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a b s t r a c t 

We study security issuers’ decisions on whether to pool assets when facing counterpar- 

ties endowed with market power, as is common in over-the-counter markets. Our analysis 

reveals how buyers’ market power may render the pooling of assets suboptimal — both 

privately and socially — in particular, when the potential gains from trade are large. Pool- 

ing assets then reduces the elasticity of trade volume in the relevant part of the payoff

distribution, exacerbating the inefficient rationing associated with the exercise of buyers’ 

market power. Our analysis provides insight on the determinants of asset-backed securities 

issuance, including regulatory reforms affecting financial institutions’ liquidity. 
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1. Introduction 

Structured products are typically issued in over-the-

counter (OTC) markets, where asymmetric information and

market power have been shown to be prevalent frictions. 1
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comments. This research did not receive any specific grant from funding 
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1 For evidence that OTC trading often involves heterogeneously in- 

formed traders, see Green et al. (2007) , Jiang and Sun (2015) , and 

https://doi.org/10.1016/j.jfineco.2021.09.021 

0304-405X/© 2021 Elsevier B.V. All rights reserved. 
For example, issuers may face prices that are not fully 

competitive when regulatory constraints raise the holding 

costs for many market participants, leaving only a few in- 

stitutions willing to provide liquidity. In this paper, we 

study the security design problem of a privately informed 

issuer who possesses multiple assets and faces liquidity 

suppliers, or buyers, that are potentially endowed with 

market power. 

We show how the allocation of market power has rele- 

vant and robust implications for security design that con- 

trast with the takeaways from models that assume com- 

petitive environments. To isolate the impact of market 

power, we vary the number of prospective buyers, as well 

as the market structure in which they interact with the 

issuer. When several buyers act competitively, pooling all 
Hollifield et al. (2017) . For evidence that OTC trading tends to be con- 

centrated among a small set of players, see Cetorelli et al. (2007) , 

Atkeson et al. (2014) , Begenau et al. (2015) , Di Maggio et al. (2017) , Li and 

Schürhoff (2019) , Siriwardane (2019) , and Hendershott et al. (2020) . 
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assets is optimal for the issuer, echoing arguments found

in previous studies. As diversification reduces an issuer’s

informational advantage, pooling assets helps alleviate ad-

verse selection problems. Doing so is in the interest of the

issuer who fully internalizes the benefits of improving the

efficiency of trade when prices are set competitively. 

However, we show that pooling assets has an impor-

tant downside for the issuer once the demand side has

market power and acts non-competitively, namely, a po-

tential reduction in the issuer’s information rents. A pri-

vately informed issuer may prefer not to pool assets, espe-

cially when the potential gains from trade are large rel-

ative to the information asymmetry between the issuer

and prospective buyers. In fact, any pooling decision that

implies perfect diversification is never optimal for an is-

suer when facing buyer(s) with sufficiently strong mar-

ket power. We provide explicit, sufficient conditions under

which the issuer’s best option is to simply sell all assets

separately. Under these conditions, separate sales are not

only privately optimal but also achieve the first-best level

of total trade surplus. In contrast, when assets are pooled,

both the issuer’s private surplus and the total surplus from

trade are strictly lower, as diversification invites strategic

buyers with market power to choose pricing strategies that

lead to inefficient rationing. Pooling affects the shape of

the distributions characterizing information asymmetries

between issuers and buyers, causing them to have thinner

tails. As a result, the elasticity of trade volume — a key

determinant of price-setting behavior in the presence of

market power — decreases in the right tails of these dis-

tributions. Correspondingly, pooling typically worsens inef-

ficient rationing when selling assets separately would lead

to high trade volume. 

Our analysis provides novel empirical predictions and

policy implications regarding security issuances in OTC

markets. Specifically, our results reveal why liquidity short-

ages among major institutions participating in these mar-

kets can contribute to declines in asset-backed security

(ABS) issuances despite concurrent increases in the vol-

ume of assets that are sold separately, as witnessed fol-

lowing the 20 07–20 08 financial crisis. 2 When market con-

ditions or regulatory actions reduce the liquidity available

to many potential buyers, thereby creating market concen-

tration on the demand side, pooling assets does not only

carry the benefit of reducing adverse selection but also can

worsen inefficiencies associated with the exercise of mar-

ket power. As a result, our analysis predicts that, ceteris

paribus, issuers’ propensity to pool assets (relative to sell-

ing assets separately) is negatively related to buyers’ mar-

ket power. Moreover, this effect should apply specifically

when the gains from trade are large, which tends to be

the case when sellers have high liquidity needs. That is,

when trade is particularly valuable but potentially impeded

by the presence of market power, our results become most
2 In 2009, the issuance volume of ABS in the US was 73% lower than 

it was in 2006, while the issuance volume of CDO was 97% lower. In 

contrast, the total issuance volume in US fixed income markets was 13% 

higher in 2009 than in 2006. For more data, see the Securities Indus- 

try and Financial Markets Association’s website: http://www.sifma.org/ 

research/statistics.aspx . 
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relevant. These predictions apply both in the cross-section 

of assets and in the time series. In addition, they provide 

insight on the prevalence of partial pooling, whereby is- 

suers allocate assets with distinct factor exposures to sep- 

arate pools. This latter prediction is consistent with a com- 

mon practice by originators to design securities that pool 

mortgages only from certain types of borrowers (e.g., geo- 

graphic regions, residential vs. commercial), which creates 

pools with distinct factor exposures. 

We also highlight how recent banking regulations 

might affect the issuance and trading of securities in OTC 

markets. In particular, we uncover the potential spillover 

effects of policies affecting the liquidity of many financial 

institutions participating in the structured securities mar- 

ket. Regulatory actions that reduce the number of prospec- 

tive buyers willing to acquire newly issued securities (e.g., 

due to stricter liquidity requirements or other balance 

sheet constraints) can result in increased market power on 

the demand side and associated hesitancy by issuers to 

pool assets. Yet our results suggest that the reduction in 

pooling may be both a privately and socially optimal re- 

sponse to buyers’ emergent market power. As such, poli- 

cies reducing the concentration of liquidity among a few 

market participants may revive the issuance of securities 

backed by well-diversified pools, even when those policies 

are not specifically targeting the holdings of these types of 

securities. 

We focus on the impact of market power on the de- 

cision to pool assets, thereby providing insight on secu- 

rity issuances in decentralized markets. Early contributions 

by Subrahmanyam (1991) , Boot and Thakor (1993) , and 

Gorton and Pennacchi (1993) emphasize the diversifica- 

tion benefits of pooling assets when securities are sold in 

competitive/centralized markets that are subject to asym- 

metric information problems. Building on the signaling- 

through-retention framework with price-taking buyers of 

De Marzo and Duffie (1999) , De Marzo (2005) shows that 

the pooling of assets dampens an issuer’s ability to sig- 

nal individual assets’ quality through retention. However, 

when the number of assets is large and the issuer can 

sell debt on the pool of assets, this “information destruc- 

tion effect” is dominated by the above-mentioned benefits 

of diversifying the risks associated with the issuer’s pri- 

vate information about each asset’s value. Issuing debt on 

a large pool of assets reduces residual risks and the infor- 

mation sensitivity of the security being issued. 3 In contrast 

to De Marzo (2005) , whose setup can be thought of as a 

centralized market where (price-taking) buyers simultane- 

ously compete for assets, we isolate the effects of buyers’ 

market power to capture a realistic feature of many OTC 

markets. 

Our focus on the role of market power in an issuer’s 

security design decision relates our analysis to Biais and 

Mariotti (2005) who analyze a model where the security 

design stage is followed by a stage where either the issuer 

or the prospective buyer chooses an optimal trading mech- 
3 See also Hartman-Glaser et al. (2012) , who model a moral hazard 

problem between a principal and a mortgage issuer and show that the 

optimal contract features pooling of mortgages with independent de- 

faults, as it facilitates effort monitoring. 

http://www.sifma.org/research/statistics.aspx
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anism (i.e., a price-quantity menu) for selling the designed

security. When the buyer can choose the trading mech-

anism, he effectively screens the issuer, accounting for a

generic volume-price trade-off. In contrast, when the is-

suer can choose the mechanism, the setup becomes equiv-

alent to one with multiple competitive buyers. Biais and

Mariotti (2005) show that issuing debt on a risky asset

is optimal in both cases, since the debt contract’s low in-

formation sensitivity helps avoid market exclusion. 4 In our

paper, we are concerned with the security design problem

of an issuer wishing to sell multiple assets, which is a key

feature of the structured securities market. Our analysis re-

veals how in that setting, the optimal security design, in

particular the optimal pooling decision, changes with the

allocation of market power. 

Axelson (2007) studies an uninformed issuer’s deci-

sion to design securities that are (centrally) traded in a

uniform-price auction with privately informed buyers. The

author finds that pooling assets and issuing debt on these

assets is always optimal when the number of assets is

large, otherwise selling assets separately might be opti-

mal if the signal distribution is discrete and competition

is high enough. Since the issuer is uninformed and buy-

ers compete for assets through an auction, the author’s

analysis is silent about how security design can be used

to prevent being monopolistically screened by liquidity

providers, which is a key result of our analysis. 5 

Palfrey (1983) analyzes a firm’s decision to bundle

products (or assets) sold in a second-price auction. In his

model, customers have private information about their het-

erogenous valuations for the products. Selling the prod-

ucts separately is optimal when the sum of the expected

second-highest valuation for each product is higher than

the expected second-highest valuation for the bundle of

all products. This comparison depends on the number

of prospective customers and the distribution of their

product-specific valuations. Unlike Palfrey (1983) , we ex-

amine how the degree of competition among buyers

with identical valuations affects pooling decisions. The

cross-buyer heterogeneity in valuations that is central for

Palfrey ’s (1983) results does not play a role for our find-

ings. 

In Section 2 , we describe our model and provide an il-

lustrative example in which the issuer sells a pool con-

taining a continuum of assets. This example highlights

how the presence of market power on the demand side

greatly affects the issuer’s benefits from pooling assets.

