3_t + ... + \delta_T dT_t + ... + \beta_1 x_{it1} + ... + \beta_2 x_{itk} + a_i + u_{it}$$

• Differencing yields estimation equation

$$\Delta y_{it} = \alpha_0 + \alpha_3 \Delta d3_t + \dots + \alpha_T dT_t + \beta_1 \Delta x_{it1} + \dots + \beta_k \Delta x_{itk} + \Delta u_{it}$$

for
$$t = 1, ..., T - 1$$

Standard Errors

- With more than 2-periods, we must assume Δu_{it} is uncorrelated over time for the usual SEs and test statistics to be valid
- If u_{it} is uncorrelated over time & constant Var, then Δu_{it} is correlated over time

$$Cov(\Delta u_{i2}, \Delta u_{i3}) = Cov(u_{i2} - u_{i1}, u_{i3} - u_{i2}) = -\sigma_{u_{i2}}^{2}$$

 $\implies Corr(\Delta u_{i2}, \Delta u_{i3}) = -0.5$

- If u_{it} is stable AR(1), then Δu_{it} is serially correlated
- If u_{it} is random walk, then Δu_{it} is serially uncorrelated

Testing for Serial Correlation

- Test for serial correlation in the FD equation.
- Let $r_{it} = \Delta u_{it}$
- If r_{it} follows AR(1) model

$$r_{it} = \rho r_{i,t-1} + e_{it}$$

we can test H_0 : $\rho = 0$ by

- Estimate FD model via pooled OLS and get residuals
- ② Run pooled OLS regression of \hat{r}_{it} on $\hat{r}_{i,t-1}$
- **3** $\hat{\rho}$ is consistent estimator of ρ so just test null on this estimate
- (Note we lose an additional time period because of lagged difference.)
- Depending on outcome, we can easily correct for serial correlation in error terms.

Chow Test

- Null: Do the slopes vary over time?
- Can answer this question by interacting slopes with period dummies.
- The run a Chow test as before.

Chow Test

- Can't estimate slopes on variables that don't change over time they're differenced away.
- Can test whether partial effects of time-constant variables change over time.
- E.g., observe 3 years of wage and wage-related data

$$log(wage_{it}) = \beta_0 + \delta_1 d2_t + \delta_2 d3_t + \beta_1 female_i + \gamma_1 d2_t \times female_i + \gamma_2 d3_t \times female_i + \lambda X_{it} + a_i + u_{it}$$

First differenced equation

$$\Delta log(wage_{it}) = \delta_1 \Delta d2_t + \delta_2 \Delta d3_t + \gamma_1 (\Delta d2_t) \times female_i + \gamma_2 (\Delta d3_t) \times female_i + \lambda \Delta X_{it} + \Delta u_{it}$$

 This means we can estimate how the wage gap has changed over time

Drawbacks

- First differencing isn't a panacea. Potential issues
 - If level doesn't vary much over time, hard to identify coef in differenced equation.
 - PD estimators subject to severe bias when strict exogeneity assumption fails.
 - Having more time periods does not reduce inconsistency of FD estimator when regressors are not strictly exogenous (e.g., including lagged dep var)
 - § FD estimator can be worse than pooled OLS if 1 or more of explanatory variables is subject to measurement error
 - Oifferencing a poorly measured regressor reduces its variation relative to its correlation with the differenced error caused by CEV.
 - 2 This results in potentially sizable bias

Fixed Effects Transformation

Consider a univariate model

$$y_{it} = \beta_1 x_{it} + a_i + u_{it}, t = 1, 2, ..., T$$

• For each unit *i*, compute time-series mean.

$$\bar{y}_i = \beta_1 \bar{x}_i + a_i + \bar{u}_i$$
, where $\bar{y}_i = (1/T) \sum y_{it}$

Subtract the averaged equation from the original model

$$(y_{it} - \bar{y}_i) = \beta_1(x_{it} - \bar{x}_i) + (u_{it} - \bar{u}_i), t = 1, 2, ..., T$$

$$\ddot{y}_{it} = \beta_1 \ddot{x}_{it} + \ddot{u}_{it}, t = 1, 2, ..., T$$

- \ddot{z} represents time-demeaned data
- Fixed Effect Transformation = Within Transformation

