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Abstract

We characterize optimal voluntary disclosures by a privately informed agent facing a counterparty en-
dowed with market power in a bilateral transaction. Although disclosures reveal some of the agent’s private 
information, they may increase his information rents by mitigating the counterparty’s incentives to resort 
to inefficient screening. We show that when disclosures are restricted to be ex post verifiable, the informed 
agent optimally designs a disclosure plan that is partial and that implements socially efficient trade in equi-
librium. Our results shed light on the conditions necessary for asymmetric information to impede trade and 
the determinants of disclosures’ coarseness.
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1. Introduction

Asymmetric information can make agents worse off by disrupting efficient trade (e.g., Ak-
erlof, 1970; Myerson and Satterthwaite, 1983; Glosten and Milgrom, 1985). But why would an 
agent allow his private information to impede trade in the first place? In this paper, we study the 
incentives of a privately informed agent to share his information with a counterparty endowed 
with market power prior to a bilateral transaction.

We examine an environment with both private- and common-value uncertainty and consider 
voluntary disclosures that are ex post verifiable, as in Grossman (1981), Milgrom (1981), and 
Shin (2003). Ex post verifiability is a common restriction in the literature that is imposed to en-
sure that disclosures are not subject to commitment and incentive problems, even in one-shot 
interactions.1 If erroneous disclosures can be verified with probability one and are penalized — 
perhaps by regulators or courts — the sender optimally designs signals that are truthful. More-
over, the sharing of verifiable information is relevant in many important economic contexts with 
hard information, such as the trading of financial securities, corporate takeovers, and supply chain 
transactions.2

In this environment, we obtain a set of sharp predictions. First, the informed agent always 
finds it privately optimal to design a partial disclosure plan that yields socially efficient trade in 
equilibrium. Whereas possessing superior information allows the informed agent to extract in-
formation rents, sharing information reduces the extent to which the agent is being inefficiently 
screened by his counterparty. We show that the agent is always willing and able to design ex post 
verifiable signals such that he privately benefits from giving up part of his private information 
in order to preempt inefficient screening. Yet, he finds it privately suboptimal to disclose all in-
formation as doing so completely eliminates his information rents. Compared to a no-disclosure 
policy, the optimal disclosure plan improves both the informed agent’s surplus and that of his 
counterparty with market power. We characterize general properties of privately optimal disclo-
sure plans and analyze the tradeoffs the informed agent faces. Moreover, we solve for optimal 
disclosure plans when disclosure functions are restricted to be monotone, a property that is re-
lated to commonly imposed monotonicity assumptions in the security design literature. These 
solutions reveal how the informed agent’s optimal disclosure plan design is intimately linked to 
his counterparty’s incentives to resort to inefficient screening.

While we initially consider an environment where the disclosure plan is designed before any 
uncertainty is realized — as is common in models of information design (e.g., Rayo and Segal, 
2010; Kamenica and Gentzkow, 2011; Goldstein and Leitner, 2017; Ely, 2017) — we also con-
sider the case where disclosure plans are chosen after the agent obtains private information (as in, 
e.g., Grossman, 1981; Milgrom, 1981; Verrecchia, 1983; Shin, 2003). We show that in this case, 

1 The early literature analyzing these types of “persuasion games” is surveyed by Milgrom (2008). Since these games 
focus on ex post verifiable disclosures, they significantly differ from “cheap talk games” popularized by Crawford and 
Sobel (1982).

2 See Boyarchenko et al. (2016) and Di Maggio et al. (2016) for empirical evidence consistent with broker-dealers 
sharing private (deal-flow) information among themselves and with clients, Hong et al. (2005) and Pool et al. (2015)
for empirical evidence consistent with information sharing among socially connected portfolio managers, Heimer and 
Simon (2012) for empirical evidence of information sharing among foreign exchange traders, Eckbo and Langohr (1989)
and Brennan (1999) for empirical evidence of information sharing among bidders and target companies in corporate 
takeovers, and Zhou and Benton (2007) for empirical evidence of information sharing among firms that are part of the 
same supply chain.
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partial disclosure and socially efficient trade are also characteristics of all equilibria satisfying 
two standard equilibrium refinements, consistent with our baseline analysis.

Our results have relevant implications from both a positive and a normative perspective. First, 
the economic mechanisms underlying optimal disclosures in our model shed light on existing 
disclosure practices in financial markets, in particular on variation in disclosures’ coarseness. 
For example, the highlighted forces may contribute to the intriguing fact that credit rating agen-
cies like Moody’s Analytics publish ratings on a discrete scale when they are solicited and paid 
for by issuers, but at the same time provide continuous credit scores when investors subscribe 
and pay for information. Second, given the standard assumptions we consider and the clear pre-
dictions for efficiency we obtain, our paper sheds light on the economic conditions that must be 
violated for asymmetric information and market power to impede the efficiency of trade. Our 
paper thus speaks to the regulation of information disclosure in bilateral transactions with imper-
fect competition and asymmetric information problems, such as corporate takeovers, real estate 
transactions, and over-the-counter trading.3 In an environment like ours, regulators do not need 
to mandate what information agents should disclose, nor do they need to produce additional 
information for uninformed market participants. All regulators need to do is to enforce the truth-
fulness of verifiable disclosures by disciplining agents who send signals that ex post prove to 
violate their own disclosure standards.

Related literature. Our paper contributes to the theoretical literature that studies optimal in-
formation sharing among traders. An important result in this literature goes back to Grossman 
(1981) and Milgrom (1981) who show that, when disclosures are restricted to be ex post veri-
fiable, an agent may find it optimal to fully reveal his private information to his counterparties. 
However, unlike in our model the agent making the disclosure decision in these papers is not 
being screened by counterparties with market power — either all traders take the price as given 
(as in Milgrom, 1981) or it is the informed agent who sets the price (as in Grossman, 1981). 
The lack of counterparties’ market power implies that the agent who discloses information is 
only concerned with his counterparties’ conditional beliefs about the mean asset payoff. The 
agent then optimally discloses all his private information, since any information he withholds 
is interpreted to be unfavorable, lowering his expected payoff (a result commonly referred to as 
“unraveling”; see also Grossman and Hart, 1980; Milgrom and Roberts, 1986). In contrast, in our 
environment, the disclosing agent is concerned with the full conditional distributions of payoffs 
resulting from disclosures (rather than just the mean payoff), since his counterparty has market 
power and decides to screen the agent based on the shapes of these conditional distributions.

Verrecchia (1983) modifies a setting akin to Grossman (1981) and Milgrom (1981) by adding 
disclosure costs, whereas Fishman and Hagerty (1990) assume that a subset of private informa-
tion cannot be disclosed. In both cases, maximal disclosure may not be optimal for the informed 
party. Admati and Pfleiderer (2000), however, show that a firm may pick a socially optimal dis-
closure plan despite disclosure costs if that firm is a monopolist that captures all gains to trade. 
Matthews and Postlewaite (1985), Okuno-Fujiwara et al. (1990), Fishman and Hagerty (2003), 

3 For empirical evidence that these types of bilateral transactions often feature imperfect competition, see Ambrose 
et al. (2005), Glaeser et al. (2005), Boone and Mulherin (2007), King et al. (2012), Atkeson et al. (2013), Li and Schürhoff 
(2014), Begenau et al. (2015), Hendershott et al. (2015), Siriwardane (2016), Di Maggio et al. (2017), and Li et al. 
(2017). For empirical evidence that these types of bilateral transactions often involve heterogeneously informed traders, 
see Eckbo et al. (1990), Garmaise and Moskowitz (2004), Green et al. (2007), Jiang and Sun (2015), Menkhoff et al. 
(2016), Stroebel (2016), and Hollifield et al. (2017).
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Shin (2003), Acharya et al. (2011), and Guttman et al. (2014) show, in different environments, 
that full disclosure also becomes suboptimal once there is uncertainty about the existence of 
private information or its content.

Unlike in these settings, the information designer in our model responds to an ultimatum offer, 
and his private information is thus his only source of profits. As a result, his optimal disclosure 
plan must be partial, despite the existence of his private information being common knowledge 
and disclosure being costless. Yet, we show that it must yield socially efficient trade in equi-
librium. Our analysis highlights how voluntary information sharing can eliminate inefficient 
rationing in classic monopolistic screening problems, where private information and bargain-
ing power are separated. Examples of situations where such separation, whether full or partial, 
applies abound, and include a real estate transaction in which a buyer submits a bid without 
knowing the seller’s reservation value for the property, a financial transaction in which a dealer 
quotes a price to a hedge fund possessing proprietary data and valuation models, and a supply 
chain transaction in which a producer must price merchandise before offering it to a retailer 
informed about local demand conditions.4

Monopoly pricing is also studied by Bergemann et al. (2015) who analyze how exogenously 
providing monopolists with additional information for price discrimination affects total surplus 
and its allocation. Their analysis shows that, in a setting with private value uncertainty, general 
information structures (including randomization) exist such that total surplus can be increased to 
any level less than or equal to the one from efficient trade, and any allocation of the incremen-
tal surplus is attainable. Information available for price discrimination thus critically determines 
efficiency and the allocation of surplus, which raises the question what part of a buyer’s private 
information a monopolist should be expected to endogenously gain access to. Our analysis shows 
that when information disclosure by the informed agent is (a) voluntary and (b) ex post verifi-
able (with randomization not being possible), precise predictions for both total surplus and its 
allocation obtain: (i) total surplus is unique and equal to the surplus generated by efficient trade, 
and (ii) both agents benefit from the optimal disclosure plan. These results hold for both private-
and common-value uncertainty, whether the disclosure functions are restricted to be monotone 
or not, and when disclosure plans are designed ex ante or at an interim stage.

More broadly, our focus on market power also relates our paper to Gal-Or (1985) who models 
oligopolistic firms that can commit ex ante to sharing noisy signals of their private information 
about the uncertain demand for their products. Since sharing information increases the corre-
lation of firms’ output decisions, thereby lowering their expected profits, the unique symmetric 
pure-strategy equilibrium is characterized by no information sharing among firms. Lewis and 
Sappington (1994) investigate in a setting without disclosure whether an uninformed seller with 
market power would like to help his prospective buyer(s) acquire private information about the 
value of the asset (see also Eső and Szentes, 2007, who assume that trading occurs through an 
auction). Under general conditions, the seller in Lewis and Sappington (1994) either wants his 
prospective buyer(s) to be fully informed or completely uninformed about how much the asset 
is worth to them. Finally, Roesler and Szentes (2017) solve for a buyer’s optimal information 
acquisition in a monopoly setting without disclosure and show that the buyer finds it optimal to 

4 While our framework assumes full separation of bargaining power and private information, as in classic models of 
monopolistic screening, the main economic insights we develop will also speak to the multitude of scenarios where 
these two sources of rents are partially separated and the full-disclosure/unraveling reasoning from Grossman (1981)
and Milgrom (1981) does not apply.
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limit his information acquisition and avoid that the monopolist seller inefficiently screens him 
(see also Glode et al., 2012).

The next section presents the canonical problem of a monopolist who inefficiently screens a 
privately informed agent. In Section 3, we study the agent’s incentives to share some of his pri-
vate information with the monopolist, and how the resulting disclosure plan affects the efficiency 
of trade. Section 4 fully characterizes optimal disclosure plans when disclosure functions are 
restricted to be monotone. Section 5 shows that our main insights are robust to various modifica-
tions of the environment, and the last section concludes. Unless stated otherwise, proofs omitted 
from the text can be found in Appendix A.

2. The bilateral transaction

The monopolist seller of an asset (or good) chooses the price he will quote to a prospective 
buyer (or customer) in a take-it-or-leave-it offer.5 The seller is uncertain about how much the 
buyer is willing to pay for the asset but knows that the buyer’s valuation of the asset, which 
we denote by v, has a cumulative distribution function (CDF) denoted by F(v). The buyer only 
accepts to pay a price p in exchange for the asset if v ≥ p; otherwise, the seller must retain 
the asset, which is worth c(v) to him. The CDF F(v) is continuous and differentiable and the 
probability density function (PDF), denoted by f (v), takes strictly positive values everywhere 
on the support [vL, vH ].6 The function c(v) is assumed to be weakly increasing and continuous. 
Both agents are risk neutral and the functions F(v) and c(v) are common knowledge.7

Whenever the buyer’s valuation is greater than the seller’s — perhaps due to heterogeneity in 
preferences, inventories, or liquidity needs — trade would create a social surplus [v − c(v)] > 0. 
However, the seller may find it privately optimal to use his market power and inefficiently screen 
the informed buyer, thereby jeopardizing the gains to trade. We assume that whenever indifferent 
between two strategies, an agent picks the one that maximizes the social surplus in the resulting 
subgame-perfect Nash equilibrium.

The seller’s expected payoff from quoting a price p is given by:

�(p) ≡ [1 − F(p)]p + F(p)E[c(v)|v < p]

=
vH∫
p

pf (v)dv +
p∫

vL

c(v)f (v)dv. (1)

When picking a price, the seller trades off the countervailing effects that price adjustments have 
on the probability that a sale occurs and the profit he obtains conditional on a sale occurring. The 
seller’s marginal profit of increasing the price p is:

�′(p) =
vH∫
p

f (v)dv − pf (p) + c(p)f (p), (2)

5 The buyer/seller roles could be reversed without affecting our main results, as long as market power and private 
information are still allocated to distinct agents.