Section 3 presents our main analysis, contrasting the op-

timal security design in competitive and non-competitive

environments. In Section 4 , we discuss the robustness
4 Gorton and Pennacchi (1990) , Dang et al. (2015) , Farhi and Ti- 

role (2015) , and Yang (2020) also study the optimal information sensi- 

tivity of securities issued in markets with asymmetric information. These 

papers highlight the benefits of designing securities that split cash flows 

into an information-sensitive part and a risk-less part. Yet, these contri- 

butions do not speak to how pooling imperfectly correlated assets affects 

the issuer’s ability to extract surplus when facing buyers with market 

power, which is the focus of our paper. 
5 See also De Marzo et al. (2005) and Inderst and Mueller (2006) , who 

study optimal security design problems with informed buyers and only 

one asset. 
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of our results to various alternative specifications of the 

model. We conclude in Section 5 . 

2. The environment 

Suppose an issuer has a finite number N ≥ 2 of funda- 

mental assets to sell. These assets are indexed by i and the 

set of all assets is denoted by � ≡ { 1 , . . . , N} . Each asset i 

produces a random payoff X i at the end of the period. For 

tractability, the asset payoffs X i have identical marginal dis- 

tributions as specified by the cumulative distribution func- 

tion (CDF) G (·) with associated probability density func- 

tion (PDF) g(·) that is positive and finite everywhere on its 

domain χ ≡ [0 , ̄x ] . We consider a symmetric dependence 

structure between the individual payoffs X i for all i ∈ �, 

excluding the degenerate case of perfect correlation. Iden- 

tical marginal distributions and symmetric dependence to- 

gether imply that the joint distribution of payoffs is in- 

variant to permutations of assets. Going forward, we fol- 

low the convention of using capitalized letters for random 

variables and lower-case letters for their realizations. 

2.1. Market participants and their liquidity needs 

As is common in the security design literature, agents 

are risk neutral but can differ in their liquidity (or hedg- 

ing) needs, which are captured by their discount factors. 

There is a number B of deep-pocketed traders who are bet- 

ter equipped to hold claims to future cash flows than the 

issuer is (who needs liquidity today). Specifically, whereas 

the issuer applies a discount factor δ ∈ (0 , 1) to future cash 

flows, these B prospective buyers apply a discount factor 

of 1. Thus, the ex ante value of each fundamental asset is 

δE (X i ) for the issuer and E (X i ) for any of these buyers. As 

a result, gains from trade are realized when the issuer sells 

his assets to such a buyer in exchange for cash. Through- 

out the analysis, we occasionally refer to the B prospec- 

tive buyers with a discount factor of 1 as “liquidity sup- 

pliers” in line with previous studies (e.g., Biais and Mari- 

otti, 2005 ). 

To highlight the impact of market power on the issuer’s 

security design problem, we initially consider a benchmark 

scenario in which multiple buyers ( B ≥ 2 ) compete for the 

issuer’s assets in a centralized market. In this scenario, 

the buyers simultaneously make competitive bids that are 

equal to the expected value of any security conditional 

on trade occurring, consistent with Bertrand competition. 

Then, we analyze the implications of the presence of mar- 

ket power on the demand side. To do so, we first consider 

a scenario in which only one buyer has a discount factor of 

1, that is, B = 1 . 6 Capturing a common practice in OTC mar- 

kets, the seller sends a request for quote for each security 

he wishes to sell to this buyer, and the buyer responds to 

each request with a take-it-or-leave-it offer. In Section 4 , 

we further show that this monopolistic setting shares its 

key implications with an OTC market structure where the 
6 Going forward, we refer to this scenario as monopolistic demand or 

monopolistic liquidity supply. In this context, the buyer can also be re- 

ferred to as a monopsonist. 
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issuer contacts multiple buyers ( B ≥ 1 ) sequentially, sell-

ing assets to several distinct buyers in equilibrium. These

results obtain due to the sequential and exclusive nature

of bilateral interactions in the OTC market, which effec-

tively sustains market power despite the presence of mul-

tiple buyers. Moreover, we discuss in Section 4 how our

main insights extend to settings with uncertainty about

the degree of buyer competition. In sum, we show that our

key insights apply in settings where market power arises

due to either the market structure (e.g., sequential OTC

trade) or fundamentals, such as the concentration of liq-

uidity among few agents (e.g., when most potential coun-

terparties face similar regulatory constraints or liquidity

needs as the issuer). 

2.2. Timing and information structure 

Our specification of the timeline follows previous stud-

ies (e.g., De Marzo and Duffie, 1999; Biais and Mariotti,

2005 ). First, the issuer designs the securities he plans to

sell. Second, the issuer becomes informed about the real-

izations of each asset payoff X i . Third, the buyer(s) make(s)

simultaneous take-it-or-leave-it offer(s) for each security to

the issuer. Fourth, the issuer decides whether or not to ac-

cept any of these offer(s) in exchange for the securities; if

multiple buyers offer an identical price that is accepted by

the issuer, the counterparty for the trade is randomly se-

lected among the highest bidders. Finally, all payoffs are

realized. 

Assuming that the issuer does not have private infor-

mation at the initial security design stage increases the

tractability of the analysis and shares similarities with the

shelf registration process commonly used in practice [as

also argued by De Marzo and Duffie (1999) and Biais and

Mariotti (2005) ]. In that process, an issuer first specifies

and registers the securities with a regulatory agency, such

as the Securities and Exchange Commission in the US.

Then, potentially after several months, the issuer brings

these securities to the market. In the meantime, the issuer

has typically collected additional private information about

the securities’ future cash flows. In Section 4 , we discuss

the robustness of our main insights to various changes in

this timeline, including some that would introduce signal-

ing concerns at the security design stage. 

2.3. An illustrative example 

Before proceeding with our main analysis, we present

a simple, yet generic example that illustrates how the is-

suer’s benefits from pooling assets crucially depend on the

presence of market power on the demand side. For this ex-

ample, suppose the issuer owns a continuum of assets of

measure 1 with i.i.d. payoffs X i with finite mean and vari-

ance. The issuer considers selling the pool of these assets

to the prospective buyer(s). 

First, we analyze a market scenario in which B ≥ 2

prospective buyers have abundant liquidity (that is, they

have a discount factor equal to 1). In this case, they ef-

fectively compete in quotes à la Bertrand and offer the

highest price that yields weakly positive expected profits

conditional on the issuer accepting the offer. This scenario
511 
captures a competitive environment as commonly analyzed 

in the literature. When the issuer offers the assets as one 

pool, the law of large numbers applies, that is, perfect di- 

versification implies that the pool’s payoff is 
∫ 1 

0 x i di = E [ X i ] 

almost surely. As a result, adverse selection concerns are 

completely eliminated, and buyers compete by offering a 

price p c = E [ X i ] for this pool. The maximum total surplus 

from trade, E [ X i ] · (1 − δ) , is attained and the issuer fully 

internalizes this surplus. That is, the issuer achieves the 

optimal expected payoff. The fact that pooling the contin- 

uum of assets eliminates information asymmetries is un- 

ambiguously beneficial for the issuer when facing compet- 

itive buyers, as he then fully internalizes the resultant im- 

provements in trade efficiency. 

In contrast, consider the market scenario in which B = 1 

prospective buyer has liquidity to purchase the issuer’s as- 

sets (i.e., only one buyer has a discount factor of 1). Act- 

ing as a de-facto monopolist, this buyer can choose the 

price that maximizes his expected payoff. In this case, 

this optimally chosen price is the issuer’s reservation price 

for the pool of assets, that is, p m = E [ X i ] δ. As in the sce- 

nario with multiple prospective buyers, pooling the con- 

tinuum of assets yields perfect diversification and elim- 

inates adverse selection concerns. Yet, now that the de- 

mand side has market power, fully eliminating these in- 

formation asymmetries has no upside for the issuer. Facing 

no informational disadvantage, the monopolistic liquidity 

supplier then offers a price that leaves the issuer indiffer- 

ent between trading the security or not. 

This generic result for asset pools that achieve perfect 

diversification strikingly highlights the relevance of mar- 

ket power for the optimality of pooling assets from the 

perspective of the issuer. In the presence of such mar- 

ket power, the issuer can extract rents only when retain- 

ing some private information. Thus, any pooling that leads 

to perfect diversification (as was the case in this exam- 

ple) is never optimal for an issuer when facing a prospec- 

tive buyer with market power. On the other hand, when 

the issuer retains private information, a buyer with market 

power strategically chooses a price that potentially jeop- 

ardizes the realization of gains from trade. When decid- 

ing whether to pool assets, the issuer therefore faces an 

intuitive trade-off: he can only extract rents when retain- 

ing some private information, but he still partially inter- 

nalizes the inefficiencies emerging from adverse selection 

and the exercise of market power under asymmetric infor- 

mation. As a result, he may only choose to pool a subset 

of assets in order to achieve partial diversification (but not 

perfect diversification). Understanding these channels and 

how they affect the design of optimal securities is the fo- 

cus of our main analysis below. 

3. Main analysis 

We now formalize our main insights. We follow previ- 

ous studies in assuming that the issuer first decides on the 

pooling of the underlying assets and then chooses the se- 

curity that is written on each of the pools (e.g., De Marzo, 

20 05; Axelson, 20 07 ). Formally, the issuer chooses a par- 

tition of the set �, that is, he groups the N assets into 

M ≤ N disjoint subsets denoted by � j with j ∈ { 1 , . . . , M} . 
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The corresponding M pools of assets then have the payoffs:

 j ≡
∑ 

i ∈ � j 

X i . (1)

The CDF G j of Y j and the associated density g j are then

defined on the compact interval χ j ≡ [0 , ̄y j ] , where ȳ j ≡∑ 

i ∈ � j 
x̄ . In line with previous studies (e.g., Myerson, 1981 ),

we assume that these distributions satisfy a regularity con-

dition that ensures that first-order conditions in the trad-

ing game with a monopolistic buyer who is offered equity

securities are sufficient conditions for the optimal pricing

decisions. 

Assumption 1 . For any subset � j of �, the elasticity func-

tion: 

e j (y ) ≡ g j (y ) 

G j (y ) 
· y (2)

is weakly decreasing on its respective support χ j . 