Fixed Effects Estimator

- We can estimate the transformed model using pooled OLS since it has eliminated the unobserved fixed effect a_i just like 1st differencing
- This is called fixed effect estimator or within estimator
- "within" comes from OLS using the time variation in *y* and *x* within each cross-sectional unit
- Consider general model

$$y_{it} = \beta_1 x_{it1} + ... + \beta_k x_{itk} + a_i + u_{it}, t = 1, 2, ..., T$$

Same idea. Estimate time-demeaned model using pooled OLS

$$\ddot{y}_{it} = \beta_1 \ddot{x}_{it} + ... + \beta_k \ddot{x}_{itk} \ddot{u}_{it}, t = 1, 2, ..., T$$

Fixed Effects Estimator Assumptions

- We need strict exogeneity on the explanatory vars to get unbiased
- I.e., u_{it} is uncorrelated with each x across *all* periods.
- Fixed effect (FE) estimation, like FD, allows for arbitrary correlation between a_i and x in any time period
- FE estimation, like FD, precludes estimation of time-invariant effects that get killed by FE transformation. (e.g., gender)
- We need u_{it} to be homoskedastic and serially uncorrelated for valid OLS analysis.
- Degrees of Freedom is *not* NT k, where k = # of xs.
 - ① Degrees of Freedom = NT N k, since we lose one df for each cross-sectional obs from the time-demeaning.
 - ② For each i, demeaned errors add up to 0 when summed across $t \implies$ 1 less df.
 - This is like imposing a constraint for each cross-sectional unit. (There's no constraint on the original idiosyncratic errors.)

FE Implicit Constraints

- We can't include time-constant variables.
 - Can interact them with time-varying variables to see how their effect varies over time.
- - E.g., years of experience will change by one for each person in each year. a_i accounts for average differences across people or differences across people in their experience in the initial time period.
 - ② Conditional on a_i , the effect of a one-year increase in experience cannot be distinguished from the aggregate time effects because experience increases by the same amount for everyone!
 - A linear time trend instead of year dummies would create a similar problem for experience

E.g., FE Implicit Constraints

- Consider an annual panel of 500 firms from 1990 to 2000
- Include full set of year indicators ⇒ can't include
 - firm age
 - 2 macroeconomic variables
- These are all collinear with the year indicators and intercept.

Dummy Variable Regression

- We could treat a_i as parameters to be estimated, like intercept.
- Just create a dummy for each unit i.
- This is called Dummy Variable Regression
- This approach gives us estimates and standard errors that are identical to the within firm estimates.
- R^2 will be very high...lots of parameters.
- \hat{a}_i may be of interest. Can compute from within estimates as:

$$\hat{a}_i = \bar{y}_i - \hat{\beta}_1 \bar{x}_{i1} - ... - \hat{\beta}_k \bar{x}_{ik}, i = 1, ..., N$$

where \bar{x} is time-average

- \hat{a}_i are unbiased but inconsistent (**Incidental Parameter Problem**).
- Note: reported intercept estimate in FE estimation is just average of individual specific intercepts.

FE or FD?

- With T=2, doesn't matter. They're identical
- With $T \ge 32$, $FE \ne FD$
- Both are unbiased under similar assumptions
- Both are consistent under similar assumptions
- Choice hinges on relative efficiency of the estimators (for large N and small T), which is determined by serial correlation in the idiosyncratic errors, u_{it}
 - Serially uncorrelated $u_{it} \implies FE$ more efficient than FD and standard errors from FE are valid.
 - **2** Random walk $u_{it} \implies \mathsf{FD}$ is better because transformed errors are serially uncorrelated.
 - In between...efficiency differences not clear.
- ullet When T is large and N is not too large, FE could be bad
- Bottom line: Try both and understand differences, if any.

FE with Unbalanced Panels

- Unbalance Panel refers to panel data where units have different number of time series obs (e.g., missing data)
- Key question: Why is panel unbalanced?
- If reason for missing data is uncorrelated with u_{it} , no problem.
- If reason for missing data is correlated with u_{it} , problem. This implies nonrandom sample. E.g.,
 - Sample firms and follow over time to study investment
 - Some firms leave sample because of bankruptcy, acquisition, LBO, etc. (attrition)
 - 3 Are these exit mechanisms likely correlated with unmeasured investment determinants (u_{it}) ? Probably.
 - **1** If so, then resulting **sample selection** causes biased estimators.
 - **5** Note, fixed effects allow attrition to be correlated with a_i . So if some units are more likely to drop out of the sample, this is captured by a_i .
 - But, if this prob varies over time with unmeasured things affecting investment, problem.