6 Our results would also hold if the support of v was unbounded from above. If the support of v was unbounded from 
below, our results would hold whenever limv↓−∞(v − c(v)) < 0.

7 See, e.g., Hirshleifer (1971), Diamond (1985), and Kurlat and Veldkamp (2015) for the costs and benefits of disclosure 
in the presence of risk aversion.
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which can be rewritten as:

�′(p) = [1 − F(p)] − f (p)[p − c(p)]. (3)

The first term on the right-hand side of equation (3) is the seller’s marginal expected benefit 
from collecting a higher price when trade occurs. The second term is the marginal expected cost 
from reducing the probability of trade and destroying the gains to trade that could be obtained 
by transacting with the marginal buyer type. We impose the following condition on the surplus 
from trade:

Assumption 1. The surplus from trade [v − c(v)] crosses zero at most once (from below).

This restriction is guaranteed to hold under any of the following assumptions commonly im-
posed in the literature: (i) the seller’s valuation for the asset is a constant; (ii) the seller’s valuation 
for the asset is a fraction of v; (iii) the surplus from trade [v − c(v)] is constant; (iv) the ratio of 
the above-mentioned cost and benefit of marginally increasing the price, i.e., f (v)

1−F(v)
[v − c(v)], 

is strictly increasing in v.8

Assumption 1 implies that we can designate a cutoff v̂ ∈ [vL, vH ] such that trade is socially 
efficient if it occurs when v ≥ v̂, and fails when v < v̂. Since it is possible under Assumption 1
that [v − c(v)] remains at zero for a positive-measure subset of [vL, vH ], we define the relevant 
cutoff as v̂ ≡ inf{v ∈ [vL, vH ] : v > c(v)}. Since f (v) is strictly positive everywhere on the 
support [vL, vH ], the maximum price the seller can quote and still maintain socially efficient 
trade is p = v̂. As a result, trade can be efficient only if:

�′(v̂) ≤ 0. (4)

This necessary condition for efficient trade reflects the seller’s marginal tradeoff discussed 
above. Efficient trade requires that

f (v̂)(v̂ − c(v̂)) ≥ 1 − F(v̂), (5)

that is, the marginal costs from forgoing trade with the buyer type v̂ (left-hand side of (5)) must 
exceed the marginal benefit of charging all types above v̂ a higher price (right-hand side of (5)). 
This condition holds when the gains to trade and/or the density at v̂ are large, relative to the 
mass of types located above v̂. If instead �′(v̂) > 0, the seller inefficiently screens the buyer, 
jeopardizing gains to trade. Moreover, the seller never optimally quotes a price p < v̂, because 
quoting a price p = v̂ yields strictly higher profits.9

Since we assume that whenever indifferent, an agent picks the strategy that maximizes social 
surplus, we can rule out any equilibrium where the seller inefficiently mixes between quoting 
multiple prices pn ∈ [vL, vH ]. If he were to mix over several prices, the seller would have to be 

8 See, e.g., Glode and Opp (2016) and Glode et al. (2017) who specifically impose this latter condition, Fuchs and 
Skrzypacz (2015) who define a “strictly regular environment” in a similar way, and Myerson (1981) who similarly 
assumes that bidders’ virtual valuation functions are strictly increasing.

9 Specifically, if the seller quotes a price p < v̂, his expected payoff can be written as:

Pr(v ≥ v̂)p + Pr(p ≤ v < v̂)p + Pr(v < p)E[c(v)|v < p].
In contrast, if the seller quoted a price v̂, his payoff would increase by v̂ − p > 0 when v ≥ v̂, by c(v) − p ≥ 0 when 
p ≤ v < v̂, and would remain the same when v < p.
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indifferent between mixing and quoting any of these prices with probability one (taking into ac-
count the buyer’s best response to each price). The tie-breaking rule implies that the seller instead 
plays the pure strategy of quoting the price that socially dominates all other prices. Similarly, we 
can rule out equilibria where the buyer inefficiently mixes between accepting and not accepting 
a price quote. A tie-breaking rule based on social optimality thus ensures that we can restrict our 
attention to pure-strategy subgame-perfect Nash equilibria.

We now illustrate the seller’s incentives to set inefficient prices through a simple parameter-
ized example that we will revisit later.

Example 1. Suppose the buyer values the asset at v ∼ U [1, 2] and the seller values it at a constant 
c̄ ≤ 1. The surplus from trade is then always positive (i.e., v̂ = 1) and trade is efficient if and only 
if it occurs with probability 1. The seller’s optimization problem when picking a price can be 
written as:

max
p∈[1,2]�(p) = Pr(v ≥ p)p + Pr(v < p)c̄ = (2 − p)p + (p − 1)c̄. (6)

Since �′(1) = c̄, the seller quotes a price p = 1 whenever c̄ ≤ 0 and the buyer always accepts, 
implying that trade is efficient. However, when c̄ ∈ (0, 1] the seller finds it optimal to quote a price 
p = 1 + c̄

2 , thereby screening the buyer and destroying the surplus from trade with probability c̄2 .

The example above shows a simple case where v̂ = vL, that is, the surplus from trade is 
positive for all possible realizations of v. In cases like this, sustaining efficient trade requires 
that f (vL)(vL − c(vL)) ≥ 1. However, in cases where v̂ ∈ (vL, vH ), efficient trade cannot be 
sustained in equilibrium since v̂ − c(v̂) = 0, implying that f (v̂)(v̂ − c(v̂)) < 1 − F(v̂). In these 
cases, the seller always finds it optimal to quote a price that is at least marginally higher than 
the efficient price p = v̂. For example, this case obtains whenever the seller values the asset at a 
constant c̄ ∈ (vL, vH ).

Although we model a bilateral trading interaction where only one offer can be made, similar 
inefficiencies associated with screening would arise in dynamic environments. First, if the seller 
could commit to following any dynamic pricing strategy, he would optimally choose to make the 
buyer a take-it-or-leave-it offer at the start of the dynamic game and no further offer later on, 
just as in our setup here (see, e.g., Stokey, 1979; Harris and Raviv, 1981; Riley and Zeckhauser, 
1983). Second, in environments where such commitment is not feasible or credible, equilibria 
with “sequential skimming” would typically obtain, where the seller gradually decreases his 
price quotes trading off higher prices with an increased probability of trade delays (see, e.g., 
Fudenberg et al., 1985). Private information and market power would still impede efficiency, 
through socially costly delays.

3. Information disclosure prior to trading

We now analyze the buyer’s decision to share a subset of his information with the seller 
before trade occurs. If trade is already socially efficient without disclosure, sharing information is 
suboptimal for the buyer — in this case, the seller already quotes the lowest possible price, v̂, and 
additional information can only cause him to increase his quote. Thus, for the remainder of the 
paper we focus on situations where trade would be socially inefficient if the buyer did not disclose 
any of his private information. Sharing information might hurt the buyer since possessing private 
information yields information rents, but it might also reduce the seller’s incentives to charge 
inefficient mark-ups that reduce the expected gains from trade.



V. Glode et al. / Journal of Economic Theory 175 (2018) 652–688 659
For now, we assume that the agent must design his disclosure plan prior to acquiring private 
information, and that he can commit to not manipulating signals specified by this plan later, as is 
common in models of information design. Assuming that the buyer is uninformed at the time of 
the information design increases the tractability of the analysis, as it eliminates the existence of 
signaling concerns. We will relax this assumption in Section 5. We also restrict our attention to 
ex post verifiable disclosures or signals. In practice, the ex ante design of such disclosure plans 
is likely relevant in economic contexts with hard information. In a variety of industries, informa-
tion is shared automatically between firms via information technology (IT) systems according to 
pre-determined algorithms. For example, firms in the same supply chain are typically connected 
to a common IT system that automatically shares information about inventories and production 
problems. Similarly, in the context of financial markets, hedge funds systematically share finan-
cial data (e.g., holdings and performance data) with broker-dealers and clients, which reduces 
information asymmetries about trading motives, such as liquidity needs (see also footnote 2). We 
formally define ex post verifiability in the context of our model as follows.

Definition 1. A signal whose realization s belongs to a set S is called “ex post verifiable” if it can 
be represented by a function D : [vL, vH ] → S such that D−1(s) ≡ {v : D(v) = s} ∈ B([vL, vH ])
∀s ∈ S, where B([vL, vH ]) denotes the Borel algebra on [vL, vH ].

This definition implies that for any signal realization s ∈ S, D−1(s) is a Borel set in [vL, vH ]. 
Since a Borel set in [vL, vH ] must be characterized by unions of intervals, designing a disclosure 
plan implies combining partitions to inform the seller about possible realizations of v. If the 
buyer sends a signal, the seller must be able to confirm ex post that the true realization of v was 
indeed possible given the signal sent. Signals that are subject to additional random shocks (due to 
“noise” components or randomization) are thus ruled out by ex post verifiability. This restriction 
is common in the literature on disclosure (see Verrecchia, 2001; Milgrom, 2008; Beyer et al., 
2010, for related surveys) and supports the plausibility of the assumption that the “information 
sender” cannot manipulate his signal, as is commonly assumed in persuasion games.10 In the 
presence of ex post verifiability, erroneous disclosures could be penalized heavily enough to 
make it incentive compatible for the sender to disclose truthful signals, even when manipulation 
is feasible.11

Before proceeding, we summarize the timeline of our baseline model. First, the buyer designs 
a disclosure plan. Then the buyer observes the realization of v and the seller receives a signal 
consistent with the chosen disclosure plan. Finally, the seller quotes a price and the buyer decides 
whether to pay this price in exchange for the asset.

3.1. The social efficiency of voluntary disclosure

We now study how the buyer’s choice of a disclosure plan affects the social efficiency of trade. 
In particular, we will show that the informed buyer finds it privately optimal to disclose informa-

10 Ex post verifiability implies that, for different signals that can be sent in equilibrium, posterior beliefs about v do 
not have overlapping support. Since Bayesian persuasion only requires that the distribution of posteriors is such that the 
expected posterior probability equals the prior probability, it allows for randomization and generally does not satisfy the 
criterion of ex post verifiability (see Kamenica and Gentzkow, 2011).
11 Due to the absence of noise, penalties would then remain off-equilibrium — penalties would only be triggered if the 
sender intentionally violated the standards set by his own disclosure plan.
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tion in a way that always prevents inefficient screening on the part of the seller in equilibrium. 
We first revisit and extend our parameterized Example 1 to illustrate the intuition underlying this 
first main result.

Example 2. As in Example 1, we assume the buyer values the asset at v ∼ U [1, 2] and the seller 
values it at a constant c̄ ≤ 1. We already know from Example 1 that absent disclosure, the seller 
quotes a price p = 1 + c̄

2 when c̄ ∈ (0, 1], which destroys the gains to trade with probability c̄
2 . 

The buyer then acquires the asset whenever v ≥ p and collects an expected profit of:

Pr

(
v ≥ 1 + c̄

2

)[
E

(
v|v ≥ 1 + c̄

2

)
−

(
1 + c̄

2

)]
= (2 − c̄)2

8
. (7)

Now consider what happens if the buyer shares some of his information with the seller, in partic-
ular, by disclosing whether v ∈ [

1,1 + c̄
2

)
or v ∈ [

1 + c̄
2 ,2

]
. The seller’s optimization problem 

when quoting a price to the buyer now depends on the realization of the signal. If the seller learns 
that v ≥ 1 + c̄

2 , his optimization problem becomes:

max
p∈

[
1+ c̄

2 ,2
] Pr

(
v ≥ p|v ≥ 1 + c̄

2

)
p + Pr

(
v < p|v ≥ 1 + c̄

2

)
c̄

=
(

2 − p

1 − c̄
2

)
p +

(
p − (1 + c̄

2 )

1 − c̄
2

)
c̄, (8)

and if instead he learns that v < 1 + c̄
2 , the problem takes the form:

max
p∈

[
1,1+ c̄

2

)Pr

(
v ≥ p|v < 1 + c̄

2

)
p + Pr

(
v < p|v < 1 + c̄

2

)
c̄

=
(

1 + c̄
2 − p

c̄
2

)
p +

(
p − 1

c̄
2

)
c̄. (9)

In the first case, it is easy to verify that the seller finds it optimal to quote ph = 1 + c̄
2 , just as he 

did without disclosure. However, in the second case, the seller finds it optimal to quote the price 
pl = max{ 1

2 + 3
4 c̄, 1}.

Under this disclosure plan, the buyer collects an expected profit of:

Pr

(
v ≥ 1 + c̄

2

)[
E

(
v|v ≥ 1 + c̄

2

)
−

(
1 + c̄

2

)]
+Pr

(
pl ≤ v < 1 + c̄

2

)[
E

(
v|pl ≤ v < 1 + c̄

2

)
− pl

]
. (10)

The first term in equation (10) is equal to the expected profit the buyer would collect absent 
disclosure. The second term is the additional profit the buyer is able to collect due to the proposed 
disclosure plan. This additional profit is strictly positive whenever c̄ > 0. Thus, the buyer is 
strictly better off under this disclosure plan than without any disclosure. Moreover, if c̄ ≤ 2

3 the 
seller quotes pl = 1 when v < 1 + c̄

2 , which implies that trade is efficient regardless of the signal 
realization.