Throughout our main analysis below, we discuss exam-

ples with distributions satisfying Assumption 1 (see also

the Appendix for additional illustrations). When interpret-

ing elasticity functions, it is helpful to note that they rep-

resent the ratio of the local density g j (y j ) to the aver-

age density G j (y j ) /y j . These quantities play an important

role in determining a monopolistic buyer’s optimal pricing

strategy. We also denote by e (x i ) ≡ g(x i ) 
G (x i ) 

· x i the elasticity

function of each fundamental asset i . 

The issuer chooses for each pooled payoff Y j a security

that is backed by that payoff. Specifically, the security pay-

off F j is contingent on the realized cash flow Y j according

to the function ϕ j : χ j → R + , such that F j = ϕ j (Y j ) . We im-

pose the standard limited liability condition: 

(LL) 0 ≤ ϕ j ≤ Id χ j 
, 

where Id χ j 
is the identity function on χ j . In addition, as is

standard in the security design literature (e.g., Harris and

Raviv, 1989; Innes, 1990; Nachman and Noe, 1994 ), we re-

strict the set of admissible securities by requiring that both

the payoffs to the liquidity supplier and to the issuer be

non-decreasing in the underlying cash flow: 7 

(M1) ϕ j is non-decreasing on χ j , 

and 

(M2) Id χ j 
− ϕ j is non-decreasing on χ j . 

The sets of admissible payoff functions for

the securities is therefore given by { ϕ j : χ j →
R + | (LL), (M1), and (M2) hold } . 

3.1. Competitive demand 

In this subsection, we analyze the (benchmark) scenario

in which the issuer faces B ≥ 2 liquidity suppliers who
7 As discussed by Innes (1990) , these assumptions guarantee that the 

issuer does not have incentives to tamper with the underlying cash flows. 

(M1) implies that the issuer cannot reduce the security’s payoff to in- 

vestors by secretly adding cash to the underlying pool (perhaps with the 

help of outside borrowing). (M2) implies that the issuer cannot increase 

the payoff he retains by secretly destroying some of the underlying cash 

flows. 
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have a discount factor of 1. In this case, the issuer receives 

competitive ultimatum price quotes, a feature that is com- 

mon in the literature (e.g., Boot and Thakor, 1993; Nach- 

man and Noe, 1994; Friewald et al., 2015 ). 8 

3.1.1. Optimality of pooling assets 

Echoing previous studies, our analysis of this scenario 

predicts that issuing debt on the pool of all assets is opti- 

mal for the issuer, as summarized in Proposition 1 . 

Proposition 1 . If E [ X i ] ≥ δx̄ , the issuer is indifferent between 

selling assets separately and selling them as a pool. If E [ X i ] < 

δx̄ , the issuer optimally pools all N assets and issues a debt 

security on this pool. 

To provide the intuition for this result, we present 

the proof of Proposition 1 in the main text. At the trad- 

ing stage, the issuer has perfect knowledge of the real- 

izations x i of future cash flows X i . Since the payoff of 

any security F j is only contingent on Y j = 

∑ 

� j 
X i , the is- 

suer also perfectly knows the realization f j = ϕ j (y j ) of F j . 

Suppose the issuer uses a simple equity security [what 

De Marzo and Duffie (1999) refer to as a “passthrough” se- 

curity]. If E [ X i ] ≥ δx̄ , he can sell the assets separately (as 

equity), each at price p = E [ X i ] , since at this price even the 

highest issuer type x̄ finds it optimal to trade. The issuer 

obtains the same total payoff when pooling the assets and 

selling an equity security on the pool. Since the potential 

gains from trade are large enough ( δ is sufficiently low), 

adverse selection does not impede the efficiency of trade 

even when assets are sold separately. The first-best level 

of total trade surplus is achieved, and the issuer fully in- 

ternalizes this surplus. 

In contrast, if E [ X i ] < δx̄ , the sale of an equity security 

on a single asset leads to adverse selection, since the high- 

est issuer type x̄ would not accept a price equal to E [ X i ] . 

Similarly, the sale of an equity security on a pool of ˜ N as- 

sets leads to the exclusion of some issuer types, since the 

highest issuer type ȳ j = 

˜ N ̄x would not accept a price equal 

to E [ Y j ] = 

˜ N E [ X i ] . In this case, it is useful to recall the fol-

lowing result from Biais and Mariotti ’s (2005) analysis of a 

setting with one underlying asset: 

Lemma 1 . Given an underlying asset with random payoff Y 

and E [ Y ] < δȳ , the issuer optimally designs a debt security 

with the highest face value d for which a buyer just breaks 

even when purchasing this debt security at a price p = δd. 

Proof . See Proposition 4 in Biais and Mariotti (2005) . �

Independent of his pooling choice that determines the 

underlying assets with payoffs Y j , the issuer optimally uses 

a debt security when E [ X i ] < δx̄ and equivalently, E [ Y j ] < 

δȳ j . Debt emerges as the optimal security, because it mini- 

mizes adverse selection costs. As a debt security’s payoff is 

less sensitive to the high cash flow realizations, it mitigates 
8 De Marzo (2005) also studies pooling decisions in a competitive envi- 

ronment. Yet, whereas De Marzo (2005) studies a specific trading mech- 

anism, namely a signaling game similar to Kyle (1985) , we employ the 

trading mechanism used in Biais and Mariotti (2005) , which the authors 

derive as the optimal mechanism in their setting. See Section 4 for a re- 

lated discussion. 
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the lemons problem and facilitates the efficient transfer of

cash flows from the issuer to the liquidity suppliers. 

To determine the issuer’s optimal pooling decision, it

is useful to first consider buyers’ expected net profits. A

buyer purchasing debt with face value d at a price p = δd

obtains the following expected net profit ∫ d 
0 yg j ( y ) dy + 

[
1 − G j ( d ) 

]
d − δd 

= ( 1 − δ) d −
(

G j ( d ) d −
∫ d 

0 yg j ( y ) dy 

)
= ( 1 − δ) d − ∫ d 

0 G j ( y ) dy , (3)

where the last step follows from integration by parts. Next,

we compare buyers’ expected net payoff from the sales of

separate debt securities to that from the sale of a debt se-

curity on an underlying pool of assets. Consider first that

the issuer sells ˜ N individual debt securities with face value

d. Further, suppose that each debt security is written on a

separate underlying asset and the price in each transaction

is δd. Then buyers’ total expected net profit (which may be

negative) 9 is: 

˜ N 

(
(1 − δ) d −

∫ d 

0 

G (x ) dx 

)
= (1 − δ) ̃  N d −

∫ ˜ N d 

0 

G 

(
y 

˜ N 

)
dy, 

(4)

where we used a change in variables, with y = 

˜ N x . In con-

trast, consider now that the issuer pools the ˜ N assets and

issues one debt security with face value d j = 

˜ N d and buy-

ers purchase this debt at price δd j . In this case, buyers’ to-

tal expected net profit (which again may be negative) is: 

(1 − δ) ̃  N d −
∫ ˜ N d 

0 

G j (y ) dy. (5)

Lemma 2 provides insight on the relative magnitude of the

profits in (4) and (5) . 

Lemma 2 . The distribution of the pooled payoff Y j = 

∑ ˜ N 
i =1 X i

second-order stochastically dominates the distribution of the

payoff ˜ N X i , that is, ∫ s 

0 

[ 
G 

(
y 

˜ N 

)
− G j (y ) 

] 
dy ≥ 0 (6)

for any s ∈ [0 , ̄y j ] . 

Proof . See the Appendix. �

Lemma 2 implies that buyers’ total expected net profit

is higher in the scenario with pooling (i.e., (5) is greater

than (4) ). Next, recall that, according to Lemma (1) , the op-

timal face value in each scenario would be set such that

buyers break even, that is, the optimal face values would

ensure that (4) and (5) are each equal to zero. The above

result implies that if buyers break even at a given face

value d ∗ on separate sales (first scenario), then they make

positive profits on the pooled sale if the face value is set

equal to ˜ N d ∗ (second scenario). It follows that the issuer

can choose a face value d ∗
j 
≥ ˜ N d ∗ on the pool while still
9 At this point in the proof, the considered supposition does not impose 

that the buyers’ participation constraint is satisfied. That is, the expected 

net profit can be negative. 
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ensuring that the buyers can break even (as buyers’ ex- 

pected net profit is a continuous function of d j ). Finally, 

observe that when issuing debt with break-even face val- 

ues under each of the two scenarios, the issuer’s total prof- 

its are (1 − δ) δ ˜ N d ∗ and (1 − δ) δd ∗
j 
, respectively, and the 

issuer extracts the full gains from trade in the competi- 

tive market. Since d ∗
j 
≥ ˜ N d ∗, the issuer obtains a higher ex- 

pected net profit when pooling the ˜ N assets and issuing 

debt with face value d ∗
j 
. 

In sum, the argument for the optimality of pooling in 

this setting is intuitive. With competitive liquidity suppli- 

ers, the issuer extracts all of the realized gains from trade 

and, thus, fully internalizes any improvements in trade effi- 

ciency. As a result, when adverse selection impedes trade, 

the issuer seeks to minimize the information asymmetry 

between him and his prospective buyers by pooling as- 

sets. As pooling leads to diversification, it reduces the in- 

formation asymmetry and its associated inefficiencies. In 

other words, the issuer does not face a trade-off when fac- 

ing competitive buyers — reducing information asymme- 

try is always weakly beneficial. However, we show below 

that this unambiguous optimality of pooling ceases to hold 

when liquidity suppliers have market power. 