Between Estimator

• Between Estimator (BE) is the OLS estimator on the cross-sectional equation:

$$\bar{y}_i = \beta_1 \bar{x}_{i1} + ... + \beta_k \bar{x}_{ik} + a_i + \bar{u}_i$$
, where

- I.e., run a cross-sectional OLS regression on the time-series averages
- This produces biased estimates when a_i is correlated with \bar{x}_i
- If a_i is uncorrelated with \bar{x}_i , we should use **random effects** estimator (see below)

- When estimating fixed effects model via FE, how do we interpret R^2 ?
- It is the amount of *time variation* in y_{it} explained by the *time variation* in X
- Demeaning removes all cross-sectional (between) variation prior to estimation

RE Assumption

Same model as before

$$y_{it} = \beta_1 x_{it1} + ... + \beta_k x_{itk} + a_i + u_{it}, t = 1, 2, ..., T$$

• Only difference is that **Random Effects** assumes a_i is uncorrelated with each explanatory variable, $x_{itj}, j = 1, ..., k; t = 1, ..., T$

$$Cov(x_{iti}, a_i) = 0, t = 1, ..., T; j = 1, ..., k$$

• This is a very strong assumption in empirical corporate finance.

RE Cont.

- Under RE assumption:
 - 1 Using a transformation to eliminate a_i is inefficient
 - ② Slopes β_j can be consistently estimated using a single cross-section...no need for panel data.
 - 1 This would be inefficient because we're throwing away info.
 - Oan use pooled OLS to get consistent estimators.
 - **1** This ignores serially correlation in composite error $(v_{it} = a_i + u_{it})$ term since

$$Corr(v_{it}, v_{is}) = \sigma_a^2/(\sigma_a^2 + \sigma_u^2), t \neq s$$

- 2 Means OLS estimates give wrong SEs and test statistics.
- Use GLS to solve

RE and GLS Estimation

- Recall GLS under heteroskedasticity? Just transform data (e.g., divide by σ_{u_i}) and use OLS...same idea here
- Transformation to eliminate serial correlation is:

$$\lambda = 1 - [\sigma_u^2 / (\sigma_u^2 + T \sigma_a^2)]^{1/2}$$

which is $\in [0, 1]$

Transformed equation is:

$$y_{it} - \lambda \bar{y}_i = \beta_0 (1 - \lambda) + \beta_1 (x_{it1} - \lambda \bar{x}_{i1})$$

+ ... + \beta_k (x_{itk} - \lambda \bar{x}_{ik}) + (\beta_{it} - \lambda \bar{v}_i)

where \bar{x} is time average.

ullet These are **quasi-demeaned data** for each variable...like within transformation but for λ

RE and GLS Comments

- Just run OLS on transformed data to get GLS estimator.
- FGLS estimator just uses a consistent estimate of λ . (Use pooled OLS or fixed effects residuals to estimate.)
- FGLS estimator is called Random Effects Estimator
- RE Estimator is biased, consistent, and anorm when N gets big and T is fixed.
- We can estimate coef's on time-invariant variables with RE.
- When $\lambda = 0$, we have pooled OLS
- When $\lambda = 1$, we have FE estimator.

RE or FE?

- Often hard to justify RE assumption $(a_i \perp x_{itj})$
- If key explanatory variable is time-invariant, can't use FE!
- Hausman (1978) test:
 - **1** Use RE unless test rejects orthogonality condition between a_i and x_{iti} .
 - 2 Rejection means key RE assumption fails and FE should be used.
 - Failure to reject means RE and FE are sufficiently close that it doesn't matter which is chosen.
 - Intuition: Compare the estimates under efficient RE and consistent FE. If close, use RE, if not close, use FE.
- Bottom line: Use FE in empirical corporate applications.