If c̄ > 2
3 however, the seller quotes pl = 1

2 + 3
4 c̄ when v < 1 + c̄

2 , which leads to a higher 
efficiency of trade than without disclosure but still causes trade to break down with positive 



V. Glode et al. / Journal of Economic Theory 175 (2018) 652–688 661
probability. A similar reasoning can then be applied again to construct an alternative disclosure 
plan that splits the region of inefficient trade 

[
1,1 + c̄

2

)
into 

[
1, 1

2 + 3
4 c̄

)
and 

[ 1
2 + 3

4 c̄,1 + c̄
2

)
, 

such that the buyer is strictly better off and trade is more efficient than under the first disclosure 
plan. Note, however, that even though these alternative disclosure plans represent profitable de-
viations for the buyer, they do not necessarily represent the buyer’s optimal disclosure plan. We 
derive properties of optimal disclosure plans below.

The example above shows that, if trade is inefficient without disclosure, there exists a dis-
closure plan that improves the social efficiency of trade and makes the buyer strictly better off. 
Below, we extend this reasoning to establish a stronger result: the buyer will in fact design a 
disclosure plan that leads to efficient trade in order to maximize his expected profit in equilib-
rium. In particular, we will show that any disclosure plan that leads to the destruction of trade 
surplus cannot be part of an equilibrium, as it can be replaced by a more efficient disclosure plan 
that strictly dominates from the buyer’s perspective. In order to show this result, it is useful to 
introduce Lemma 1.

Lemma 1. Suppose that the seller would quote a price p̃ if the buyer’s valuation was drawn 
from a distribution with CDF F(v) on [vL, vH ]. Then the seller would also quote a price p̃ if the 
buyer’s valuation was drawn from this distribution truncated from below at p̃, i.e., F(v|v ≥ p̃).

Lemma 1 is both simple and powerful. If a seller finds it optimal to quote a price p̃ under 
a given distribution of v, then truncating this distribution from below at p̃ will not impact his 
pricing decision. In other words, by eliminating the possibility that v < p̃, we do not change 
the fact that the seller is better off quoting p̃ than any other p ∈ (p̃, vH ]. As a result, a buyer 
expecting the seller to quote an inefficient price p̃ > v̂ under a given disclosure plan can design 
a simple alternative disclosure plan that increases his expected profit while also increasing the 
social surplus from trade. In particular, if the buyer were to create a new signal that is triggered 
only if v ∈ [vL, p̃), the seller would optimally respond to receiving this signal by quoting a 
price below p̃. This response, in turn, would imply that efficient trade occurs with a higher 
probability, with both the buyer and the seller extracting a fraction of the incremental social 
surplus. Moreover, since the seller’s behavior when v ≥ p̃ is unaffected by this new signal, this 
alternative disclosure plan strictly improves both the buyer’s expected profit and the efficiency of 
trade.

We now state our first main result, and include the associated proof in the main text to highlight 
the underlying logic.

Proposition 1. If the buyer can commit to any disclosure plan that sends ex post verifiable signals 
to the seller, he designs in equilibrium a partial disclosure plan that yields socially efficient trade.

Proof. By contradiction, suppose that the buyer’s optimal disclosure plan is represented by D(·), 
which does not implement efficient trade. As in the case without disclosure, it cannot happen in 
equilibrium that trade occurs for some v < v̂ (see footnote 9). Thus, in equilibrium the seller 
always quotes prices weakly greater than v̂, independently of the signal sent by a disclosure 
plan, and trade can only be inefficient, given the disclosure plan, because it breaks down for 
some v > v̂.

In that case, we can show that there always exists an alternative disclosure plan that yields 
a higher profit for the buyer. Going forward, we denote by ps the price the seller would quote 
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after receiving a signal s ∈ S generated by a disclosure function D(·). More generally, we use the 
subscript s on a given function to indicate the conditional version of that function after receiving 
a signal s, e.g., Fs(v) ≡ F(v|s). Since trade is assumed to be inefficient, there exists an s0 ∈ S

such that upon receiving signal s0, the seller quotes a price ps0 > v̂ and ps0 > inf{v ∈ [vL, vH ] :
D(v) = s0}. (Since singletons have zero measure, we assume, without loss of generality, that 
D−1(s) does not admit any singletons.) A buyer whose valuation belongs to {v : D(v) = s0} ∩
(v̂, ps0) would refuse to pay the seller’s quoted price ps0 , leading to inefficient trade. Consider 
the following alternative disclosure plan where S′ = S ∪ {s′} for some s′ /∈ S and

D̃(v) ≡

⎧⎪⎨⎪⎩
D(v) if D(v) �= s0,

s0 else if D(v) = s0, v ≥ ps0,

s′ otherwise.

(11)

By definition, the disclosure plan D̃(·) also satisfies ex post verifiability.
We now show that D̃(·) would give the buyer a strictly higher ex ante expected profit. First, 

note that when s �= s0 and s �= s′, trading behavior is unaltered and the seller still quotes ps . 
Second, Lemma 1 guarantees that the seller also quotes ps0 under the alternative disclosure plan 
D̃(·) when he receives a signal s0. Finally, suppose the seller quotes a price p′ when he receives a 
signal s′. Since quoting ps0 yields zero profit in this case, it must be that p′ ∈ [infD−1(s0), ps0). 
As a result, the buyer’s ex ante expected profit under the alternative disclosure plan D̃(·) is given 
by: ∑

s∈S

∫
D−1(s)∩[ps,vH ]

(v − ps)dF (v)

︸ ︷︷ ︸
Profit from s ∈ S

+
∫

D−1(s0)∩[p′,ps0 )

(v − p′)dF (v)

︸ ︷︷ ︸
Profit from s′

, (12)

whereas the profit under the original disclosure plan D(·) is equal to only the first term. Since 
ps0 > p′, the second term is strictly positive and the buyer earns a strictly higher profit under D̃(·)
than under D(·), thereby contradicting the optimality of the original plan D(·). We thus have 
shown that in equilibrium, the buyer’s optimal disclosure plan must result in socially efficient 
trade.

We can also show that the optimal disclosure plan must reveal the buyer’s information only 
partially. Otherwise, the seller would quote the buyer a price p = v for all realizations of v and 
the buyer would obtain no surplus. A full disclosure plan is therefore weakly dominated by a 
no-disclosure plan that leads to inefficient trade, which is then strictly dominated by a partial 
disclosure plan that leads to efficient trade, consistent with the arguments above. �

Proposition 1 states two key characteristics of an optimal disclosure plan. First, the privately 
informed buyer’s incentives to disclose verifiable information are aligned with social surplus 
maximization. By sharing a subset of his information with the seller, the buyer ensures that he 
will be quoted prices that avoid inefficient rationing, thereby yielding incremental social sur-
plus.12 A key insight is that, even though the buyer does not have bargaining power, he can 
always ensure that he obtains a fraction of this incremental surplus (in the form of an informa-
tion rent). As a result, as long as a given disclosure plan does not lead to socially efficient trade, 

12 The seller always weakly benefits from verifiable disclosures, since he can disregard the information provided and 
quote the same price as he would absent disclosures.
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the buyer can construct an alternative plan that strictly improves his expected payoff while also 
increasing social surplus.

Second, the proposition reveals that it is never optimal for the buyer to share all his informa-
tion, as such a disclosure plan would drive the buyer’s rents to zero. Unlike in Grossman (1981)
where full disclosure is optimal and unraveling obtains, the informed trader in our model does 
not have market power and can only extract rents by concealing information from his counter-
party. Our results thus highlight that the extent to which market power and private information 
are separated (that is, allocated to different agents) greatly affects whether information revela-
tion is perfect (as in Grossman’s case) or partial (as in our case). As we show below, such partial 
revelation implies “coarseness” in disclosures, a feature that is commonly observed in financial 
and goods markets.

3.2. Characterizing optimal disclosure plans

We have shown above that the buyer’s optimal disclosure plan must satisfy two properties 
in equilibrium: (i) disclosure is partial, and (ii) leads to efficient trade. In this subsection, we 
use Proposition 1 to simplify the buyer’s information design problem and show how the seller’s 
screening incentives affect the buyer’s disclosure plan design.

We can write the buyer’s expected payoff from a disclosure plan D(·) as follows:

W(D) =
∑
s∈S

∫
{v∈D−1(s):v≥ps }

(v − ps)dF (v). (13)

Proposition 1 states that in equilibrium, an optimal disclosure plan must yield efficient trade, that 
is, trade occurs when v > c(v) and does not occur when v < c(v). As a result, maximizing the 
buyer’s expected payoff is equivalent to finding a disclosure function D(·) that minimizes the 
expected price paid:∑

{s∈S:inf[D−1(s)]≥v̂}
inf[D−1(s)]

∫
D−1(s)

dF (v), (14)

subject to satisfying a set of efficiency constraints. These efficiency constraints require that all 
the prices the seller optimally quotes in equilibrium will be accepted by the buyer whenever 
v > c(v):

ps ≤ inf[D−1(s)] ∀s ∈ S : inf[D−1(s)] ≥ v̂, (15)

where we assume, without loss of generality, that the disclosure function D(·) separates all real-
izations of v based on whether trade is strictly beneficial or not, that is,13

{v ∈ D−1(s) : v ≤ c(v)} ∩ {v ∈ D−1(s) : v > c(v)} = ∅ ∀s ∈ S. (16)

13 Under Proposition 1, it is still possible to have a signal s where v̂ ∈ (inf{D−1(s)}, sup{D−1(s)}) as long as ps = v̂. 
However, we have already shown that the seller never finds it optimal to quote a price below v̂, regardless of the buyer’s 
disclosure. Hence, a disclosure plan that includes this particular signal s would yield the same trading outcomes as an 
alternative disclosure plan where the signal s is split into two new signals, based on whether v ≤ v̂ and v > v̂. To simplify 
the exposition of our results, we assume that whenever relevant, it is this refined, yet equivalent, disclosure plan that is 
chosen by the buyer.
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Ideally, the buyer would like to pool all realizations where trade creates a surplus into one signal 
if this did not violate the efficiency constraint (15), as doing so would imply that the expected 
price he pays is just v̂. Yet, whenever condition (4) is violated, the efficiency constraint (15)
would also be violated under such a plan, and would lead to inefficient rationing. As a result, 
the buyer’s optimal disclosure plan has to provide some separating information conditional on 
v ≥ v̂, enough to ensure that the seller is not tempted to resort to inefficient screening.

Disclosure plans that provide more information lower the seller’s incentives to screen in the 
following sense. Consider the decision of a buyer to pool or separate two generic intervals in 
a disclosure plan D(·). Let A ≡ [aL, aH ) and B ≡ [bL, bH ) denote these two intervals, where 
bL ≥ aH and aL ≥ v̂. When a pooling signal is generated by the disclosure plan, the necessary 
condition for efficient trade to occur in equilibrium is:

f (aL)(aL − c(aL)) ≥ Pr(v ∈ A ∪ B). (17)

This condition is strictly more restrictive than the corresponding condition when v ∈ A, and a 
separating signal is generated:

f (aL)(aL − c(aL)) ≥ Pr(v ∈ A). (18)

As a result, the set of the functions F(·) and c(·) for which the seller inefficiently screens the 
buyer is strictly larger when a disclosure plan D(·) pools the regions A and B . Yet, if the functions 
F(·) and c(·) are such that the seller does not resort to inefficient screening after receiving the 
pooling signal, then the buyer strictly prefers a disclosure plan that sends this pooling signal, as 
it implies that he pays a strictly lower expected price.

Related to this intuition, we will derive an additional property of a buyer’s optimal disclosure 
plan that relies on the following definition.

Definition 2. The constraint that trade has to be efficient conditional on a signal s ∈ S generated 
by a disclosure function D(·) is said to be “binding” if

�′
s(inf{D−1(s)}) = 0, (19)

or if there exists a price p̄ ∈ D−1(s) such that p̄ �= inf{D−1(s)}, and

�s(inf{D−1(s)}) = �s(p̄), (20)

where �s(p) denotes the seller’s expected payoff from quoting a price p after receiving a sig-
nal s.

Recall that ps is the price the seller quotes to maximize his conditional expected payoff. 
Suppose an optimal disclosure plan involves n signal realizations s ∈ {1, ..., n} for which trade 
creates a surplus (i.e., v > c(v)), and the corresponding quoted prices are denoted as p1, ..., pn. 
Without loss of generality, let p1 < p2 < ... < pn such that we can refer to s ∈ {1, ..., (n − 1)} as 
the (n − 1) lowest signal realizations. An optimal disclosure plan then must satisfy the following 
property.

Proposition 2. Under an optimal disclosure plan with n possible signal realizations for which 
v > c(v), the efficiency constraints associated with the (n − 1) lowest signal realizations are 
binding.
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Proposition 2 shows that under an optimal disclosure plan, the seller is indifferent between 
quoting an efficient price and at least one other higher, inefficient price after receiving the (n −1)

lowest signals for which v > c(v). Otherwise, the buyer could reassign a measure of types v that 
trigger the highest price quote pn under this plan to one of the lower signals without violating 
an efficiency constraint. This deviation would increase the probability with which the low signal 
is sent, without impacting the prices the seller quotes in response to any of the signals, thus 
lowering the expected price the buyer has to pay for the asset.

4. Monotone disclosure plans

So far, we have derived several properties that a buyer’s optimal disclosure plan must satisfy in 
equilibrium. In the general environment we consider, explicitly solving for the optimal disclosure 
function D(·) is a non-convex problem that involves functional optimization, which is equivalent 
to choosing an infinitely dimensional vector of choice variables indexed by v ∈ [vL, vH ]. Below, 
we impose a small set of restrictions that allow us to fully characterize the shapes of optimal 
disclosure plans. The resulting analysis will further illustrate how disclosures optimally preempt 
inefficient screening.