3.2. Monopolistic demand 

In this subsection, we derive our main results by con- 

sidering a scenario in which the issuer faces a monopolis- 

tic liquidity supplier, that is, there is only one buyer with 

a discount factor of 1. While our baseline analysis con- 

siders this monopolistic setting, similar outcomes arise in 

the presence of multiple prospective buyers that the issuer 

contacts sequentially (see Section 4.1 for details). In either 

case, security demand is imperfectly competitive, which is 

a key feature of OTC markets in practice. 10 

We start by examining a monopolistic buyer’s optimal 

pricing decision. Biais and Mariotti (2005) show that for 

a given security offered, the optimal mechanism for the 

liquidity supplier with market power can be implemented 

via a take-it-or-leave-it offer (see also Riley and Zeck- 

hauser, 1983 ). Specifically, the prospective buyer makes an 

ultimatum price offer p j to maximize his ex ante profit 

from purchasing a security with payoff F j : 

Pr (δ f j ≤ p j )(E [ f j | δ f j ≤ p j ] − p j ) 

= 

∫ sup { y : ϕ j (y ) ≤p j /δ} 

0 

(ϕ j (y ) − p j ) g j (y ) dy. (7) 

The optimal price p m 

j 
set by this buyer identifies a 

marginal issuer type that is just willing to accept this 

price: f m 

j 
≡ p m 

j 
/δ. Issuer types with security payoffs below 

the threshold value f m 

j 
participate in the trade, whereas 

issuer types with payoffs above f m 

j 
are excluded (i.e., they 

reject the offer). 
10 The central feature of our analysis is the presence of some degree 

of market power, that is, a buyer can strategically affect the prices of the 

securities being offered. Biais et al. (20 0 0) show that this type of strategic 

pricing behavior also arises when multiple risk-averse liquidity suppliers 

compete in mechanisms (see also Vives, 2011 ). 
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11 In the Appendix, we also provide examples where asset payoffs are 

positively correlated. 
3.2.1. Optimality of separate equity sales 

We now establish our first key result, which identifies

a sufficient condition for the strict optimality of selling as-

sets separately. This result also provides the necessary and

sufficient condition under which selling assets separately

yields the first-best level of trade surplus. 

Proposition 2 . Suppose that the following condition holds: 

e ( ̄x ) ≥ δ

1 − δ
, or equivalently δ ≤ δ̄, (8)

where δ̄ ≡ e ( ̄x ) 
1+ e ( ̄x ) . Then the following results obtain: 

(i) The issuer optimally sells each asset separately to a

monopolistic buyer, that is, 

� j = { j} and ϕ j (X j ) = X j for j = 1 , . . . , N. (9)

The first-best level of total surplus from trade, N(1 −
δ) E [ X i ] , is achieved and the issuer collects Nδx̄ , obtain-

ing a surplus of Nδ( ̄x − E [ X i ]) . 

(ii) If the issuer pools any of the assets, the total sur-

plus from trade is strictly below the first-best level

N(1 − δ) E [ X i ] , and the issuer’s surplus is strictly below

Nδ( ̄x − E [ X i ]) . 

To provide intuition for the central results of

Proposition 2 , we present the proof in the main text.

First, consider part (i) of the proposition. Suppose that

the issuer sells an equity claim on a pool j, such that

ϕ j (Y j ) = Y j . When designing the optimal security, the

issuer anticipates the buyer’s optimal pricing response.

Using Eq. (7) , we can write the buyer’s marginal benefit of

increasing the threshold type f m 

j 
= y m 

j 
for f m 

j 
∈ [0 , ̄y j ) as:

(1 − δ) f m 

j g j ( f m 

j ) − δG j ( f m 

j ) . (10)

This last equation highlights the generic trade-off that a

buyer with market power faces when choosing his price

offer. When mar ginally increasing the threshold type by in-

creasing the price, the buyer benefits from extracting the

full gains from trade (1 − δ) f m 

j 
from this type, which has

the local density g j ( f m 

j 
) . Yet, the associated price increase

of magnitude δ also comes at the cost of paying more

when trading with all infra-marginal types, which have

measure G j ( f m 

j 
) . In net, the buyer benefits from increasing

the marginal issuer type if and only if expression (10) takes

a strictly positive value (for any f m 

j 
< ȳ j ). This condition

can be equivalently expressed as a condition applying to

the above-defined elasticity function: 

e j ( f m 

j ) > 

δ

1 − δ
. (11)

Now suppose the issuer simply sells all assets sep-

arately. Then the condition e ( ̄x ) ≥ δ
1 −δ

together with

Assumption 1 ensures that the buyer’s optimal price quote

for each asset is p i = δx̄ , allowing the issuer to collect Nδx̄ .

In this case, the marginal issuer type is the highest type

on the support [0 , ̄x ] and trade occurs with probability 1,

ensuring that the first-best level of surplus from trade is

achieved. Moreover, the issuer cannot collect a total pay-

ment greater than Nδx̄ from the monopolistic buyer un-

der any alternative security design, since the best possi-

ble payoff that all assets can deliver jointly is N ̄x , and
514 
a buyer with market power would never offer a price 

above δN ̄x even if he believed that this maximum payoff

on all assets was attained. That is, even when going be- 

yond the space of securities that are each backed by a dis- 

tinct pool of assets and considering general security design 

functions ϕ h (X 1 , . . . , X N ) subject to the joint limited liabil- 

ity constraint 
∑ 

h ϕ h (X 1 , . . . , X N ) ≤
∑ N 

i =1 X i , the issuer could 

not do better than under the security design described in 

Proposition 2 . 

To address part (ii) of the proposition, we show that 

the issuer’s surplus and the total surplus are strictly lower 

when assets are pooled. First, we introduce Lemma 3 . 

Lemma 3 . For any subset � j ⊂ � that contains more than 

one element (i.e., if there is pooling), the following condition 

is satisfied: 

e j ( ̄y j ) = 0 < 

δ

1 − δ
. (12) 

Proof . See the Appendix. �

This lemma states that if the issuer pools assets and is- 

sues an equity security on the pool, the elasticity for this 

security at the upper bound of the support ȳ j is zero, im- 

plying the exclusion of a positive measure of types. The 

elasticity is zero at the upper bound ȳ j , since the density 

for the outcome that two assets simultaneously achieve 

their highest possible value x̄ is zero. The intuitive rea- 

son for this result is diversification: the more diversified 

pool of assets is less likely to generate an extreme outcome 

than each idiosyncratic asset separately. Fig. 1 illustrates 

this result for the case where each underlying asset fol- 

lows a uniform distribution and payoffs are independent. 11 

In the figure, we compare the shapes of the PDFs of a sin- 

gle asset, a pool of two assets, and a pool of four assets 

(see caption for details). The graph illustrates the familiar 

notion that diversification leads to a more peaked distribu- 

tion with thinner tails. 

These changes in the shapes of the PDFs map into 

corresponding changes in the elasticity functions e j (y j ) , 

which govern the pricing behavior in the trading game 

(see Eq. (11) ). Fig. 2 confirms that as soon as two assets 

are pooled, the elasticity at the upper bound of the sup- 

port, ȳ j , shrinks to zero. A thinner right tail of the PDF 

implies a lower elasticity in the right tail of the distribu- 

tion (recall that the elasticity is the ratio of the local den- 

sity g j (y j ) to the average density G j (y j ) /y j ). Facing a less 

elastic response from the issuer in that part of the do- 

main, a monopolistic buyer has stronger incentives to of- 

fer lower prices, which leads to the exclusion of high is- 

suer types. If ˜ N ≥ 2 assets are pooled in a set � j , then the 

buyer optimally chooses a marginal issuer type strictly be- 

low ȳ j = 

˜ N ̄x , since e j ( ̄y j ) = 0 < 

δ
1 −δ

. Correspondingly, the 

price offered by the buyer is strictly below δ ˜ N ̄x for a pool 

of ˜ N assets, and the issuer obtains an expected payoff from 

pooling that is strictly below δ ˜ N ̄x . 

To conclude the proof of part (ii) of Proposition 2 , we 

address whether the issuer, after pooling assets, could still 
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Fig. 1. Effect of pooling on the shape of the probability density function. In the graph, we consider a setting with four independent assets ( N = 4 ), each of 

which has a payoff X i ∼ U [0 , 1] . We plot the payoff distributions of a separate asset, a pool of two assets, and a pool of four assets. To compare the PDFs’ 

shapes relative to their respective domains ([0,1], [0,2], and [0,4]), we rescale the horizontal axis to represent the interval χ j = [0 , ̄y j ] for each PDF g j . 

Fig. 2. Effect of pooling on the shape of the elasticity function. In the graph, we consider a setting with four independent assets ( N = 4 ), each of which has 

a payoff X i ∼ U [0 , 1] . We plot the elasticity functions of a separate asset, a pool of two assets, and a pool of four assets. To compare the elasticity functions’ 

shapes relative to their respective domains ([0,1], [0,2], and [0,4]), we rescale the horizontal axis to represent the interval χ j = [0 , ̄y j ] for each elasticity 

function e j . 
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obtain an equally beneficial payoff as in the case of sepa-

rate sales by designing an optimal security F j = ϕ j (Y j ) on

the pooled payoff Y j . In Lemma 4 , we characterize the opti-

mal security on a given underlying asset Y j when an equity

security leads to rationing. 

Lemma 4 . When the trading of an equity security on a payoff

 j leads to the exclusion of issuer types (i.e., when e j ( ̄y j ) <

δ/ (1 − δ) ) but sustains trade with positive probability (i.e.,

when e j (0) > δ/ (1 − δ) ), the optimal security from the per-

spective of the issuer is a debt security with face value d m 

j 
,

i.e., ϕ = min [ Id χ j 
, d m 

j 
] , where d m 

j 
is the largest d such that: 

∫ d 

0 

f j g j ( f j ) df j + [1 − G j (d)] d − δd ︸ ︷︷ ︸ 
Net payoff from offering price δd 

−
∫ f m 

j 

0 

( f j − δ f m 

j ) g j ( f j ) df j ︸ ︷︷ ︸ 
Net payoff from offering price δ f m 

j 
<δd 

≥ 0 , (13)
515 
and where f m 

j 
solves: 

e j ( f m 

j ) = 

δ

1 − δ
. (14) 

That is, the optimal debt contract specifies the highest face 

value for which the buyer weakly prefers offering a price δd

that is always accepted by the issuer over offering a lower 

price that is only accepted by issuer types below the threshold 

type f m 

j 
. 