Setup

The model and approach in this section follows Bond 2002:

$$y_{it} = \rho y_{it-1} + a_i + u_{it}, |\rho| < 1; N = 1, ..., N; t = 2, ..., T$$

- Assume the first ob comes in t=1
- Assume u_{it} is independent across i, serially uncorrelated, and uncorrelated with a_i .
 - 1 Within unit dependence captured by ai
- Assume N is big, and T is small (typical in micro apps)
 - lacktriangle Asymptotics are derived letting N get big and holding T fixed
- exogenous variables, x_{itk} and period fixed effects, v_t have no substantive impact on discussion

The Problem

- Fixed effects create endogeneity problem.
- Explanatory variable y_{it-1} is correlated with error $a_i + u_{it}$

$$Cov(y_{it-1}, a_i + u_{it}) = Cov(a_i + u_{it-1}, a_i + u_{it})$$

= $Var(a_i) > 0$

• Correlation is $> 0 \implies$ OLS produces upward biased and inconsistent estimate of ρ (Recall omitted variables bias formula.)

$$Corr(y_{it-1}, a_i) > 0$$
 and $Corr(y_{it}, y_{it-1}) > 0$

• Bias does not go away as the number of time periods increases!

Within Estimator - Solve 1 Problem

 Within estimator eliminates this form of inconsistency by getting rid of fixed effect a_i

$$\ddot{y}_{it} = \beta_1 \ddot{y}_{it-1} + \ddot{u}_{it}, t = 2, ..., T$$

where

$$\ddot{y}_{it} = 1/T \sum_{i=2}^{T} y_{it}; \ddot{y}_{it-1} = 1/(T-1) \sum_{i=1}^{T-1} y_{it}; \ddot{u}_{it} = 1/T \sum_{i=2}^{T} u_{it}$$

Within Estimator - Create Another Problem

Introduces another form of inconsistency since

$$Corr(\ddot{y}_{it-1}, \ddot{u}_{it}) = Corr(y_{it-1} - \frac{1}{T-1} \sum_{i=1}^{T-1} y_{it}, u_{it} - \frac{1}{T} \sum_{i=2}^{T} u_{it})$$

is not equal to zero. Specifically,

$$Corr(y_{it-1}, -\frac{1}{T-1}u_{it-1}) < 0$$

$$Corr(-\frac{1}{T-1}y_{it}, u_{it}) < 0$$

$$Corr(-\frac{1}{T-1}y_{it-1}, -\frac{1}{T-1}u_{it-1}) > 0, t = 2, ..., T-1$$

- Negative corr dominate positive \implies within estimator imparts negative bias on estimate of ρ . (Nickell (1981))
- Bias disappears with big T, but not big N

Bracketing Truth

- OLS estimate of ρ is biased up
- ullet Within estimate of ho is biased down
- \Longrightarrow true ρ will *likely* lie between these estimates. I.e., consistent estimator should be in these bounds.
- When model is well specified and this bracketing is not observed, then
 - 1 maybe inconsistency, or
 - 2 severe finite sample bias

for consistent estimator

Autoregressive Model

Multivariate Dynamic Models

ML Estimators

- See Blundell and Smith (1991), Binder, Hsiao, and Pesaran (2000), and Hsiao (2003).
- Problem with ML in small T panels is that distribution of y_{it} for t=2,...,T depends crucially on distribution of y_{i1} , initial condition.
- y_{i1} could be
 - stochastic.
 - 2 non-stochastic.
 - correlated with a_i.
 - uncorrelated with a_i,
 - **5** specified so that the mean of the y_{it} series for each i is mean-stationary $(a_i/(1-\rho))$, or
 - specified so that higher order stationarity properties are satisfied.
- Each assumption generates different likelihood functions, different estimates.
- Misspecification generates inconsistent estimates.

First Difference Estimator

First-differencing eliminates fixed effects

$$\Delta y_{it} = \rho \Delta y_{it-1} + \Delta u_{it}, |\rho| < 1; i = 1, ..., N; t = 3, ..., T$$

where
$$\Delta y_{it} = y_{it} - y_{it-1}$$

• Key: first differencing doesn't introduce *all* of the realizations of the disturbance into the error term like within estimator. But,

$$Corr(\Delta y_{it-1}, \Delta u_{it}) = Corr(y_{it-1} - y_{it-2}, u_{it} - u_{it-1}) < 0$$

⇒ downward bias & typically greater than within estimator.

- When T=3, within and first-difference estimators identical.
- Recall when T=2 and no lagged dependent var, within and first-difference estimators identical.