In environments like ours, it is common to impose monotonicity restrictions on the functions 
that agents optimally choose, as doing so significantly increases analytical tractability. For exam-
ple, monotonicity is often imposed in the security design literature,14 and some of the arguments 
used in that literature to justify monotonicity also carry over to the context of our model.15 Con-
sistent with this approach, we impose the following assumption in this section:

Assumption 2. Disclosure plans D(v) are restricted to be monotone in v.

Under this assumption, an optimal disclosure plan D(v) can be represented as follows16:

D(v) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, for v ∈ [vL, v̂], if vL ≤ c(vL),

1, for v ∈ (v̂, v2), if vL ≤ c(vL), and for v ∈ [v̂, v2) if vL > c(vL),

2, for v ∈ [v2, v3),

...

n, for v ∈ [vn, vH ],

(21)

where (n − 1) partition cutoffs v2, ..., vn, with v1 ≡ v̂ < v2 < ... < vn < vn+1 ≡ vH , separate 
the types v > v̂ into n subsets (see Section 5 for a discussion on the possible optimality of 

14 See, e.g., Innes (1990), Nachman and Noe (1994), and DeMarzo and Duffie (1999).
15 For example, if disclosure functions D(·) were not monotone, then the buyer could benefit by contributing additional 
funds to the asset before v is verified. Analogously to the argument in footnote 28 of DeMarzo and Duffie (1999), suppose 
that there are two buyer types v′ and v′′ with v′ < v′′, where under the equilibrium disclosure plan v′ is associated with a 
“higher signal” s′′ , and v′′ with a “lower signal” s′, in the sense that the buyer is charged a higher price conditional on the 
signal s′′ , that is ps′′ > ps′ . Given a realization v′, suppose the buyer can inject (v′′ − v′) into the asset before the final 
payoff v is verified. Then doing so would allow the buyer to pay the lower price ps′ , while still collecting v′ and his own 
contribution (v′′ −v′). Thus, whenever there exists a ṽ > v that is associated with a price pD(ṽ) that is lower than pD(v) , 
the buyer would have an incentive to inject (ṽ − v) into the asset and pay the lower price. If such contributions cannot 
be prevented, then only monotone disclosure functions are observed in equilibrium, and the monotonicity assumption is 
without loss of generality.
16 Note that the function D(v) that achieves the optimum is clearly not unique. For instance, instead of having signals 
S = {1, 2, 3, ..., n}, D(v) could produce the signals {2, 4, 6, ..., 2n}.
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non-monotone disclosure plans when Assumption 2 is not imposed). Moreover, this function 
satisfies condition (16) by generating a separate signal s = 0 for all realizations of v for which 
trade is not strictly beneficial, that is, for all v ∈ [vL, vH ] : v ≤ c(v).

To further increase analytical tractability, we impose the following assumption that is closely 
related to the standard assumption in auction theory that bidders’ virtual valuation functions are 
strictly increasing (e.g., Myerson, 1981).

Assumption 3. The functions h(v) ≡ f (v)
1−F(v)

and H(v) ≡ f (v)(v−c(v))
1−F(v)

are strictly increasing in v
for v ∈ [vL, vH ).

If Assumption 3 is satisfied under some distribution F(·), then it is also satisfied under any 
truncated version of that distribution.17 As a result, Assumption 3 guarantees that the seller’s 
marginal profit function conditional on each signal, which we denote by �′

s(·), crosses zero from 
above at most in one point. The seller then quotes an efficient price ps = vs for any vs > c(vs)

whenever the following condition is satisfied:

Hs(vs) ≡ f (vs)(vs − c(vs))

F (vs+1) − F(vs)
≥ 1. (22)

The proof of Proposition 1 implies that even when disclosure plans are restricted to be mono-
tone in v, an optimal plan from the buyer’s perspective has to prevent inefficient screening. Thus, 
the buyer’s problem of finding an optimal monotone disclosure function can be recast as the 
problem of finding partition cutoffs (v2, ..., vn) that minimize the expected price the buyer pays 
for all v > c(v), which is given by:

n∑
s=1

(F (vs+1) − F(vs)) vs, (23)

subject to a set of efficiency constraints, which under Assumption 3 simplify to:

Hs(vs) ≥ 1 ∀s ∈ {1, ..., n} if vL > c(vL),

lim
v↓v1

H1(v) ≥ 1 and Hs(vs) ≥ 1 ∀s ∈ {2, ..., n} if vL ≤ c(vL).
(24)

It is then useful to introduce two functions that are related to these efficiency constraints. We 
define the left efficiency bound function lb : (v̂, vH ] → R and the right efficiency bound function 
rb : [v̂, vH ) → R as follows:

lb(v) ≡
{

x ∈ [v̂, v) : f (x)(x−c(x))
F (v)−F(x)

= 1, for f (v̂)(v̂−c(v̂))

F (v)−F(v̂)
< 1,

v̂, for f (v̂)(v̂−c(v̂))

F (v)−F(v̂)
≥ 1,

(25)

rb(v) ≡
{

x ∈ [v, vH ) : f (v)(v−c(v))
F (x)−F(v)

= 1, for f (v)(v−c(v))
F (vH )−F(v)

< 1,

vH , for f (v)(v−c(v))
F (vH )−F(v)

≥ 1.
(26)

These two efficiency bound functions formalize the maximum range of types that can be pooled 
under one signal without inducing inefficient screening by the seller. If v represents the upper 
bound of such a pooling interval, then the smallest feasible lower bound of this interval is given 

17 See Lemma 1 in Glode and Opp (2016).
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by lb(v). Conversely, if we start with v as a lower bound of such a pooling interval, then rb(v)

yields the highest associated feasible upper bound.
Given the above definition of lb(·), the efficiency constraints (24) imply that:

vs ≥ lb(vs+1) ∀s ∈ {1,2, ..., n} if vL > c(vL),

vs ≥ lb(vs+1) ∀s ∈ {2,3, ..., n} if vL ≤ c(vL).
(27)

Moreover, the functions lb(·) and rb(·) allow us to derive the following useful property of opti-
mal partition cutoffs.

Lemma 2. Given any two partition cutoffs vs−1 and vs+1 with s ≥ 2 that satisfy the efficiency 
constraint vs−1 ≥ lb(lb(vs+1)) implied by (27), the interior cutoff vs that maximizes the buyer’s 
expected payoff is either equal to rb(vs−1) or equal to lb(vs+1).

Lemma 2 dramatically reduces the set of partition cutoffs that can be optimal. Given any two 
neighboring partition cutoffs vs−1 and vs+1 that do not immediately violate the efficiency con-
straints (27), the optimal interior cutoff vs takes one of two possible candidate values: rb(vs−1)

or lb(vs+1). We now derive a condition that ensures that one of these two candidates consistently 
dominates on the relevant part of the domain, that is, for v > c(v). To do so, we specify the 
function � : � → R as:

�(u,w) ≡ u · [F(rb(u)) − F(lb(w))] + rb(u)[F(w) − F(rb(u))]
− lb(w)[F(w) − F(lb(w))], (28)

where the domain of the function � is defined as follows:

� ≡
{

{(u,w) : u ∈ (lb(lb(w)), lb(w)] and w ∈ (rb(vL), vH ]}, for c(vL) ≤ vL,

{(u,w) : u ∈ (lb(lb(w)), lb(w)] and w ∈ (v̂, vH ]}, for c(vL) > vL.
(29)

The �-function represents the buyer’s expected net benefit of choosing, given some generic 
neighboring partition cutoffs u and w, an interior cutoff ṽ that is equal to lb(w) rather than equal 
to rb(u). The �-function encodes non-local properties of the functions F(·) and c(·) affecting 
the optimal disclosure plan. We can show that even when Assumption 3 is imposed, the sign of 
� is not uniquely determined (see Section 5). However, under a range of specifications for F(·)
and c(·), the �-function takes weakly positive values everywhere on it domain — we present 
below several examples involving uniform distributions or truncated Normal distributions and 
commonly used specifications for c(·) such as c(v) = c̄, c(v) = v − const , and c(v) = βv where 
this is the case.18 In cases like these, the characterization of an optimal disclosure plan becomes 
highly tractable. In light of this fact, we specify the following technical condition (which we 
relax in Section 5).

Assumption 4. The functions F(·) and c(·) imply that inf{�(u, w) : (u, w) ∈ �} ≥ 0.

We can now proceed to fully characterizing optimal disclosure plans under Assumptions 1–4.

18 In cases where the functions F(·), lb(·), and rb(·) are available in closed form, it is straightforward to verify the sign 
of the �-function analytically. Otherwise, the sign can be verified numerically.
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Proposition 3. The partition cutoffs of an optimal disclosure plan function (21) are given by a 
descending sequence starting with vn+1 = vH and where:

vs = lb(vs+1), for s = n, (n − 1), ...,3,2. (30)

When vL > c(vL), this sequence {vn, vn−1, vn−2, ..., v2} is finite. When vL ≤ c(vL), this sequence 
is infinite (that is, n → ∞) and converges to v̂ from above.

Recall that the �-function quantifies the net benefit of setting the partition cutoff vs equal to 
lb(vs+1) rather than equal to rb(vs−1), taking as given generic neighboring partition cutoffs vs−1
and vs+1. Naturally, if this net benefit is consistently positive then the buyer optimally chooses 
vs = lb(vs+1), giving rise to the optimal sequence described in Proposition 3.

The shape of the optimal disclosure plan and its precision in different parts of the support of 
v are intimately linked to the seller’s screening incentives. Recall that the seller, after receiving 
a signal s, is incentivized to marginally increase the price relative to the efficient price p = vs

unless:

f (vs)(vs − c(vs)) ≥ F(vs+1) − F(vs). (31)

To ensure efficient trade, the mass of types that are pooled in an interval, (F (vs+1) − F(vs)), 
must be small enough relative to the product of the density f (vs) and the gains to trade [vs −
c(vs)] at the lower bound of the interval. In other words, the precision of a disclosure plan in a 
given part of the support of v is decreasing in both the gains to trade and the density.

Equipped with these results, we now turn to several examples that illustrate how the funda-
mentals of our environment, as described by the CDF F(·) and the seller’s valuation function 
c(·), affect the buyer’s optimal disclosure plan D(·). In all these examples, Assumptions 1–4
are satisfied, implying that an optimal disclosure plan’s partition cutoffs are characterized by the 
descending sequence defined in Proposition 3. Thus, in all these disclosure plans, the highest par-
tition cutoff vn is set equal to lb(vH ), which also coincides with the price the seller would quote 
absent disclosures. If additional separating information is needed to avoid inefficient screening 
by the seller, the buyer specifies another partition cutoff vn−1 = lb(vn) < vn, which coincides 
with the price the seller would charge conditional on knowing that the CDF of v is F(v|v < vn). 
These steps are repeated until the disclosure plan yields full efficiency.

Varying the seller’s valuation. First, we return to the environment considered in Examples 1
and 2, where v ∼ U [1, 2] and where the seller values the asset at a constant c̄. Since the PDF 
associated with a uniform distribution does not vary on its support, it follows immediately from 
condition (31) that any variation in disclosure precision must be driven by the magnitude of the 
gains to trade.

The panels in Fig. 1 illustrate two distinct specifications for the gains to trade. In Panel (a), 
we set c̄ = 0.5 < 1, implying that the gains to trade are always positive and trade must occur for 
all v ∈ [1, 2] in order to be efficient. In Panel (b), we set c̄ = 1.25 > 1, implying that the gains to 
trade are only positive when v ≥ 1.25. In the first case, illustrated by Panel (a), the buyer finds 
it optimal to disclose relatively little information, as graphically represented by a largely “flat” 
disclosure function that pools large regions of v. The optimal plan releases only two signals that 
split the domain of v into two subintervals that are associated with the prices p1 = vL = 1 and 
p2 = lb(vH ) = 1.25. Doing so suffices to ensure efficient trade. In contrast, absent disclosure, 
gains to trade would be destroyed with probability 0.25. Both agents benefit from the buyer’s 



V. Glode et al. / Journal of Economic Theory 175 (2018) 652–688 669
Fig. 1. Changing the seller’s value c. The graphs illustrate the PDF and the optimal disclosure plan for v ∼ U [1, 2], 
where c(v) = c̄ = 0.5 (Panel (a)) and c(v) = c̄ = 1.25 (Panel (b)). The vertical axis on the left of each graph corresponds 
to the dashed line that plots the PDF f (v), and the vertical axis on the right corresponds to the solid line that plots the 
partition cutoff vs (with s = 1, ..., n) of the optimal disclosure function for all v ∈ [vs , vs+1). Moreover, in Panel (b), the 
graph plots vL for v ∈ [vL, ̂v], where the generated signal is s = 0.

optimal disclosure plan, and disclosure increases the ex ante expected surplus from trade by 
19%, relative to the case without disclosure.

In the second case, illustrated in Panel (b), the optimal disclosure plan consists of an infinite 
number of signals. Compared to Panel (a), the buyer discloses relatively more information, as 
shown by a disclosure function that is more sensitive to the underlying value of v. The higher 
reservation value of the seller naturally increases the prices that the buyer has to pay, and in-
creasing incentives to resort to inefficient screening imply that the buyer has to provide more 
separating information as (v − c̄) decreases. Since the seller does not extract any surplus when 
quoting an efficient price equal to c̄, his incentives to screen become so strong when v approaches 
c̄ from above that the buyer can only preempt screening by designing a disclosure plan that also 
becomes infinitely precise as v approaches c̄ from above. Disclosure leads again to efficient 
trade and benefits both agents, increasing the total surplus from trade by 33%, relative to the case 
without disclosure.