Proof . As each of the pooled payoffs Y j satisfies the regu- 

larity condition stated in Assumption 1 , these results fol- 

low from Propositions 3, 4, and 5 in Biais and Mariotti ’s 

(2005) analysis of a setting with one underlying asset. �

As in the case of competitive demand, a debt contract 

mitigates adverse selection by making the security pay- 

off less sensitive to high cash flow realizations. Yet, in the 

presence of market power on the demand side, the issuer 

is also concerned with the adverse consequences of buy- 

ers’ exercise of market power for the realization of gains 
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12 In the special case of a pool of assets that each follow a uniform dis- 

tribution, the elasticity function of the pool is only weakly decreasing ev- 

erywhere on the domain, however it is strictly decreasing in the upper 

part of the domain, above a threshold value (see Fig. 2 for an illustra- 

tion). As the logic of the proof only requires a strictly decreasing elasticity 

function in the right tail of the support, similar arguments can be used to 

extend the qualitative insights of Proposition 3 to this case of uniformly 

distributed asset payoffs, albeit at the cost of introducing additional nota- 

tional complexity. 
from trade. A debt contract incentivizes a buyer with mar-

ket power to offer a price that is just high enough to lead

to the inclusion of all issuer types, as even marginally devi-

ating to a lower price would discretely decrease the proba-

bility of trade (a positive-measure set of the highest issuer

types would reject any lower offer). 

Using this result, we can now evaluate whether the

optimal security issued on a pool can deliver the same

payoff as the securities outlined in Proposition 2 . Since

any pooling of ˜ N ≥ 2 assets in a set � j leads to exclusion

when an equity security is offered and e j ( ̄y j ) < δ/ (1 − δ) ,

Lemma 4 implies that the best possible security written on

that pool is a debt security with face value d m 

j 
. Yet, since

d m 

j 
< ȳ j = 

˜ N ̄x , selling this debt security delivers a payoff to

the issuer that is strictly below the one he obtains from

selling the ˜ N assets separately. Thus, the effects of diversi-

fication cannot be undone by designing a security the pay-

off of which is a function of the pooled (diversified) cash

flow Y j . This concludes our proof of Proposition 2 . 

In sum, when separate sales of assets are efficient, pool-

ing assets leads to strictly worse outcomes, both in terms

of the issuer’s surplus and the total trade surplus. This re-

sult emerges as pooling generically leads to a payoff distri-

bution with thinner tails, and equivalently, a less elastic re-

sponse to price quotes in the right tail of the payoff distri-

bution (see Fig. 2 ). A less elastic response causes a liquid-

ity supplier with market power to optimally set prices that

lead to inefficient rationing, harming both the issuer and

total trade efficiency. Thus, in contrast to the previously

analyzed scenario with competitive liquidity suppliers (see

Proposition 1 ), pooling assets hurts the issuer when the

demand side has market power and the gains from trade

are sufficiently large. 

3.2.2. Optimality of separate debt sales 

Proposition 2 provided the condition under which sell-

ing assets separately as equity is optimal for the issuer and

attains the first-best level of trade surplus. In the following

analysis, we consider cases when this condition is violated

and the elasticity function crosses δ
1 −δ

from above, such

that e ( ̄x ) < 

δ
1 −δ

, but it is nonetheless still optimal for the

issuer to avoid the pooling of the underlying assets. How-

ever, in those cases, the issuer chooses to issue separate

debt securities rather than equity securities, as we show

in Proposition 3 . 

Proposition 3 . Suppose that, for any subset � j of �, the elas-

ticity function e j is strictly decreasing on its respective sup-

port χ j (recall that Assumption 1 only required weak mono-

tonicity) and that e ( ̄x ) < 

δ
1 −δ

. There exists a δ∗ ∈ 

(
δ̄, 1 

]
such

that for all δ ∈ 

(
δ̄, δ∗), it is strictly optimal to issue a separate

debt security on each asset payoff X i . 

To prove this result, it is useful to introduce additional

notation. Let �(δ) denote the issuer’s profit, as a func-

tion of the parameter δ, from selling one underlying asset

separately, and issuing an optimal security on that under-

lying asset. Further, let � ˜ N (δ) denote the issuer’s profit,

also as a function of δ, from pooling ˜ N assets and issu-

ing an optimal security on that underlying pool. The basic
516 
idea of the proof is to establish that these profits are con- 

tinuous functions of δ, and to use the fact established in 

Proposition 2 , which is that selling assets separately yields 

the issuer a strictly higher expected profit than pooling as- 

sets does when δ = δ̄: 

˜ N �( ̄δ) > � ˜ N ( ̄δ) . (15) 

First, suppose the issuer issues equity securities either on 

the pool of several assets or on each individual asset. For 

generality, suppose the underlying asset has the payoff y j , 

which could be a pool or a single asset. Then, for any δ ∈ [ 
e j ( ̄y j ) 

1+ e j ( ̄y j ) , 
e j (0) 

1+ e j (0) 

] 
, the monopolistic buyer would target an 

interior marginal issuer type f m 

j 
satisfying: 

e j ( f m 

j ) = 

δ

1 − δ
⇔ f m 

j (δ) = e −1 
j 

(
δ

1 − δ

)
, (16) 

where e j is an invertible function, since it is assumed to 

be strictly decreasing on its support. 12 Thus, for all δ ∈ [ 
e j ( ̄y j ) 

1+ e j ( ̄y j ) , 
e j (0) 

1+ e j (0) 

] 
, this marginal issuer type f m 

j 
is a con- 

tinuous function of the discount factor δ. This result is use- 

ful, since as shown in Lemma 4 , the optimal debt security, 

which will be issued for δ > 

e j ( ̄y j ) 

1+ e j ( ̄y j ) , is implicitly charac- 

terized as a function of this marginal issuer type obtained 

when issuing an equity security. Specifically, the optimal 

security from the perspective of the issuer is a debt secu- 

rity with face value d m 

j 
, such that ϕ = min [ Id χ j 

, d m 

j 
] , where 

d m 

j 
is the largest d for which: 

∫ d 

0 

f j g j ( f j ) df j + [1 − G j (d)] d − δd 

−
∫ f m 

j 

0 

( f j − δ f m 

j ) g j ( f j ) df j ≥ 0 , (17) 

and where f m 

j 
= e −1 

j 
( δ

1 −δ
) . Note that this optimal face 

value d m 

j 
is then also a continuous function of δ. This 

continuity result holds for any set � j , including the case 

where � j includes only one asset. 

Finally, note that if all the optimal face values d m 

j 
are 

continuous functions of δ, then the issuer’s profit func- 

tions �(δ) and � ˜ N (δ) are also continuous functions of δ
since: 

�(δ) = δd m (δ) − δ

∫ d m (δ) 

0 

f g( f ) df 

− δ[1 − G (d m (δ))] d m (δ) = δ

∫ d m (δ) 

0 

G ( f ) df, (18) 

and 
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13 In the Appendix, we illustrate how pooling assets that exhibit this 

familiar factor structure affects distribution and elasticity functions. 
14 Formally, we require that the first ( ̃ N + L − 1) derivatives of the den- 

sity function of any pool of ˜ N ≤ N underlying assets with L common fac- 

tors exist at 0, which ensures that the elasticity functions of these pools 

exist at 0. See the proof of Lemma 5 for details. 
� ˜ N (δ) = δd m 

˜ N 
(δ) − δ

∫ d m 
˜ N 
(δ) 

0 

f g( f ) df 

− δ[1 − G (d m 

˜ N 
(δ))] d m 

˜ N 
(δ) = δ

∫ d m 
˜ N 
(δ) 

0 

G ˜ N ( f ) df, (19)

where we use integration by parts to simplify the expres-

sions. 

Given Eq. (15) and the continuity of the functions �(δ)

and � ˜ N (δ) , we know that there is also a non-empty region

( ̄δ, δ∗) , such that when δ lies in that region, the following

relation holds: 

˜ N �(δ) > � ˜ N (δ) . (20)

That is, selling ˜ N ≥ 2 assets separately (with debt) is

strictly better for the issuer than selling debt on a pool of
˜ N assets. The upper bound of the region, δ∗, is implicitly

defined by the lowest δ such that ˜ N �(δ) = � ˜ N (δ) . 

The main insight from Proposition 3 is that even when

the potential gains from trade are smaller than required

by the condition stated in Proposition 2 , pooling assets

may still be suboptimal for the issuer. The main difference

relative to the result of Proposition 2 is that once sepa-

rate equity securities do not trade fully efficiently, switch-

ing to separate debt securities is optimal. Yet, as the de-

sign of these debt securities is still intimately linked to the

monopolistic liquidity supplier’s incentives to inefficiently

screen the issuer (the marginal issuer type from equity

sales enters expression (17) ), the elasticity of trade volume

is still an important determinant of the issuer’s net profit.

As pooling assets reduces this elasticity in the right tail

of the payoff distribution (see Fig. 2 ), it is undesirable to

do so when the marginal issuer type from separate equity

sales is sufficiently high, or equivalently, when the liquid-

ity differences between the issuer and the buyer are suffi-

ciently large (i.e., δ is sufficiently low). 

3.2.3. Optimality of pooling assets when adverse selection is 

severe 

Unlike in the case of competitive demand where it is

always optimal for the issuer to pool assets, the predic-

tions for the scenario with monopolistic demand are more

nuanced and feature a trade-off between the benefits of

diversification and the preservation of information rents.

Propositions 2 and 3 highlight that the optimality of sepa-

rate sales emerges when trade is particularly valuable, that

is, when the prospective buyer and the issuer differ more

in terms of their liquidity needs. In contrast, when poten-

tial gains from trade are smaller, adverse selection con-

cerns and the exercise of market power lead to larger in-

efficiencies when assets are sold separately. Lower gains

from trade (i.e., higher values of δ) cause the liquidity sup-

plier to choose a more aggressive pricing strategy, which

leads to the exclusion of a larger range of issuer types

when equity securities are issued. In this subsection, we

focus on these cases. Specifically, when e (0) < 

δ
1 −δ

, the

trading of separate securities — whether it is equity or

debt — fails completely, as the elasticity function e (x ) then

lies below 

δ
1 −δ

everywhere on the support; all issuer types

are excluded. However, as suggested by Fig. 2 , pooling as-

sets increases the elasticity in the left tail of the distri-

bution, and thus can allow sustaining trade in these cases
517 
where separate sales would lead to trade breakdowns. That 

is, when adverse selection concerns are particularly severe, 

the trade-off faced by the issuer is tilted toward favoring 

the pooling of assets, even when the demand side is mo- 

nopolistic. 