IV Estimators 1

- Require weaker assumptions about initial conditions than ML
- Need **predetermined** initial conditions (i.e., y_{i1} uncorrelated with all future errors u_{it} , t = 2, ... T.
- First-differenced 2SLS estimator (Anderson and Hsiao (1981, 1982)
- Need an instrument for Δy_{it} that is uncorrelated with Δu_{it}
- Predetermined initial condition + serially uncorrelated $u_{it} \Longrightarrow$ lagged level y_{it-2} is uncorrelated with Δu_{it} and available as an instrument for Δy_{it-1}
- 2SLS estimator is consistent in large N, fixed T and identifies ρ as long as $T \geq 3$
- 2SLS is also consistent in large T, but so is within estimator

IV Estimators 2

- When T > 3, more instruments are available.
- y_{i1} is the only instrument when T=3, y_{i1} and y_{i2} are instruments when T=4, and so on.
- Generally, $(y_{i1},...,y_{t-2})$ can instrument Δy_{t-1} .
- With extra instruments, model is overidentified, and first differencing $\implies u_{it}$ is MA(1) if u_{it} serially uncorrelated.
- Thus, 2SLS is inefficient.

GMM Estimator

- Use GMM (Hansen (1982)) to obtain efficient estimates Hotz-Eakin, Newey, and Rosen (1988) and Arellano and Bond (1991).
- Instrument matrix:

where rows correspond to first differenced equations for t = 3, ..., T for individual i.

Moment conditions

$$E(Z_i'\Delta u_i) = 0, i = 1, ..., N$$

where $\Delta u_i = (\Delta u_{i3}, ..., \Delta u_{iT})'$

Autoregressive Model

Multivariate Dynamic Models

2-Step GMM Estimator

GMM estimator minimizes

$$J_{N} = \left(\frac{1}{N} \sum_{i=1}^{N} \Delta u_{i}^{\prime} Z_{i}\right) W_{N} \left(\frac{1}{N} \sum_{i=1}^{N} Z_{i}^{\prime} \Delta u_{i}\right)$$

• Weight matrix W_N is

$$W_N = \left[\frac{1}{N} \sum_{i=1}^N \left(Z_i' \widehat{\Delta u_i} \widehat{\Delta u_i'} Z_i \right) \right]^{-1}$$

where $\widehat{\Delta}_i$ is a consistent estimate of first-dif residuals from a preliminary consistent estimator.

• This is known as 2-step GMM.

1-Step GMM Estimator

• Under homoskedasticity of u_{it} , an asymptotically equivalent GMM estimator can be obtained in 1-step with

$$W_{1N} = \left[\frac{1}{N} \sum_{i=1}^{N} \left(Z_i' H Z_i\right)\right]^{-1}$$

where H is T-2 square matrix with 2's on the diagonal, -1's on the first off-diagonals, and 0's everywhere else.

- Since W_{1N} doesn't depend on any unknowns, we can minimize the J_N in one step.
- Or, we can use this one step estimator to obtain starting values for the 2-step estimator.

GMM in Practice

- Most people use 1-step becase
 - Modest efficiency gains from 2-step, even with heteroskedasticity
 - ② Dependence of 2-step weight matrix on estimates makes asymptotic approximations suspect. (SEs too small). Windmeijer (2000) has finite sample correction for 2-step GMM estimator.
- $T > 3 \implies$ overidentification \implies test of overidentifying restrictions, or Sargan test $(NJ_N \chi^2)$.
- Key assumption of serially uncorrelated disturbances can also be tested for no 2nd order serial correlation in differenced residuals (Arellano and Bond (1991).
 - More instruments are not better because of IV bias
 - Negative 1st order serial correl expected in 1st differenced residuals if u_{it} is serially uncorr.
- See Bond and Windmeijer (2002) for more info on tests.

Extensions

- Intuition extends to higher order AR models & limited MA serial correlation of errors, provided sufficent # of time series obs. E.g,
 - u_{it} is MA(1) $\Longrightarrow \Delta u_{it}$ is MA(2).
 - y_{it-2} is not a valid instrument, but y_{it-3} is.
 - Now we need $T \ge 4$ to identify ρ
- First-differencing isn't the only transformation that will work (Arellano and Bover (1995)).

Model

The model now is

$$y_{it} = \rho y_{it-1} + \beta x_{it} + a_i + u_{it}, |\rho| < 1; N = 1, ..., N; t = 2, ..., T$$

where x is a vector of current and lagged additional explanatory variables.