In Fig. 2 we introduce common value uncertainty, that is, the seller’s valuation now depends 
on v. In Panel (a), the specification maintains the property that gains to trade are increasing in v, 
implying that partitions are finer for lower values of v. In contrast, in Panel (b) we consider 
constant gains to trade c(v) = v − 0.2, where the optimal partitions are of equal size. Interest-
ingly, in this case, the �-function takes the value zero everywhere on the domain �, indicating 
that it is irrelevant whether the optimal plan is constructed by the descending sequence stated 
in Proposition 3, or by an ascending sequence where vs = rb(vs−1). This result obtains due to 
the knife-edge case that both the gains to trade [v − c(v)] and the density f (v) are constant in 
this scenario. In Section 5, we discuss an example where the gains to trade are decreasing in 
v, the �-function takes consistently negative values, and the optimal plan is constructed by an 
ascending sequence of partition cutoffs.

So far, our examples have illustrated how more precise disclosures naturally occur in parts 
of the domain of v where the gains to trade are small but positive. Thus, when gains to trade 
are increasing in the fundamental v, disclosures tend to be more precise in the left tail of the 
distribution. Relatedly, disclosure plans vary based on the presence of private and common value 
uncertainty. In the private value case where c(v) = c̄ for all v (see both panels in Fig. 1), dis-
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Fig. 2. Proportional and constant gains to trade. The graphs plot the PDF and the optimal disclosure plan for v ∼
U [1, 2] when gains to trade are increasing, c(v) = 0.8 ·v (Panel (a)), and when gains to trade are constant, c(v) = v−0.20
(Panel (b)). The vertical axis on the left of each graph corresponds to the dashed line that plots the PDF f (v), and the 
vertical axis on the right corresponds to the solid line that plots the partition cutoff vs (with s = 1, ..., n) of the optimal 
disclosure function for v ∈ [vs , vs+1).

closures become more precise for lower values of v, as long as gains to trade are positive. In 
the pure common value case shown in Fig. 2b, constant gains to trade generate no variation in 
screening incentives, and thus there is no need to vary precision on the support of v. While the 
examples thus far have abstracted from any variation in the PDF of the buyer’s valuation (in 
all examples v followed a uniform distribution), we now turn to examples exploring this chan-
nel.

Varying the distribution of the buyer’s valuation. As highlighted above, our results in Propo-
sition 3 apply to a variety of standard specifications for the distribution of v. In Figs. 3 and 4 we 
consider several examples where v follows a truncated normal distribution. For simplicity, these 
examples assume that c(v) = c̄ < vL, implying that the optimal disclosure plans create a finite 
number of partitions.

First, in the two panels of Fig. 3, we consider normal distributions that are centered on the 
support [vL, vH ]. The two panels vary the dispersion of the distribution. In Panel (a) dispersion is 
lower, implying that the density f (v) takes lower values in the tails of the distribution. Following 
our earlier discussion in relation to condition (31), two channels now increase the incentives for 
the seller to screen the buyer in the left tail of the distribution. First, the gains to trade (v − c̄) are 
smaller for lower realizations of v. Second, the density f (v) takes lower values in the tails, again 
reducing the left-hand side of the inequality (31) for low realizations of v. As a result of these 
two effects, the optimal disclosure plan provides relatively more information for low realizations 
of v.

In contrast, in Panel (b) the dispersion of the v-distribution is higher, implying that the density 
f (v) takes larger values in the tails of the distribution. Thus, the seller’s incentives to screen are 
lower, allowing the buyer to design an optimal disclosure plan that reveals less information. 
The high dispersion case is more profitable for the buyer, as it implies that the seller has less 
precise information about v ex ante. As a result, the buyer can extract larger information rents in 
equilibrium — the buyer’s surplus is 21% higher in Panel (b) than it is in Panel (a), even though 
the mean asset value and the total gains to trade are identical across the two panels.

Finally, in the two panels of Fig. 4, we also consider cases where the buyer’s valuation v
follows truncated normal distributions, but here we vary the mean of the distribution, implying 
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Fig. 3. Mean-preserving spread in v. The graphs plot the PDF and the optimal disclosure plan for v ∼ N(1.5, 0.1)

(Panel (a)) and for v ∼ N(1.5, 0.2) (Panel (b)), where the normal distributions are each truncated by the boundaries 
vL = 1 and vH = 2. In both panels c(v) = c̄ = 0.5. The vertical axis on the left of each graph corresponds to the dashed 
line that plots the PDF f (v), and the vertical axis on the right corresponds to the solid line that plots the partition cutoff 
vs (with s = 1, ..., n) of the optimal disclosure function for v ∈ [vs , vs+1).

Fig. 4. Changing the skewness of v. The graphs plot the PDF and the optimal disclosure plan for v ∼ N(1.25, 0.15)

(Panel (a)) and for v ∼ N(1.75, 0.15) (Panel (b)), where the normal distributions are each truncated by the boundaries 
vL = 1 and vH = 2. In both panels c(v) = c̄ = 0.5. The vertical axis on the left of each graph corresponds to the dashed 
line that plots the PDF f (v), and the vertical axis on the right corresponds to the solid line that plots the partition cutoff 
vs (with s = 1, ..., n) of the optimal disclosure function for v ∈ [vs , vs+1).

variation in skewness. In Panel (a) the distribution is right skewed. Following our arguments 
above, as the density f (v) takes relatively high values for low realizations of v, this distribution 
discourages inefficient screening. As a result, the buyer discloses little information. In contrast, 
under the left-skewed distribution in Panel (b), the seller’s incentives to screen are larger, imply-
ing that the buyer’s optimal disclosure plan has to provide relatively more information about the 
underlying value v.

5. Robustness and extensions

In this section, we consider several alternative specifications of the environment to highlight 
the robustness of our main results.
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Fig. 5. Negative �-function. The graphs plot the PDF and the optimal disclosure plan for v ∼ U [1, 2] and c(v) =
1.1 · v − 0.3. The vertical axis on the left corresponds to the dashed line that plots the PDF f (v), and the vertical axis on 
the right corresponds to the solid line that plots the partition cutoff vs (with s = 1, ..., n) of the optimal disclosure function 
for v ∈ [vs , vs+1). Since the �-function takes negative values everywhere on its domain �, the optimal disclosure plan’s 
partition cutoffs are constructed via an ascending sequence with vs = rb(vs−1).

5.1. Negative �-functions

In Section 4, we considered a variety of examples where Assumption 4 was satisfied, that 
is, where the �-function took positive values everywhere on its domain �. Now, we relax this 
assumption and briefly characterize optimal monotone disclosure plans when the �-function 
instead takes negative values everywhere on its domain.

In particular, when c(vL) < vL and �(vs−1, vs+1) < 0 for all (vs−1, vs+1) ∈ �, an optimal 
disclosure plan is constructed as follows: the partition cutoffs are determined by an ascending 
sequence starting with v1 = vL and vs = rb(vs−1), until vn+1 = vH ≥ rb(vn). The economics 
underlying this optimal disclosure plan still follow the same principles as in the baseline case — 
the buyer’s optimal plan creates partitions that pool as many types v as possible without violating 
the efficiency constraints.

Fig. 5 illustrates the optimal monotone disclosure plan for a case where the surplus from trade 
[v − c(v)] is decreasing in v and the density is uniform, resulting in a �-function that takes 
negative values everywhere on the domain � (yet Assumption 3 is satisfied). Since generically 
not all efficiency constraints can be binding (when constructing an ascending or descending 
sequence either the top or the bottom constraint does not bind), the buyer here chooses the (n −1)

lowest constraints to be binding, as the gains to trade are higher for lower v-types.

5.2. Non-monotone disclosure plans

In Section 4, we restricted disclosure plans to be monotone (Assumption 2), which greatly 
increased the tractability of the analysis. When Assumption 2 is not imposed, all equilibrium 
properties derived in Section 3 apply, but explicitly solving for the buyer’s optimal disclosure 
plan is complicated by the presence of more degrees of freedom. In this subsection, we show 
that Assumptions 3 and 4 are not sufficient conditions to ensure that optimal disclosure plans are 
monotone.19 To do so, we proceed by contradiction. In particular, in Fig. 6 we revisit our earlier 

19 Non-monotone disclosures also emerge in Goldstein and Leitner (2017) and Inostroza and Pavan (2017) who both 
study the information design problem of a regulator in the context of bank stress tests.
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Fig. 6. Non-monotone disclosure. The graphs plot the PDF and a non-monotone disclosure plan for v ∼ U [1, 2]
and c(v) = c̄ = 1.25. The vertical axis on the left corresponds to the dashed line that plots the PDF f (v), and 
the vertical axis on the right corresponds to the solid line that illustrates which buyer types v are pooled. For 
v ≤ 23/16 the proposed non-monotone plan features the same partition cutoffs as the optimal monotone plan does 
(see Fig. 1b and Proposition 3). For v > 23/16, the plan assigns distinct signals to the following three subsets: 
{{(23/16,51/32] ∪ (63/32,2]} , {(51/32,31/16]} , {(31/16,63/32]}}.

example from Fig. 1b, and propose a non-monotone plan that improves the buyer’s surplus, 
relative to the one obtained under the best monotone plan. This non-monotone plan is identical 
to the one in Fig. 1b for all values of v ≤ 23

16 . Yet, whereas the optimal monotone plan assigns all 
values v > 23

16 to one of two signals, the proposed non-monotone plan in Fig. 6 assigns them to 
one of three (non-monotone) signals (see details in the figure’s caption). This alternative plan still 
ensures efficient trade, but it makes the buyer strictly better off — his ex ante surplus increases 
by about 1%.

While this particular example considered a case where the gains to trade cross zero from below 
at an interior point, it is also straightforward to show that the optimal monotone plans considered 
under Assumptions 3 and 4 are generally not optimal when the gains to trade are already strictly 
positive at the lower bound vL and Assumption 2 is not imposed. Consistent with Definition 2, 
an efficiency constraint (24) of a monotone disclosure function D(·) is binding for a signal s if 
it holds with equality.20 Note that the earlier result that the (n − 1) lowest efficiency constraints 
must be binding in equilibrium (Proposition 2) does not hold once we restrict disclosure functions 
to be monotone – the proof of Proposition 2 relies on a deviation that is not feasible when disclo-
sure plans are restricted to be monotone. In fact, the optimal plan characterized in Proposition 3
implies that the efficiency constraints with the (n − 1) highest signal realizations are binding, 
but generally not the lowest efficiency constraint. For example, when vL > c(vL), the optimal 
plan in Proposition 3 will generically imply that conditional on the signal s = 1 being sent, the 
efficiency constraint is non-binding, that is, H1(v1) > 1. While imposing Assumption 2 therefore 
does affect the shape of optimal disclosure plans, we highlighted above that monotonicity may 
be viewed as a plausible restriction in an environment like ours (see in particular footnote 15).

5.3. Interim disclosure

In Section 3, we assumed that the buyer designs his disclosure plan prior to obtaining private 
information. We now study the robustness of our results to “interim” disclosure, that is, the sce-

20 Note that Hs(vs) = 1 is equivalent to �′
s (vs) = 0.
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nario where the buyer chooses the disclosure plan after obtaining private information but before 
the realization of v becomes publicly observable, in line with Grossman (1981), Milgrom (1981), 
and the large literature that followed. We will show that equilibria satisfying sensible and well-
known refinements must feature partial information disclosure leading to socially efficient trade, 
just as in our baseline setting (see Proposition 1). We will also show that any equilibrium of the 
ex ante disclosure game can be sustained in the interim disclosure game under these equilibrium 
refinements.

The timeline of the sequential game we now study is as follows. First, the buyer privately 
observes his valuation/type v. Second, he designs an ex post verifiable signal D(v) that he sends 
to the seller. In the context of interim disclosure (where the buyer does not commit ex ante to 
a mapping between realizations of v and signals), ex post verifiability requires that any signal 
s = D(v) is itself a Borel set in [vL, vH ] and that v ∈ D(v) for any v. Since D(v) is now designed 
by the buyer after he observes v, we can interpret D(v) as the pure-strategy message that the 
buyer sends in this signaling game (see also Bertomeu and Cianciaruso, 2017). Finally, upon 
receiving a signal s, the seller forms beliefs about the buyer’s type v, which we denote by the 
distribution function μ(s) ∈ �([vL, vH ]).21 Then the seller quotes a price, which we now denote 
as p(s), to maximize his expected profit, and the buyer decides whether to accept. A buyer’s 
optimal strategy in that last stage is simply to accept the offer if and only if the quoted price is 
weakly less than v. For ease of exposition, we do not introduce extra notation for this final stage 
and directly impose that the buyer follows this dominant strategy. We dub this signaling game as 
the interim disclosure game and define an equilibrium as follows.

Definition 3. A (D(·), μ(·), p(·)) profile forms a perfect Bayesian equilibrium of the interim 
disclosure game if:

1. For every possible signal s, p(s) solves maxp{�s(p)}, where �s(p) denotes the seller’s 
expected profit if he quotes a price p and the buyer’s valuation is drawn from μ(s).