Whereas our analysis up to this point did not require 

specifying a particular dependence structure for asset pay- 

offs (beyond symmetry), we now make an additional as- 

sumption to maintain tractability. In particular, we con- 

sider a factor structure for asset payoffs as is commonly 

considered in the finance and economics literature. For- 

mally, the asset payoffs are given by: 

X i = 

L ∑ 

k =1 

C k + Z i , ∀ i ∈ �, (21) 

where C k is a common factor and Z i is an asset-specific 

shock. 13 Each common factor C k is i.i.d. and has a strictly 

positive and finite density function g C (x ) on its support 

[0 , ̄x C ] . The asset-specific component Z i is also i.i.d. and has 

a strictly positive and finite density function g Z (x ) on its 

support [0 , ̄x Z ] . 
14 As assumed throughout, the issuer is pri- 

vately informed about the asset payoffs X i . 

As the elasticities at the lower bound of the support are 

key in determining whether trade breaks down in equilib- 

rium, it is useful to establish the value of these elasticities 

for pools of assets. Let e ˜ N (·) denote the elasticity function 

associated with a pool of ˜ N assets. Lemma 5 characterizes 

the values of this function at the lower bound of its sup- 

port. 

Lemma 5 . A pool of ˜ N assets has the elasticity e ˜ N (0) = 

˜ N + L 

at the lower bound of the support. 

Proof . See the Appendix. �

The lemma confirms that, as suggested by Fig. 2 , the 

elasticity at the lower bound increases when more assets 

are pooled. In fact, the elasticity increases by one for each 

asset that is added to a pool. Thus, when selling assets sep- 

arately would lead to a complete trade breakdown (that is, 

when e (0) < 

δ
1 −δ

), the issuer can do strictly better by pool- 

ing assets, provided that he has sufficiently many of them. 

We formalize this result in Proposition 4 . 

Proposition 4 . Suppose that the issuer has N ≥
(

δ
1 −δ

− L 
)

as- 

sets. Then at least one of the subsets � j will optimally consist 

of N 

∗ assets, where N 

∗ ≥ δ
1 −δ

− L . 

As a complete trade breakdown yields zero surplus, it is 

optimal for the issuer to pool assets whenever a single as- 

set has a lower-bound elasticity e (0) below 

δ
1 −δ

. Moreover, 

to ensure a lower-bound elasticity that is high enough to 

avert a complete trade breakdown, the issuer may have 

to pool more than two assets, specifically a number N 

∗ ≥(
δ

1 −δ
− L 

)
. 



V. Glode, C.C. Opp and R. Sverchkov Journal of Financial Economics 145 (2022) 508–526 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

While our analysis generally predicts that, ceteris

paribus, issuers’ propensity to pool assets should be neg-

atively related to buyers’ market power, Propositions 2, 3 ,

and 4 highlight that the strength of this relationship de-

pends on the magnitude of the potential gains from trade.

When the gains from trade are sufficiently large (i.e., δ is

sufficiently low) and the demand side has market power,

it is optimal to sell assets separately since adverse selec-

tion is less of a concern. Moreover, we have shown that

when the issuer sells assets separately, the elasticity with

which he responds to price changes is larger in the right

tail of the distribution than when he is pooling assets.

This elasticity in the right tail is relevant when the po-

tential gains from trade are sufficiently large, causing the

marginal issuer type that a monopolistic buyer targets to

reside in that part of the distribution. Yet, when the po-

tential gains from trade are sufficiently small, adverse se-

lection concerns and the exercise of market power lead to

complete market breakdowns if assets are sold separately.

In this case, the issuer has to reduce information asymme-

tries to ensure that trade can occur at all. He thus pools

assets. In particular, Lemma 5 shows that the elasticity in

the left tail of the support rises with the number of assets

that are pooled, allowing trade to occur once sufficiently

many assets are included in a pool. 

Our results also reveal that pooling assets on the one

hand and using debt securities on the other play distinct

roles in an issuer’s security design problem. An issuer is

always concerned with buyers’ strategic exercise of mar-

ket power and attempts to influence the type distribution

in a way that maximizes his own rents. Yet, a debt con-

tract cannot introduce the effects of diversification asso-

ciated with pooling, which emerges only in the presence

of multiple stochastic shocks. Conversely, pooling does not

create the precisely defined point masses in the type dis-

tribution that a debt contract can achieve. Whereas using

debt securities is always weakly optimal in our environ-

ment (as in Biais and Mariotti, 2005 ), we show that the

pooling of assets has more ambiguous effects. In particu-

lar, it tends to be suboptimal exactly when the potential

gains from trade are large. 

4. Robustness 

In this section, we discuss the robustness of our main

insights to various changes in the environment. 

4.1. Multiple buyers participating in an OTC market 

We now show that our main result regarding the op-

timality of separate sales with one buyer ( B = 1 ) stated in

Proposition 2 also applies when the issuer contacts mul-

tiple buyers sequentially. Suppose there are now B ≥ N

prospective buyers with a discount factor of 1, so that each

asset can in principle be sold to a distinct buyer. The is-

suer can contact these buyers in sequential bilateral in-

teractions, requesting a quote for each security separately.

Corresponding to the B buyers, there are possibly up to B

rounds of requests for quote for a given security. The round

in which a request for quote is made is common knowl-

edge (more on this later). In response to a bilateral re-
518 
quest for quote, a buyer makes a take-it-or-leave-it offer, 

a common practice in OTC markets [see, e.g., characteri- 

zations of OTC trading by Viswanathan and Wang (2004) , 

Bessembinder and Maxwell (2008) , and Duffie (2012) ]. 

Consistent with these ultimatum offers, the issuer requests 

from a given buyer at most one quote for any given secu- 

rity he designed. In each round, a given security (or frac- 

tion of a security) that has not been sold yet can be of- 

fered only to one buyer, ensuring that delivery is always 

feasible. We also follow a simple tie-breaking rule that an 

issuer chooses to accept an offer in an earlier round when 

indifferent between an early and an anticipated later-round 

offer. 

We can now conjecture and verify a perfect Bayesian 

equilibrium in this extension that mimics the main insight 

of our baseline model. Suppose that the condition stated 

in Proposition 2 is satisfied and that in the security de- 

sign stage the issuer designed separate equity securities 

in a way that if the issuer were facing just one monop- 

olistic buyer, each security would obtain an offer that is 

accepted by the issuer with probability 1. Given this se- 

curity design decision, we consider the following outcome 

for the trading subgame of this OTC market with multi- 

ple buyers: for each security, the first buyer that obtains 

a request for quote for that security offers a price that is 

equal to the offer that would be obtained in a monopo- 

listic setting, which we denote by p m = δx̄ . This offer also 

gets accepted with probability 1 in the considered OTC set- 

ting where multiple buyers are contacted sequentially. This 

is because a high-type issuer cannot expect a better offer 

on the security in any future round. Indeed, suppose that 

by rejecting, an issuer can perfectly signal that he is the 

highest possible type, which is the best-case scenario for 

any issuer. By backward induction, if a buyer gets a request 

for quote for this security in the B th round, that buyer is 

effectively a true monopolist, as the issuer cannot request 

additional quotes from other buyers at that stage. In round 

B , a buyer thus quotes the monopolistic offer p m . Antici- 

pating this behavior, a buyer who gets a request for quote 

in the (B − 1) th round knows that the issuer’s outside op- 

tion from rejecting a quote is p m . This buyer thus has to 

offer a price weakly above p m to obtain an acceptance with 

probability 1 (given the tie-breaking rule). Thus, this buyer 

quotes p m as well. Iterating this argument, a buyer receiv- 

ing a request for quote in the second round at best also 

quotes the monopolistic price p m . Since this price is al- 

ready offered in the first round, the issuer accepts the first- 

round offer. As a result, in equilibrium, the issuer sells each 

of his N securities to a distinct buyer in the first round of 

requests for quote. 

The central reason why equilibrium prices remain at 

their monopolistic levels in this extension, despite the 

presence of multiple unconstrained buyers, is the sequen- 

tial and exclusive nature of bilateral interactions in OTC 

markets. In contrast, if quotes were collected simultane- 

ously in a centralized market where the asset is allocated 

to the highest bidder, competitive prices would obtain (see 

Section 3.1 ). The OTC market structure is thus essential 

for maintaining effectively monopolistic offers, even when 

multiple buyers are endowed with liquidity ( δ = 1 ). More- 

over, this result does not per se require that buyers in 
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this market know in which round they receive a request

for quote. Rather, we chose this assumption to capture the

predictability of counterparties in OTC transactions (see

Glode and Opp, 2020 ). However, the same prices and al-

locations would obtain in an equilibrium of the model if

we assumed that buyers have no information about the

round in which they are being contacted with a request

for quote. 15 

Finally, we verify that in the security design stage,

the issuer indeed designs separate equity securities such

that, if he were to face a monopolistic buyer, each se-

curity would obtain an offer that is accepted by the is-

suer with probability 1. Given that the condition detailed

in Proposition 2 holds, designing these securities implies

that the trading game yields the issuer a payoff equal to

Nδx̄ . Suppose the issuer considers instead designing secu-

rities that invite screening in the first round (that is, of-

fers that are not accepted with probability 1), and that

this will allow high-type issuers to signal their quality. At

best, such signaling could generate the belief that an is-

suer is of the highest possible type. But as shown above, by

backward induction, the issuer can then also only expect a

price equal to δ times this highest type. Yet, under the se-

curity design described in Proposition 2 , the issuer already

obtains a total payoff corresponding to δ times the high-

est type of her whole portfolio: Nδx̄ . Thus, the issuer can-

not do better than choosing the security design outlined in

Proposition 2 . 