- The new issue is what to assume about the correl between x and the error $a_i + u_{it}$.
- ullet To make things simple, assume x is scalar and that the u_{it} are serially uncorrelated

Assumptions about x_{it} and $(a_i + u_{it})$

- If x_{it} is correl with a_i , we can fall back on transformations that eliminate a_i , e.g., first-differencing.
- Different assumptions about x and u
 - \bullet x_{it} is endogenous because it is correlated with contemporaneous and past shocks, but uncorrelated with future shocks
 - ② x_{it} is predetermined because it is correlated with past shocks, but uncorrelated with contemporaneous and future shocks
 - $\mathbf{3}$ x_{it} is strictly exogenous because it is uncorrelated with past, contemporaneous, and future shocks

Endogenous x_{it}

- In case 1, endogenous x_{it} then
 - x_{it} is treated just like y_{it-1} .
 - $x_{it-2}, x_{it-3}, ...$ are valid instruments for the first differenced equation for t = 3, ..., T
 - If y_{i1} is assumed predetermined, then we replace the vector $(y_{i1},...,y_{it-2})$ with $(y_{i1},...,y_{it-2},x_{i1},...,x_{it-2})$ to form the instrument matrix Z_i
- In case 2, predetermined x_{it}
 - If y_{i1} is assumed predetermined, then we replace $(y_{i1}, ..., y_{it-2})$ with $(y_{i1}, ..., y_{it-2}, x_{i1}, ..., x_{it-1})$ to form instrument matrix Z_i
- In case 3, strictly exogenous x_{it}
 - Entire series, $(x_{i1},...x_{iT})$, are valid instruments
 - If y_{i1} is assumed predetermined, then we replace $(y_{i1}, ..., y_{it-2})$ with $(y_{i1}, ..., y_{it-2}, x_{i1}, ..., x_{iT})$ to form instrument matrix Z_i

In Practice

- Typically moment conditions will be overidentifying restrictions
- This means we can test the validity of a particular assumption about x_{it} (e.g., Difference Sargan tests)
- E.g., the moments assuming endogeneity of x_{it} are a strict subset of the moments assuming x_{it} is predetermined.
- We can look at difference in Sargan test statistics under these two assumptions, (S-S') χ^2 to test validity of additional moment restrictions. (Arellano and Bond (1991))
- Additional moment conditions available if we assume x_{it} and a_i are uncorrelated. Hard to justify this assumption though.
- May assume that Δx_{it} is uncorrelated with a_i .
- Then Δx_{is} could be valid instrument for in levels equation for period t (Arellano and Bover (1995)

Difference Moments 1

- We could also used lagged differences, Δy_{it-1} , as instruments in the levels equation.
- Validity of this depends on stationarity assumption on initial conditions y_{i1} (Blundell and Bond (1998). Specifically,

$$E\left[\left(y_{i1}-\frac{a_i}{1-
ho}\right)a_i
ight]=0, i=1,...,N$$

- Intuitively, this means that the initial conditions don't deviate systematically from the long run mean of the time series.
- I.e., y_{it} converges to this value, $\frac{a_i}{1-\rho}$ from period 2 onward.

Difference Moments 2

- Mean stationarity implies $E(\Delta y_{i2}a_i))=0$ for i=1,...,N
- The autoregressive structure of the model and the assumption that $E(\Delta u_{it}a_i)=0$ for i=1,...,N and t=3,...,T implies T-2 non-redundant moment conditions

$$E\left[\Delta y_{it-1}(a_i+u_{it})\right]$$

for
$$i = 1, ..., N$$
 and $t = 3, ..., T$

• These moment conditions are in addition to those for the first-difference equations above, $E(Z'_i \Delta u_i) = 0$

Why extra moments are helpful 1

- Under additional assumptions, estimation no longer depends on just first-differenced equation and lagged level instruments.
- If the seris y_{it} is persistent (i.e., $\rho \approx 1$), then Δy_{it} is close to white noise
- This means the instruments, y_{it-2} , will be weak. i.e., weakly correlated with the endogenous variable Δy_{it-1}
- Alternatively, if $Var(a_i)/Var(u_{it})$ is large, then we will have a weak instrument problem as well.
- Consider

$$y_{it} = \rho y_{it-1} + a_i(1-\rho) + u_{it}$$

• As $\rho \to 1$, y_{it} approaches a random walk and ρ is not identified using moment conditions for first-differenced equation, $E(Z_i\Delta u_i)=0$