2. For every v ∈ [vL, vH ], D(v) solves maxs{max[v − p(s), 0]}, where v ∈ D(v).
3. For every s in the range of D (i.e., every Borel set s that can be disclosed in equilibrium), 

the seller’s belief μ(s) is obtained by applying Bayes’ rule given the particular signal s.

Since beliefs are unrestricted following off-equilibrium deviations, there exist beliefs such 
that the seller (who has market power) drives the buyer’s information rents to zero following any 
off-equilibrium deviation in disclosure. This leads to the existence of multiple perfect Bayesian 
equilibria with various degrees of information revelation, as opposed to a unique equilibrium 
with full revelation as in Grossman (1981) and Milgrom (1981) (see Perez-Richet, 2014, for 
a broader discussion of equilibrium multiplicity when the information designer picks a signal 
structure after acquiring private information).22

Given this multiplicity, we restrict our attention to the sets of equilibria that survive either 
of two standard refinements. An important insight from our baseline model was that the buy-

21 We use �([vL, vH ]) to denote the set of all possible probability distributions on [vL, vH ].
22 For instance, either full disclosure, partial disclosure, or no disclosure can be supported in equilibrium if the seller has 
the following beliefs: if for any s not in the range of D (that is, whenever s is an off-equilibrium signal), the belief μ(s)

assigns probability 1 to type v̄(s), where v̄(s) ≡ sup{s} (recall that s is a Borel set). Here, an equilibrium is said to feature 
full disclosure if μ(D(v)) assigns probability 1 to type v, whereas it is said to feature no disclosure if D(v) = [vL, vH ]
for all v ∈ [vL, vH ], and thus μ([vL, vH ]) is equal to F(v), the prior distribution of v.
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er’s preferred disclosure plan leads to socially efficient trade in equilibrium (see Proposition 1). 
Thus, we first study the set of equilibria that the buyer “prefers” among the multiple equilibria of 
the interim disclosure game to capture the spirit of our baseline setting where the buyer moved 
first, before any private information was obtained. What it means for the buyer to “prefer” an 
equilibrium here is, however, complicated by the fact that he can be of many types when de-
signing the disclosure plan. We define as buyer-preferred equilibria the set of equilibria that are 
not dominated among buyer types — in the Pareto sense — by another equilibrium based on 
their interim payoffs. Consistent with Riley (1975) and Riley (1979), we treat different types as 
distinct players.

For robustness, we also consider an alternative equilibrium refinement known as Grossman–
Perry–Farrell, based on the perfect sequential equilibrium of Grossman and Perry (1986) and the 
neologism-proof equilibrium of Farrell (1993).23 This refinement is commonly used in models 
of verifiable disclosure (see, e.g., Bertomeu and Cianciaruso, 2017, and the references therein). 
Instead of comparing equilibria in a Pareto sense as above, this refinement eliminates equilibria 
with off-equilibrium beliefs deemed unreasonable given agents’ incentives to deviate from their 
equilibrium strategies. We now state our first result for the interim disclosure game.

Proposition 4. In any buyer-preferred equilibrium or Grossman–Perry–Farrell equilibrium of 
the interim disclosure game, the buyer’s optimal disclosure is partial and yields socially efficient 
trade.

This proposition shows, using a logic similar to the one used in Proposition 1, that any 
equilibrium in which trade is socially inefficient is dominated from the buyer’s perspective by 
an equilibrium that features socially efficient trade due to more informative disclosures. Thus, 
this inefficient equilibrium cannot be buyer preferred. The proposition also shows that, in such 
an equilibrium, excluded buyer types would like to form a “self-signaling set” and warn the 
seller that he is about to quote a price that will be rejected. Since this deviation is credible in a 
Grossman–Perry–Farrell sense, the seller would then adjust his beliefs and lower his price quote, 
thereby improving the efficiency of trade and making some of these excluded buyer types strictly 
better off. As a result, this inefficient equilibrium cannot survive the Grossman–Perry–Farrell 
refinement either. Moreover, since any equilibrium that features full disclosure leaves all buyer 
types with zero surplus, we can show that this type of equilibrium cannot survive any of these 
refinements.

Finally, the following proposition further highlights how the economics underlying the interim 
disclosure game resemble those of the ex ante disclosure game.

Proposition 5. An equilibrium disclosure plan of the ex ante disclosure game can be sustained 
in both a buyer-preferred equilibrium and a Grossman–Perry–Farrell equilibrium of the interim 
disclosure game.

Although the proposition above shows that an equilibrium of the ex ante disclosure game can 
be sustained in the interim disclosure game under either equilibrium refinement, it is straight-
forward to construct examples showing that the converse is not true. Specifically, while the 

23 We adopt the terminology “Grossman–Perry–Farrell” from Gertner et al. (1988), Lutz (1989), and Bertomeu and 
Cianciaruso (2017). See a formal definition in the proof of Proposition 4 in Appendix A.
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equilibrium allocation of surplus in the ex ante game can be shown to be unique, multiple sur-
plus allocations can be sustained in the refined equilibria of the interim game (although all these 
refined equilibria must feature partial disclosure and efficient trade, as stated in Proposition 4).24

5.4. Discrete distributions

In Section 2, we defined the CDF F(v) as continuous and differentiable and the PDF f (v) as 
taking strictly positive values everywhere on the support [vL, vH ]. These properties allowed us 
to characterize the seller’s pricing problem using standard first-order conditions, although it also 
implied that the buyer’s optimal disclosure plan is effectively an infinite dimensional object. In 
Appendix B, we show how Proposition 1 can be adapted to discrete distributions of v, and that 
in this case, the buyer’s disclosure choice reduces to an integer linear programming problem. As 
a result, standard optimization methods yield full characterizations of optimal disclosure plans, 
even when monotonicity is not imposed (see Appendix B for an example).

A minor difference that arises with discrete distributions is that there may exist cases where 
the alternative, more efficient disclosure plan makes the buyer only weakly better off (rather than 
strictly better off). Under the tie-breaking rule introduced in Section 2 (i.e., whenever indifferent 
an agent takes the action that maximizes social surplus), the buyer’s optimal disclosure plan 
must still lead to socially efficient trade in equilibrium. However, for related reasons, the optimal 
disclosure plan may be fully revealing under special parameterizations of discrete distributions 
(e.g., when v can only take one of two values and trade would be inefficient without disclosure).

6. Concluding remarks

We characterize optimal voluntary disclosures by a privately informed agent who faces a coun-
terparty endowed with market power in a bilateral transaction. We show that when disclosures 
are ex post verifiable, the privately informed agent always finds it optimal to design a partial dis-
closure plan that implements socially efficient trade in equilibrium. Although disclosures reduce 
the agent’s private information, they benefit the agent by avoiding that he is inefficiently screened 
by his counterparty.

Our paper speaks to the fundamental forces determining whether asymmetric information im-
pedes trade in the presence of imperfect competition. We show that in a relevant class of settings, 
efficient trade should not be impeded, in particular, when information is ex post verifiable, truth-
fulness is enforced, and private information pertains only to the bilateral transaction considered. 
By the same token, our results highlight conditions that would need to be violated in practice 
in order for inefficiencies to arise. Only in the presence of such violations might improving effi-
ciency require the involvement of informed intermediaries,25 signaling through trade delays,26 or 
an external regulatory intervention.27 Our insights thus have relevant implications for regulating 
information disclosure in bilateral transactions. Under the conditions we lay out, regulators only 

24 For example, we can construct a buyer-preferred equilibrium in the parameterization with v ∼ U [1, 2] and c̄ = 0.5
where the buyer only discloses whether v ∈ [1, 1.5) or v ∈ [1.5, 2]. In this equilibrium of the interim disclosure game, 
the seller collects an expected surplus of 0.75, whereas the buyer collects an expected surplus of 0.25. This allocation of 
surplus is not the equilibrium outcome of the ex ante disclosure game.
25 As in, e.g., Biglaiser (1993), Li (1998), Glode and Opp (2016), and Zhang (2018).
26 As in, e.g., Fudenberg et al. (1985).
27 As in, e.g., Tirole (2012), Goldstein and Leitner (2017), and Faria-e-Castro et al. (2017).
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need to enforce the truthfulness of disclosures by disciplining agents who send signals that ex 
post prove to violate their own disclosure standards. Agents then have incentives to share their 
private information in ways that maximize the social efficiency of trade.

Our analysis also provides relevant predictions related to existing disclosure practices in fi-
nancial markets. For instance, the two distinguishing features of our environment — (1) the 
separation of market power and private information and (2) ex post verifiability — may shed 
light on the reasons why disclosures in practice are often coarse. That is, even if the underlying 
information is continuous, disclosures in financial markets in many cases assign agents or insti-
tutions to discrete categories, such as for example credit ratings do.28 According to our theory, 
coarse disclosures of this type might be for example in the interest of security issuers when facing 
investors that have market power.29

Overall, these arguments suggest that the economic forces highlighted by our model yield 
relevant insights on existing disclosure practices in financial markets, and might help gauge the 
benefits of regulatory interventions. Extensions of our framework that provide more concrete 
applications to specific contexts, such as credit ratings, are a promising endeavor that we leave 
for future research.

Appendix A. Proofs omitted from the text

Proof of Lemma 1. Let F , E, and � denote the CDF, the expectation operator, and the profit 
function under the initial distribution of v. We use a subscript 0 to indicate the counterparts of 
these functions under the truncated distribution of v. The seller’s expected payoff from quoting 
p under F0(v) can be written as:

�0(p) = (1 − F0(p))p + F0(p)E0[c(v)|v < p]
=

(
1 − F(p)

1 − F(p̃)

)
p +

(
F(p) − F(p̃)

1 − F(p̃)

)
E[c(v)|p̃ ≤ v < p]

= 1

1 − F(p̃)

⎡⎢⎣(1 − F(p))p +
p∫

p̃

c(v)dF (v)

⎤⎥⎦
= 1

1 − F(p̃)

⎡⎢⎣ vH∫
p

pdF(v) +
p∫

vL

c(v)dF (v) −
p̃∫

vL

c(v)dF (v)

⎤⎥⎦
= 1

1 − F(p̃)

⎡⎢⎣�(p) −
p̃∫

vL

c(v)dF (v)

⎤⎥⎦ . (A.1)

28 It is useful to recall that we can reverse the roles of the buyer and the seller in our environment without affecting 
the key predictions of our theory: the issuer of a security can have private information about v, and the buyer can be 
the one making the take-it-or-leave-it offer. Moreover, a rating agency, which in practice is hired by the issuer, could be 
interpreted as a device for the seller to commit to a particular disclosure plan.
29 As the debt market is relatively concentrated (see, e.g., Biais and Green, 2007), debt investors are likely to have 
some bargaining power in their interactions with issuers. The regulatory use of issuer-paid ratings may also affect rating 
agencies’ disclosure policies (see, e.g., Opp et al., 2013).
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The seller’s expected payoff from quoting p under F0(v) is thus a positive linear transformation 
of �(p). Since by definition quoting p = p̃ maximizes �(p) among all p ∈ [vL, vH ], it must 
also maximize the seller’s expected payoff under F0(v) among all p ∈ [

p̃, vH

]
. �

Proof of Proposition 2. We argue by contradiction. Suppose the efficiency constraint is not 
binding for a signal realization s = j , despite it being one of the (n − 1) lowest realizations in S
where trade is efficient, implying that:

�′
j (pj ) �= 0, and �j(pj ) > �j (p),∀p �= pj . (A.2)

Since pj is the optimal price conditional on receiving a signal s = j , it follows that �′
j (pj ) < 0.

Take the highest signal s = n and denote v̄n ≡ sup{D−1(n)}. Without loss of generality, as-
sume that v̄n is not a singleton of D−1(n).30 For a small ε > 0, the interval (v̄n − ε, v̄n) ⊂
D−1(n). Now, consider the following alternative disclosure plan:

D̃(v) ≡

⎧⎪⎨⎪⎩
D(v) if D(v) �= n,

j else if D(v) = n,v ∈ (v̄n − ε, v̄n),

n otherwise.

(A.3)

Let �̃s(p) denote the seller’s payoff from quoting a price p conditional on receiving a signal s
under the disclosure plan D̃.