4.2. Uncertainty about the degree of buyer competition 

A common feature of the baseline model and the anal-

ysis of a sequential OTC market was that the issuer could

fully anticipate the degree of market power faced at the

trading stage, which was either fully competitive or ef-

fectively monopolistic. One may, however, wonder what

would happen if the issuer could not perfectly anticipate

the market structure such that the expected degree of mar-

ket power might be at an intermediate level. To consider

this possibility, we now allow for uncertainty in the de-

gree of buyer competition that the issuer faces when try-

ing to sell securities. For this extension, we go back to our

baseline setting where in the presence of multiple buyers

(B ≥ 2) , the demand side makes simultaneous offers and is

fully competitive. With probability φ, the issuer faces one

buyer ( B = 1 ), whereas with probability (1 − φ) , he faces

B ≥ 2 buyers. In this setting, one may gradually adjust the

expected degree of market power at the trading stage by

changing the parameter φ. 

If the issuer now can choose the securities that will

be offered for sale after having learned about how many
15 Specifically, suppose the round in which a request for quote is made 

is not known to a buyer and cannot be signaled by the seller. Then an 

equilibrium with the same prices and allocations as above exists where a 

buyer contacted in the first request for quote makes a monopolistic offer 

p m that is accepted by the seller with probability 1. Each buyer receiving 

a request for quote (including off-equilibrium requests) believes that he is 

the first to be contacted, which is consistent with the equilibrium. Given 

that every buyer would quote the price p m , the seller optimally accepts 

the first quote, following the tie-breaking rule. 
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buyers will compete but before having acquired private in- 

formation (perhaps by shelf-registering a cleverly designed 

portfolio of securities), then the same results obtain as in 

our baseline setting: in this “interim” security design time- 

line, the issuer offers a debt security on a pool of assets 

when he learns that B ≥ 2 and offers separate debt securi- 

ties for each asset when he learns that B = 1 . 

If instead the issuer must choose whether to pool as- 

sets and set the face value for each debt security issued 

before knowing the degree of buyer competition, then his 

decision problem is different. In this “ex ante” security de- 

sign timeline, the issuer considers the benefits and costs of 

issuing specific debt securities anticipating that ex post he 

might face competitive buyers or a monopolistic buyer. 

It turns out that for each debt security the issuer con- 

siders issuing, he effectively determines whether it would 

be best to use the face value that is optimal in the com- 

petitive case or the face value that is optimal in the mo- 

nopolistic case. The rationale for why this behavior is op- 

timal is as follows: for a given pool � j , let d c 
j 

and d m 

j 
de- 

note the optimal face values of debt in the competitive and 

monopolistic cases, respectively. We know from our base- 

line analysis that d c 
j 
≥ d m 

j 
. In a first step, we can rule out 

that the optimal face value for the case with an uncertain 

level of buyer competition, say d 
φ
j 

, is such that d 
φ
j 

> d c 
j 
. 

With such a high face value d 
φ
j 

, competitive buyers would 

refuse to buy the issuer’s security (thus, delivering no prof- 

its for the issuer) and a monopolistic buyer would offer 

the screening equity price p m 

j 
. The issuer would then be 

strictly better off designing a debt security with a face 

value d 
φ
j 

= d c 
j 

to extract a positive surplus from trade when 

buyers are competitive, while not affecting the profit col- 

lected when the buyer is a monopolist. Second, we can 

rule out the optimality of setting d 
φ
j 

< d m 

j 
since the prof- 

its in both bargaining scenarios would be lower than if 

the issuer picked a face value of d 
φ
j 

= d m 

j 
. Finally, if the is- 

suer picked d 
φ
j 

∈ (d m 

j 
, d c 

j 
) , competitive buyers would agree 

to purchase the debt security but the monopolistic buyer 

would offer the screening equity price p m 

j 
. Since the mo- 

nopolistic buyer would offer p m 

j 
for any face value above 

d m 

j 
, the issuer could extract more surplus from trade in the 

competitive case by choosing a face value d 
φ
j 

= d c 
j 
. Overall, 

these arguments imply that the optimal d 
φ
j 

for a given pool 

j is either equal to d m 

j 
or d c 

j 
. 

In Fig. 3 , we compare the issuer’s expected profit from 

selling separate debt securities for each asset and from 

selling one debt security on a pool of assets assuming an 

ex ante security design timeline, in a setting with two in- 

dependent assets ( N = 2 ), each of which has a payoff X i ∼
U [0 , 1] , and with an issuer’s discount factor δ = 0 . 6 . When 

issuing separate debt securities for each asset, the issuer 

optimally sets the face value of debt at 0.80, regardless of 

the value of φ. When issuing one debt security on a pool 

of two assets, the issuer optimally sets the face value of 

debt at 1.655 if φ < 0 . 012 and at 1.576 if φ ≥ 0 . 012 (which 

causes the kink in the profit function for the pooling strat- 

egy). Consistent with the main intuition from our baseline 
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Fig. 3. Effect of uncertainty about the number of prospective buyers on issuer’s expected profit. In the graph, we consider a setting with two independent 

assets ( N = 2 ), each of which has a payoff X i ∼ U [0 , 1] , and an issuer’s discount factor δ = 0 . 6 . We compare the issuer’s expected profit from selling separate 

debt securities for each asset and from selling one debt security on a pool of assets for all possible levels of φ (i.e., the probability that only one prospective 

buyer has a discount factor of 1), assuming an ex ante security design timeline. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

model, pooling assets is optimal when the issuer is suffi-

ciently likely to face several buyers, whereas selling sep-

arate securities is optimal when the issuer is sufficiently

likely to face a monopolistic buyer. 

4.3. Heterogenous exposures to common factors 

In Section 3.2.3 , we considered a setting where assets

were symmetrically exposed to common factors. We now

discuss the robustness of our results to the case where

different assets are exposed to distinct factors. As an ex-

ample, suppose that the issuer has two sets of assets that

are exposed to distinct factors C 1 and C 2 . That is, the asset

payoffs in a set k ∈ { 1 , 2 } are given by X k 
i 

= C k + Z i , where

Z i are i.i.d. asset-specific shocks, and each set k contains a

continuum of assets of total measure 1. 

By the law of large numbers, it follows that the pool

of assets contained in a given set k will generate a payoff∫ 
i X 

k 
i 

di = C k + E [ Z i ] almost surely. Since E [ Z i ] is constant,

such a pool containing all assets exposed to the same

common factor k can be efficiently sold to a monopolistic

buyer, provided that the distribution of C k satisfies the con-

dition stated in Proposition 2 . Moreover, Proposition 2 im-

plies that it would be strictly suboptimal for the issuer to

pool all assets and partially diversify the common shocks. 16

This result provides insight on the common practice by

originators to design securities that pool mortgages only

from certain types of borrowers (e.g., geographic regions,

residential vs. commercial), thereby creating pools with

distinct factor exposures. 
16 Pooling all assets would result in a payoff C 1 + C 2 + 2 · E [ Z i ] , which 

has an elasticity of zero at the upper bound of the support, and would 

thus invite screening by a monopolistic buyer. 

520 
4.4. Signaling through retention 

As originally shown by Biais and Mariotti (2005) , for a 

given security offered by an issuer, a monopolistic buyer’s 

optimal mechanism is a take-it-or-leave-it offer for the to- 

tal supply of the security, rather than a menu of price- 

quantity offers allowing for signaling through retention. 

Since the buyer makes a take-it-or-leave-it offer for the 

securities, he could extract all the surplus from trade if 

he were able to infer the issuer’s type from a signal. In 

this case, the issuer’s profit from implementing fully re- 

vealing retention policies is therefore weakly lower than 

his profit without any signaling through retention [see also 

Glode et al. (2018) for related arguments]. On the other 

hand, in the scenario with competing liquidity suppliers, 

restricting our analysis to the specific trading mechanism 

considered in De Marzo (2005) would yield results that are 

consistent with his results — issuers with assets of higher 

quality would retain a higher fraction of the issue. 17 Sig- 

naling would then allow the high issuer types to sepa- 

rate themselves from the low types and would resolve the 

lemons problem for high values of δ. 

4.5. Risk aversion 

In line with previous studies, we have assumed that 

agents are risk neutral. It is worth noting that, even if we 

allowed for risk aversion, pooling assets would not by itself 

lead to better risk sharing among traders. This is because 

the issuer offers to sell all assets to the buyer(s) inde- 

pendent of whether he pools the assets or not. With risk- 

averse agents, the main impediment to risk sharing would 

be the fact that the issuer’s private information may result 
17 See also Williams (2021) , who studies the optimality and efficiency of 

security retention in the presence of search frictions. 
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in socially inefficient trade breakdowns, which is already a

force at play in our baseline model. 

5. Conclusion 

We study the optimality of pooling assets when secu-

rity issuers face a market in which liquidity is scarce and

buyers endowed with such liquidity have market power, as

is common in over-the-counter markets. Our analysis re-

veals how buyers’ market power may render the pooling

of assets suboptimal — both privately and socially — in

particular, when the potential gains from trade are large.

While our results suggest that the dramatic decline of the

ABS market post crisis may have been an efficient response

by originators to significant changes in liquidity and mar-

ket power in OTC markets, they also highlight the potential

welfare implications of liquidity constraints imposed on fi-

nancial institutions in the new market environment. Reg-

ulatory policies mitigating the concentration of liquidity

among few market participants may be well suited to re-

duce market power and associated declines in the issuance

of securities that are backed by well-diversified pools, even

when those policies are not specifically targeting struc-

tured security holdings (such as general leverage and liq-

uidity requirements). 

More broadly, the principles we uncover could also be

incorporated into analyses of firms’ capital structure deci-

sions, specifically regarding their debt maturity structure.

To illustrate the mapping between this problem and our

setup, suppose a firm generates cash flows in different

time periods and is privately informed about these future

cash flows. Each cash flow can be viewed as one of the

fundamental assets from our baseline setup. The firm then

decides whether to pool all cash flows across time (e.g.,

by issuing an equity claim or a perpetual debt claim) or

not (e.g., by issuing multiple zero coupon bonds of differ-

ent maturities). Our findings suggest that when firms face

investors with market power, it is relatively more benefi-

cial for them to issue multiple debt securities with differ-

ent maturities, a practice that is indeed quite common. 

Appendix A. Proofs omitted from the text 

Proof of Lemma 2 . Without loss of generality, suppose i = 1 .