We first show that we can pick ε small enough such that the optimal quoted price conditional 
on receiving s = j under the disclosure plan D̃ is the same as under the disclosure plan D. By 
contradiction, suppose that for any εm → 0, there exists a price candidate ym ∈ D̃−1(j) such 
that:

�̃j (ym) > �̃j (pj ). (A.4)

Since {ym : m = 1, 2, ...} is a bounded sequence, there exists a convergence subsequence {ymk
:

k = 1, 2, ...} (Bolzano–Weierstrass theorem). Suppose ymk
→ y. If y �= pj , using εm → 0 in 

equation (A.4) with ymk
implies that �j(y) ≥ �j(pj ), which is contradicted by the assumption 

that the constraint is not binding conditional on the signal realization s = j . Thus, it must be that 
y = pj . From equation (A.4) and Lagrange’s Mean Value Theorem, it follows that there exists 
zmk

∈ (pj , ymk
) such that �̃′

j (zmk
) > 0. Since ymk

→ pj , we also have zmk
→ pj . Taking limit 

on �̃′
j (zmk

) > 0 yields �′
j (pj ) ≥ 0, which is a contradiction since the efficiency constraint after 

a signal s = j is not binding.
We next show that the optimal quoted price conditional on receiving s = n under the disclo-

sure plan D̃ is the same as under disclosure plan D. To do so, we need to show that:

�̃n(inf{D−1(n)}) ≥ �̃n(p),∀p. (A.5)

Again, we show this by contradiction. Suppose there exists p0 < v̄n such that �̃n(p0) >
�̃n(inf{D−1(n)}). Let ξ ≡ Pr(v ∈ D−1(n)) and η ≡ Pr(v ∈ (v̄n − ε, v̄n)). In other words, ξ is 
the probability that the signal realization is s = n under the disclosure plan D whereas η is the 
probability that v falls in the region that used to be associated with s = n under the disclosure 
plan D, but is now associated with s = j under the disclosure plan D̃. Consider the seller’s profit 

30 Otherwise, we can let v̄n = sup{D−1(n) \ {max{D−1(n)}}}.
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by quoting p0 conditional on receiving s = n under the disclosure plan D. We can pick ε small 
enough such that all buyer types in (v̄n − ε, v̄n) would accept the quoted price p0, implying that:

�n(p0) =
(

1 − η

ξ

)
�̃n(p0) + η

ξ
p0, (A.6)

or equivalently,

ξ�n(p0) = (ξ − η) �̃n(p0) + ηp0. (A.7)

Since p0 > inf{D−1(n)}, then

ξ�n(p0) > (ξ − η)�n(inf{D−1(n)}) + η inf{D−1(n)}
= ξ inf{D−1(n)}
= ξ�n(inf{D−1(n)}). (A.8)

This inequality is contradicted by the fact that inf{D−1(n)} is the optimal price to quote when 
the seller receives the signal s = n under the disclosure plan D.

Lastly, we know that buyer types whose valuation v belongs to (v̄n − ε, v̄n) pay a lower 
price under the new disclosure plan. The buyer’s payoff under the disclosure plan D̃ is thus 
strictly higher than under D. Thus, if the efficiency constraint is not binding after the signal 
s = j , we can construct an alternative disclosure plan that strictly improves the buyer’s payoff, 
contradicting the conjectured optimality of D. �
Proof of Lemma 2. For any given partition cutoffs vs−1 and vs+1 with s ≥ 2 that satisfy the 
efficiency constraint vs−1 ≥ lb(lb(vs+1)) implied by (27), the buyer’s marginal cost of increasing 
vs (if feasible given efficiency constraints) is given by the partial derivative of the expected price 
paid by the buyer (23) with respect to vs :

∂
(∑n

s=1 (F (vs+1) − F(vs)) vs

)
∂vs

= (F (vs+1) − F(vs)) − f (vs)(vs − vs−1). (A.9)

We first show that for any two partition cutoffs vs−1 and vs+1 with s ≥ 2 that satisfy the efficiency 
constraint vs−1 ≥ lb(lb(vs+1)) implied by (27), the marginal cost (A.9) as a function of vs crosses 
zero at most once. Setting equation (A.9) equal to zero and rearranging, we obtain:

f (vs)(vs − vs−1)

F (vs+1) − F(vs)
= 1. (A.10)

Note that hs(v) = f (v)
F (vs+1)−F(v)

, and thus, 
∂
(
hs(v)(v−vs−1)

)
∂v

= h′
s(v)(v − vs−1) + hs(v) > 0 for 

v ∈ (vs−1, vs+1), implying that the left-hand-side of equation (A.10) is an increasing function of 
vs . Thus, the marginal cost (A.9) crosses zero at most once from above. Then the expected price 
paid by the buyer (23) is first increasing and then decreasing in vs for vs ∈ [lb(vs+1), rb(vs−1)]. 
Consequently, the buyer’s expected payment (23) must reach its minimum when vs is equal 
to either rb(vs−1) or equal to lb(vs+1). Lemma 2 considers partition cutoffs vs−1 and vs+1
satisfying the inequality vs−1 ≥ lb(lb(vs+1)). As rb(·) is a monotone function, we can apply 
it on both sides of this inequality to verify that rb(vs−1) ≥ lb(vs+1) (here, rb(·) is simply the 
inverse function of lb(·), such that rb(lb(lb(vs+1))) = lb(vs+1)). �
Proof of Proposition 3. Lemma 2 implies that if the buyer’s optimal disclosure plan includes 
the cutoffs vs−1 and vs+1, then it must be that vs is either equal to rb(vs−1) or equal to lb(vs+1). 
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To evaluate whether vs = lb(vs+1) dominates vs = rb(vs−1) for all possible values that vs−1 and 
vs+1 can take (as defined by the domain �), we define the difference in the expected prices paid 
by the buyer when choosing vs = rb(vs−1) instead of vs = lb(vs+1):

�(vs−1, vs+1) = [vs−1 · (F (rb(vs−1)) − F(vs−1)) + rb(vs−1) · (F (vs+1) − F(rb(vs−1)))]
−[vs−1 · (F (lb(vs+1)) − F(vs−1)) + lb(vs+1) · (F (vs+1) − F(lb(vs+1)))].

(A.11)

If �(vs−1, vs+1) ≥ 0 everywhere on the domain � then choosing vs = lb(vs+1) always (weakly) 
dominates and is the optimal solution, implying that the proposed descending sequences deter-
mine the optimal partition cutoffs.

If vL > c(vL), the gains to trade are bounded away from zero everywhere on the domain. 
Given the definition of lb(·) in (25), we can see that in this case, the optimal sequence reaches vL

in a finite number of steps, that is, the optimal plan consists of a finite number of partitions that 
each pool strictly positive measures of types (F (vs+1) − F(vs)). In contrast, if vL ≤ c(vL), then 
the gains to trade converge to zero as v approaches v̂ from above, such that the measure of types 
that can be pooled in each interval also has to converge to zero. The optimal plan then consists 
of an infinite sequence of cutoffs converging to v̂ from above. �
Proof of Proposition 4. (i) To show that trade is socially efficient in any buyer-preferred equi-
librium (D(·), μ(·), p(·)), we argue by contradiction. Suppose there exists a signal s0 = D(v)

for some v ∈ [vL, vH ] such that p(s0) > v̂ and p(s0) > inf{v ∈ [vL, vH ] : D(v) = s0}. A buyer 
whose valuation belongs to {v : D(v) = s0} ∩ (v̂, p(s0)) would refuse to pay the seller’s quoted 
price p(s0), leading to inefficient trade. Let s′ ≡ {v ∈ s0 : v̂ ≤ v < p(s0)}. Consider the following 
candidate equilibrium (D̃(·), μ̃(·), p̃(·)), where:

D̃(v) ≡

⎧⎪⎨⎪⎩
D(v) if v /∈ s0,

s′ else if v ∈ s′,
s0\s′ otherwise .

(A.12)

We obtain μ̃(s′) and μ̃(s0\s′) using Bayes’ rule at s′ and s0\s′, respectively. For any off-
equilibrium signal s, μ̃(s) assigns probability 1 to v̄(s) ≡ sup s. For any equilibrium signal 
outside the range of s0, μ̃(s) = μ(s). Let p̃(s) maximize the seller’s expected profit if the buyer’s 
valuation is drawn from μ̃(s). It is clear that we are indeed in an equilibrium, since deviating to 
any other disclosure yields a profit of 0 for the buyer. Now consider the buyer’s interim payoffs in 
this alternative equilibrium. Buyers whose type either satisfies v /∈ s0 or v ∈ s0\s′ receive payoffs 
identical to those from the original equilibrium (D(·), μ(·), p(·)). However, buyer types in s′ re-
ceive weakly higher payoffs. Moreover, a buyer type v = (p(s0) − ε), where ε is a small positive 
number, receives a strictly higher payoff, since he made zero profit in the original equilibrium. 
Overall, if trade is not efficient in an equilibrium, then it is Pareto dominated among buyer types 
by a more efficient equilibrium. Consequently, in any buyer-preferred equilibrium of the interim 
disclosure game, trade must be socially efficient.

To show that a buyer-preferred equilibrium does not feature full disclosure, where each buyer 
type is quoted p = v and makes zero profit, it is sufficient to construct an equilibrium where some 
buyer types receive positive payoffs (as no buyer type can do worse than zero profit given their 
right to reject a price quote). Consider the equilibrium induced by the ex ante disclosure plan we 
solved for in Proposition 1 of Section 3. Formally, suppose D(·) is the verifiable disclosure plan 
chosen by the buyer in the ex ante disclosure game and let the interim disclosure follow D(v) for 
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all v ∈ [vL, vH ]. Now, let μ(·) be a belief function obtained using Bayes’ rule on the equilibrium 
path and that assigns probability 1 to the highest type for any signal off the equilibrium path. 
Lastly, p(s) maximizes the seller’s profit based on the conditional distribution μ(s). The profile 
(D(·), μ(·), p(·)) is clearly an equilibrium of the interim disclosure game. In this equilibrium, 
the buyer receives profits identical to those obtained in the ex ante disclosure game. Thus, this 
equilibrium featuring partial disclosure Pareto dominates among buyer types any equilibrium 
with full disclosure.

(ii) Before showing that the equilibrium properties stated in Proposition 4 also hold in what 
the literature often refers to as “Grossman–Perry–Farrell equilibria”, we need to formalize the 
definition of such equilibrium. Denote by U(v, s, μ(s)) the buyer’s utility if his valuation is v, 
he sends a message s, and the seller quotes an optimal price given the belief function μ(s). For 
any signal s that is a Borel set in [vL, vH ] (including off-equilibrium messages), denote by μs

the actual distribution of v conditional on v ∈ s. (Recall that we restrict the sets of signals to 
be Borel sets in the interim disclosure game, to be consistent with ex post verifiability.) As in 
Bertomeu and Cianciaruso (2017), we define a Grossman–Perry–Farrell equilibrium by ruling 
out the existence of self-signaling sets.

Definition 4. A pure-strategy perfect Bayesian equilibrium of the interim disclosure game 
(D(·), μ(·), p(·)) is called a “Grossman–Perry–Farrell equilibrium” if there does not exist a self-
signaling set, which is defined as a non-empty Borel set s ⊂ [vL, vH ] such that:

s = {v ∈ s : U(v, s,μs) > U(v,D(v),μ(D(v)))}. (A.13)

Note that only buyers whose valuation v ∈ s can send the signal s because ex post verifiability 
requires that the true valuation belongs to the chosen signal. A self-signaling set s contains all 
buyer types who could be strictly better off by sending the signal s rather than playing according 
to the considered perfect Bayesian equilibrium. A deviation from an equilibrium consists of a 
message announcing “my type is in s.”31 The deviation is credible if s is self-signaling. An 
equilibrium survives the refinement above if it does not admit any credible deviation.

To show that trade is socially efficient in any Grossman–Perry–Farrell equilibrium (D(·), μ(·),
p(·)), we argue by contradiction. Using signal s0 to denote a signal associated with inefficient 
trade as in part (i) of this proof, let s′ ≡ {v ∈ s0 : v̂ ≤ v < p(s0)} and suppose the seller would 
quote a price p′ under beliefs characterized by the conditional distribution μs′ .

Now consider the following set: s′′ ≡ {v ∈ s0 : p′ < v < p(s0)}. From Lemma 1, we know that 
the seller would also quote a price p′ under the belief characterized by the conditional distribution 
μs′′ . Thus, U(v, s′′, μs′′) > 0, ∀v ∈ s′′. Recall that all types of buyers in s′′ do not trade in the 
equilibrium (D(·), μ(·), p(·)), thus U(v, D(v), μ(D(v))) = 0, ∀v ∈ s′′. As a result, all types of 
buyers in s′′ are strictly better off by announcing “my type is in s′′,” and s′′ is a self-signaling set, 
contradicting the conjecture that a Grossman–Perry–Farrell equilibrium can feature inefficient 
trade.

To show that an equilibrium featuring full disclosure cannot survive the Grossman–Perry–
Farrell criterion, it is sufficient to construct a self-signaling set. Let pF denote the price the seller 
would quote under the prior beliefs F(·). It is clear that (pF , vH ] constitutes a self-signaling set 

31 Unlike Farrell (1993) who allows for the possibility of any type of senders announcing “my type is in s”, we assume 
only buyer types whose true valuation v ∈ s can do so, consistent with our restriction of ex post verifiability.
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in an equilibrium with full disclosure, since these buyer types would be strictly better off being 
quoted a price pF than a price equal to their respective valuation v. �
Proof of Proposition 5. We first show how to construct a strategy profile that supports the op-
timal disclosure plan of the ex ante game in the interim game. Suppose the optimal disclosure 
plan of the ex ante game is denoted by D : [vL, vH ] → S. Without loss of generality, assume S
is itself a collection of Borel sets such that D−1(s) = s, ∀s ∈ S.32 In the interim game, consider 
a candidate equilibrium in which:

1. Disclosure follows the ex ante disclosure D(v).
2. For s ∈ S, the belief μ(s) is given by F conditional on s. For any s /∈ S (that is, whenever s

is an off-equilibrium signal), the belief μ(s) assigns probability 1 to type v̄(s).
3. For every possible signal s, p(s) solves maxp �s(p), where �s(p) denotes the seller’s ex-

pected profit if he quotes a price p and the buyer’s valuation is drawn from μ(s).

We can show that the constructed strategy profile forms a buyer-preferred equilibrium. By 
contradiction, suppose (D1(·), μ1(·), p1(·)) is an equilibrium that dominates (D(·), μ(·), p(·))
among buyer types in the Pareto sense based on their interim payoffs. Let S1 = {D1(v) : v ∈
[vL, vH ]} and consider an ex ante disclosure D1 : [vL, vH ] → S1. Since μ1(·) is obtained by ap-
plying Bayes’ rule on the equilibrium path, the buyer’s expected payoff under the disclosure D1
of the ex ante game is equal to his expected payoff under the (D1(·), μ1(·), p1(·)) equilibrium of 
the interim game. It then follows that the buyer’s expected payoff under the disclosure plan D1(·)
is strictly higher than the one under the disclosure plan D(·) in the ex ante game, contradicting 
the fact that D(·) is an optimal disclosure plan of the ex ante game.

We now show that the constructed strategy profile above also forms a Grossman–Perry–
Farrell equilibrium of the interim game. We argue by contradiction, that is, suppose there 
exists a self-signaling set s0 in that case. Let S = {D(v) : v ∈ [vL, vH ]} be the set of signals 
that are on the equilibrium path. We first show that s0 /∈ S. Otherwise, the signal s0 is on the 
equilibrium path: s0 ∈ S, implying that for some v0 ∈ s0, D(v0) = s0. Then, U(v0, s0, μs0) =
U(v0, D(v0), μ(D(v0))),33 contradicting the fact that s0 is a self-signaling set.

Now we turn to the ex ante game. Let S2 = S ∪{s0}. Consider the following ex ante disclosure 
plan D2 : [vL, vH ] → S2:

D2(v) ≡
{

D(v) if v /∈ s0,

s0 otherwise.
(A.14)

For buyers whose types are not in s0, their payoffs are equal to their payoffs under the 
(D(·), μ(·), p(·)) equilibrium of the interim game. For a buyer whose type is v ∈ s0, his pay-
off is now given by U(v, s0, μs0), which is strictly greater than U(v, D(v), μ(D(v))). Thus, the 
ex ante disclosure plan D2(·) yields a strictly higher expected buyer payoff than the disclosure 
plan D(·), contradicting the fact that D(·) is an optimal disclosure plan of the ex ante game. �
32 If S is not a collection of Borel sets, then we can define S′ = {D−1(s) : s ∈ S}, which is a collection of Borel sets. 
Consider an ex ante disclosure D′(v) = D−1(D(v)) : [vL, vH ] → S′. Under this disclosure, a buyer whose type belongs 
to s′ sends the signal s′ , i.e., s′ ∈ S′ , (D′)−1(s′) = s′.
33 Recall that U(v, s, μ(s)) is the buyer’s utility if his valuation is v, he sends a message s, and the seller quotes an 
optimal price given the belief μ(s). Recall also that μs is the distribution of v conditional on v ∈ s.
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Appendix B. Additional results on optimal disclosure plans

(i) Existence of monotone disclosure equilibrium

When the disclosure function is restricted to be monotone, we can show the existence of an 
optimal disclosure plan as follows. Disclosure plans are restricted to connected intervals (parti-
tions), thus we must have i = {1, 2, ..., n} signals associated with the partitions (v1, v2), [v2, v3), 
..., [vn, vn+1], where v1 = v̂ and vn+1 = vH and n could be ∞. This notation already embeds the 
insight that the agent will disclose whenever v ≤ v̂ with a separate signal (i = 0). Our disclosure 
plan analysis thus focuses on the region where v > v̂.

Suppose that V ≡ {vi : i = 1, 2, ...} gives the cutoffs for the optimal disclosure plan associated 
with connected intervals. Let V be the closure of V .

Lemma 3. There is at most one point, v̂, that is in the closure of V but not in V , i.e., V \V ⊆ {v̂}.

Proof. From the efficient trade constraints: vi ∈ (lb(vi+1), rb(vi−1)), ∀i ≥ 1. There is no redun-
dant interval in the sense that vi+2 > rb(vi) because otherwise removing vi+1 strictly increases 
the buyer’s payoff. Now since ∀v′ �= v̂, we know that rb(v′) > v′ and lb(v′) < v′. Then there 
cannot exist a sub-sequence in V that approaches to v′, ∀v′ �= v̂, implying V \ V ⊆ {v̂}. �

We can now show that there exists {vi : i = 1, 2, ...} such that the optimal monotone disclosure 
plan can be characterized by cutoffs vi . Given Lemma 3, we construct the cutoffs starting from 
the top: suppose k0 = vH , and k1 > k2 > .... Let k = (k1, k2, ...). Recall that the buyer chooses a 
disclosure plan to minimize the expected price:

min
k

EP (k) ≡
∞∑
i=1

ki(F (ki−1) − F(ki)), (B.1)

subject to efficiency constraints:

ki ≥ lb(ki−1),∀i. (B.2)

Define the space S = {(k1, k2, ...) : k1 ≥ k2 ≥ ..., and ki ≥ 0, ∀i}, i.e., S consists of decreasing 
sequences. Define a metric on S as:

d(k1, k2) =
∞∑
i=1

2−i |k1
i − k2

i |, (B.3)

where k1 = (k1
1, k1

2, ...) and k2 = (k2
1, k2

2, ...). The metric d naturally induces a topology on S .
Define the feasible set S1 = {k ∈ S : ki ∈ [vL, vH ], and ki ≥ lb(ki−1), ∀i ≥ 1}. The feasible 

set is a bounded set because |k| ≤ ∑∞
i=1 2−i |ki | ≤ ∑∞

i=1 2−i |vH | = vH . We show that the feasible 
set is a closed set. Suppose kj ∈ S1 and kj → k0. Since |kj

i − k0
i | ≤ 2id(kj , k0) → 0, we have 

k
j
i → k0

i . Since lb(·) is a continuous function, it follows that k0
i ≥ lb(k0

i−1), i.e. k0 ∈ S1. Overall 
the feasible set is a compact set.

Let EP m(k) ≡ ∑m
i=1 ki(F (ki−1) − F(ki)). We claim that EP m(k) uniformly converges to 

EP(k) on S1. For any ε > 0, there exists k > v̂ such that F(k) − F(v̂) < ε
vH

. Since lb(ki) < ki

for all ki �= v̂ and Lemma 1, there exists a sufficiently large m, such that applying lb(·) for m
times leads to a lower value than k, i.e., lb(lb(...(lb(vH ))...)) < k. For this m, we know that 
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EP(k) − EP m(k) = ∑∞
i=m+1 ki(F (ki−1) − F(ki)) ≤ k

∑∞
i=m+1(F (ki−1) − F(ki)) ≤ k(F (k) −

F(v̂)) < k ε
vH

< ε. So EP m(·) uniformly converges to EP(·).
We next show that the objective function EP(·) is a continuous function on S1. Sup-

pose given any sequence {kj : j = 1, 2, ...} in S1 that kj → k0. We have limj→∞ EP(kj ) =
limj→∞ limm→∞ EP m(kj ) = limm→∞ limj→∞ EP m(kj ), where the exchange of lim is due to 
the uniformly convergent property. Since limm→∞ limj→∞ EP m(kj ) = limm→∞ EP m(k0) =
EP(k0), it follows that limj→∞ EP(kj ) = EP(k0) for any kj → k0.

Since a continuous function maps a compact set into a compact set, we know that EP(S1)

is a compact set. So, a minimum must be attainable, which in turns implies the existence of an 
optimal monotone disclosure plan.

(ii) Discrete distributions

As stated in Subsection 5.4, our results on optimal disclosure hold also under a discrete dis-
tribution. The main difference is that there may now exist cases where the alternative, more 
efficient disclosure plan being considered makes the buyer only weakly better off, rather than 
strictly better off as in our baseline model. Specifically, while the second term of equation (12)
in the proof of Proposition 1 is strictly positive when v is continuously distributed with strictly 
positive density everywhere on the support, this term may occasionally take a value of 0 with 
a discrete distribution. If we apply the tie-breaking rule that assumes that whenever indifferent 
between disclosure plans the buyer chooses the one that maximizes social surplus, our result 
that the buyer’s optimal disclosure plan always leads to socially efficient trade also holds with 
discrete distributions.

Formally, denote the possible realization of the distribution of v by the set {ai : 1 ≤ i ≤ n}, 
where a1 < a2 < ... < an. Suppose P(v = ai) = qi, ∀1 ≤ i ≤ n and let ci ≡ c(ai), ∀1 ≤ i ≤ n. 
Suppose k is the smallest index such that ai ≥ ci and denote v̂ = ak . As in our baseline model, 
in equilibrium the seller always quotes prices weakly greater than v̂.

Denote by D(·) the buyer’s optimal disclosure plan given the tie-breaking rule and suppose 
that trade is inefficient under a signal s0 of D(·). Just as in the proof of Proposition 1, we can 
show that there exists another disclosure plan that yields a strictly higher social surplus and a 
weakly higher profit for the buyer.

Recall that ps denotes the price the seller quotes conditional on receiving a signal s. A buyer 
whose valuation belongs to {v : D(v) = s0, v̂ ≤ v < ps0} would refuse to pay the seller’s quoted 
price ps0 , making trade inefficient. Consider the following alternative disclosure plan where S′ =
S ∪ {s′} for some s′ /∈ S and

D̃(v) ≡

⎧⎪⎨⎪⎩
D(v) if D(v) �= s0,

s0 else if D(v) = s0, v ≥ ps0,

s′ otherwise.

(B.4)

First, note that when s �= s0, nothing changes and the seller still quotes a price ps . Second, 
Lemma 1 guarantees that the seller still quotes ps0 under the alternative disclosure plan D̃(·)
when he receives a signal s0. Finally, suppose the seller quotes a price z when he receives a 
signal s′. Since quoting ps0 yields zero profit in this case, it must be that z ∈ [minD−1(s0), ps0). 
As a result, the buyer’s ex ante expected profit under the alternative disclosure plan D̃(·) is given 
by:
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Fig. 7. Discrete distribution for v. The graphs plot the PDF and an optimal disclosure plan when v follows a discrete 
uniform distribution on the support {1, 1.1, ..., 1.9, 2}, where each possible outcome has probability 1/11 and where 
c(v) = c̄ = 0.5. The vertical axis on the left corresponds to the squares that identify the PDF f (v), and the vertical axis 
on the right corresponds to the circles that plot min[D−1(s)] for v ∈ D−1(s) with s ∈ {1, 2}.

∑
s∈S

∑
ai∈D−1(s)∩[ps,vH ]

(ai − ps)qi

︸ ︷︷ ︸
Profit from s ∈ S

+
∑

ai∈D−1(s0)∩[z,ps0 )

(ai − z)qi

︸ ︷︷ ︸
Profit from s′

, (B.5)

where the profit under the disclosure plan D(·) is given by only the first term. If the second term 
is strictly positive, then the buyer earns a strictly higher profit under the disclosure plan D̃(·) than 
under the plan D(·), contradicting the optimality of D(·). If the second term is zero, the price 
must equal the highest possible realization in D̃−1(s′), i.e, z = max{v : D(v) = s0, v < ps0}. Note 
that gains to trade must be positive when the buyer’s valuation is z : z > c(z), otherwise trade is 
efficient under the signal s0. Then, the buyer with type z gets the asset under the disclosure plan 
D̃(·) but not under the plan D(·), contradicting the tie-breaking rule. We have thus shown that 
the buyer’s optimal disclosure plan must result in socially efficient trade.

Furthermore, it is easy to show that an optimal disclosure plan always exists when the distri-
bution of v is discrete. A disclosure plan basically divides the set {ai : 1 ≤ i ≤ n} into subgroups. 
Denote D the set of all possible disclosure plans. Since there are n realizations, there is a finite 
number of possible combinations of subgroups, implying that the cardinality of D is finite. Now, 
the buyer chooses a disclosure plan in D to maximize his expected payoff. Since there are finitely 
many choices, there exists a disclosure plan that gives the buyer his maximum expected payoff, 
i.e., an optimal disclosure plan always exists.

Moreover, since the choice variables are integers and the system to be solved is linear, the in-
teger linear programming problem associated with the buyer’s optimal disclosure can be solved 
without imposing monotonicity of disclosure functions. We now provide a concrete example that 
is related to our earlier Examples 1 and 2 where v is uniformly distributed. In the discrete envi-
ronment considered in Fig. 7, all possible values v have equal probability mass and the seller’s 
value is constant and equal to c̄ = 0.5. Again, the buyer’s optimization problem effectively aims 
to pool possible sets of v to minimize the expected transaction price while ensuring that trade 
remains socially efficient.

The buyer finds it optimal to split the set of realizations of v into two subsets associated with 
the signals s ∈ {1, 2}. Fig. 7 shows that the signal structure involves gaps between these subsets. 
Our restriction that disclosure plans must be ex post verifiable still allows for the design of signals 
that pool multiple disjoint subsets, and in this example, a non-monotone plan allows the buyer 



686 V. Glode et al. / Journal of Economic Theory 175 (2018) 652–688
to minimize the average price paid while preventing the seller from quoting prices that cause 
inefficient rationing.

When the seller receives a signal that v belongs to the lower combination of circles, he re-
sponds by quoting a price p = 1. When the seller instead receives a signal that v belongs to the 
higher combination of circles, quoting a price p = 1.2 maximizes his conditional expected pay-
off. In both cases, these price quotes are equal to the lowest possible realizations of v, given the 
signal, and as a result the buyer always accepts them. Note that there exist alternative disclosure 
plans that deliver identical payoffs to all agents, implying that the equilibrium disclosure plan is 
not unique, even though the allocation of the surplus is.
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