We can express ˜ N X 1 as follows: 

˜ N X 1 = 

˜ N ∑ 

i =1 

X i + 

[ 

( ̃  N − 1) X 1 −
˜ N ∑ 

l=2 

X l 

] 

, (A.1)

where 

[ 
( ̃  N − 1) X 1 −

∑ ˜ N 
l=2 X l 

] 
has a conditional expected

value of zero: 

E 

[ 

( ̃  N − 1) X 1 −
˜ N ∑ 

l=2 

X l 

∣∣∣∣∣
˜ N ∑ 

i =1 

X i 

] 

= ( ̃  N − 1) E 

[ 

X 1 

∣∣∣∣∣
˜ N ∑ 

i =1 

X i 

] 

−
˜ N ∑ 

l=2 

E 

[ 

X l 

∣∣∣∣∣
˜ N ∑ 

i =1 

X i 

] 

a.s. = 0 . (A.2)

The last equality follows from the symmetry of the joint

distribution of asset payoffs. It directly follows that ˜ N X is
1 
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a mean-preserving spread of Y j , and the distribution of Y j 
thus second-order stochastically dominates the distribution 

of ˜ N X 1 . �

Proof of Lemma 3 . Consider the sum of Y ˜ N = 

∑ ˜ N 
i =1 X i and 

X k where k > 

˜ N , that is, Y ˜ N +1 ≡ Y ˜ N + X k . For the density of 

 ˜ N +1 , we can write: 

g ˜ N +1 (y ˜ N +1 ) = 

∫ x̄ 

0 

g ˜ N , 1 (y ˜ N +1 − x, x ) dx, (A.3) 

where g ˜ N , 1 (y ˜ N +1 − x, x ) is the density of the joint dis- 

tribution of Y ˜ N and X k . In the special case when as- 

sets’ payoffs are independent, we have g ˜ N , 1 (y ˜ N +1 − x, x ) = 

g ˜ N (y ˜ N +1 − x ) g(x ) . 

Now evaluate g ˜ N +1 at the upper bound of the support 

ȳ ˜ N +1 = ( ̃  N + 1) ̄x : 

g ˜ N +1 (( ̃
 N + 1) ̄x ) = 

∫ x̄ 

0 

g ˜ N , 1 (( ̃
 N + 1) ̄x − x, x ) dx = 0 , (A.4) 

since the joint density g ˜ N , 1 (y ˜ N , x ) is equal to zero for any 

outcome y ˜ N of Y ˜ N above ˜ N ̄x . As a result, the elasticity 

e ˜ N +1 ( ̄y ˜ N +1 ) = g ˜ N +1 ( ̄y ˜ N +1 ) ̄y ˜ N +1 /G ( ̄y ˜ N +1 ) is also zero for all 

˜ N ≥ 1 , that is, as soon as at least two assets are pooled, 

such that ˜ N + 1 ≥ 2 , the elasticity of the pool will be zero 

at the upper bound ȳ ˜ N +1 . �

Proof of Lemma 5 . First, suppose that g(0) > 0 and g ′ (0) is 

finite. By L’Hôpital’s rule, the elasticity is: 

lim 

y → 0 

g(y ) y 

G (y ) 
= lim 

y → 0 

g ′ (y ) y + g(y ) 

g(y ) 
= 

g ′ (0)0 + g(0) 

g(0) 
= 1 . 

(A.5) 

Next, suppose that g(0) = 0 , g ′ (0) > 0 , and g ′′ (0) is finite. 

Then, applying the rule twice, the elasticity is: 

lim 

y → 0 

g(y ) y 

G (y ) 
= lim 

y → 0 

g ′ (y ) y + g(y ) 

g(y ) 
= lim 

y → 0 

g ′′ (y ) y + 2 g ′ (y ) 

g ′ (y ) 
= 2 .

(A.6) 

More generally, if the (k − 1) th derivative of the den- 

sity function g is the first derivative to be positive, i.e., 

if g (k −1) (0) > 0 and g (l) (0) = 0 for all l < k − 1 , then the

elasticity is equal to k , since the recursive application of 

L’Hôpital’s rule yields: 

lim 

y → 0 

g(y ) y 

G (y ) 
= lim 

y → 0 

g ′ (y ) y + g(y ) 

g(y ) 
= . . . 

= lim 

y → 0 

g (k ) (y ) y + kg (k −1) (y ) 

g (k −1) (y ) 
= k, (A.7) 

where the superscripts denote orders of derivative. 

To prove the lemma, it remains to be shown that, if 

we construct a pool of ˜ N assets correlated through the 

common factors 
∑ L 

k =1 C k , the first derivative of the den- 

sity function of this pool that is positive (and non-zero) is 

the ( ̃  N + L − 1) th derivative. We next proceed to prove the 

lemma in two steps: first for L = 0 , when assets’ payoffs X i 
are independent, and then for L > 0 , when asset payoffs X i 
are correlated. 

Independent payoffs. Absent common factors we obtain 

g(x ) = g Z (x ) . Consider the convolution of Y ˜ = 

∑ ˜ N 
i =1 X i and 
N 
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duced in Section 3.2.3 . 
X k , where k > 

˜ N , that is, Y ˜ N +1 ≡ Y ˜ N + X k . Since these Y ˜ N and

X k are independent, we can write: 

g ˜ N +1 (y ˜ N +1 ) = 

∫ x̄ 

0 

g ˜ N (y ˜ N +1 − x ) g(x ) dx, (A.8)

which, for 0 ≤ y ˜ N +1 ≤ x̄ , simplifies to: 

g ˜ N +1 (y ˜ N +1 ) = 

∫ y ˜ N +1 

0 

g ˜ N (y ˜ N +1 − x ) g(x ) dx. (A.9)

Thus, the first two derivatives become: 

g ′ ˜ N +1 
(y ˜ N +1 ) = g ˜ N (0) g(y ˜ N +1 ) 

+ 

∫ y ˜ N +1 

0 

g ′ ˜ N 
(y ˜ N +1 − x ) g(x ) dx, (A.10)

and 

g ′′ ˜ N +1 
(y ˜ N +1 ) = g ˜ N (0) g ′ (y ˜ N +1 ) + g ′ ˜ N 

(0) g(y ˜ N +1 ) 

+ 

∫ y ˜ N +1 

0 

g ′′ ˜ N 
(y ˜ N +1 − x ) g(x ) dx. (A.11)

More generally, for k ≥ 1 , the ( k )th derivative is: 

g (k ) 
˜ N +1 

(y ˜ N +1 ) = 

k −1 ∑ 

l=0 

g (l) 
˜ N 

(0) g (k −1 −l) (y ˜ N +1 ) 

+ 

∫ y ˜ N +1 

0 

g (k ) 
˜ N 

(y ˜ N +1 − x ) g(x ) dx. (A.12)

Hence, when evaluated at y ˜ N +1 = 0 , we obtain the follow-

ing derivative: 

g (k ) 
˜ N +1 

(0) = 

k −1 ∑ 

l=0 

g (l) 
˜ N 

(0) g (k −1 −l) (0) . (A.13)

Next we can prove the claim for all ˜ N ≥ 1 by induction.

First, suppose we have ˜ N = 1 . Then g 1 (0) = g(0) = g Z (0) >

0 , and adding an asset yields g 2 (0) = 0 (see above integral)

while g ′ 2 (0) = g 1 (0) g(0) = g(0) 2 > 0 . Next, for the induc-

tion step, suppose the claim holds for ˜ N , i.e., g ( ̃
 N −1) 

˜ N 
(x ) >

0 and g (k ) 
˜ N 

(x ) = 0 for all k < 

˜ N − 1 . Then adding an asset

yields g (k ) 
˜ N +1 

(0) = 

∑ k −1 
l=0 

g (l) 
˜ N 

(0) g (k −1 −l) (0) = 0 for all k < 

˜ N

while: 

g ( ̃
 N ) 

˜ N +1 
(0) = 

˜ N −1 ∑ 

l=0 

g (l) 
˜ N 

(0) g ( ̃
 N −1 −l) (0) = g ( ̃

 N −1) 
˜ N 

(0) g(0) > 0 . 

(A.14)

Therefore, the claim also holds for ˜ N + 1 . 

Thus, every time we add an asset to the pool, the

next-higher derivative of the density function turns to

zero, while leaving the derivatives thereafter positive.

Ultimately, by induction for all ˜ N ≥ 1 , we obtain that

g ( ̃
 N −1) 

˜ N 
(x ) > 0 and g (k ) 

˜ N 
(x ) = 0 for all k < 

˜ N − 1 . 

Correlated payoffs. For L ≥ 1 and a pool of ˜ N assets, we

obtain: 

 ˜ N = 

˜ N ∑ 

i =1 

X i = 

˜ N 

L ∑ 

k =1 

C k + 

˜ N ∑ 

i =1 

Z i . (A.15)

Denote the density function of ˜ N 

∑ L 
k =1 C k as c ˜ N (x ) and the

density function of 
∑ ˜ N 

i =1 Z i as s ˜ (x ) . Since ˜ N 

∑ L C k and
N k =1 
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∑ ˜ N 
i =1 Z i are independent, the density g ˜ N (y ˜ N ) of the pool Y ˜ N 

is a convolution and we can write for 0 ≤ y ˜ N ≤ ˜ N L ̄x C : 

g ˜ N (y ˜ N ) = 

∫ y ˜ N 

0 

s ˜ N (y ˜ N − x ) c ˜ N (x ) dx. (A.16) 

Thus, proceeding in the same way as in the first part of 

the proof by taking the derivatives and evaluating them at 

y ˜ N = 0 , for k ≥ 1 , we obtain the ( k )th derivative: 

g (k ) 
˜ N 

(0) = 

k −1 ∑ 

l=0 

s (l) 
˜ N 

(0) c (k −1 −l) 
˜ N 

(0) . (A.17) 

Applying the above results for independent assets 

to the sum of ˜ N independent asset-specific components ∑ ˜ N 
i =1 Z i , we obtain that s ( ̃

 N −1) 
˜ N 

(x ) > 0 and s (l) 
˜ N 

(x ) = 0 for all 

l < 

˜ N − 1 . Similarly, we can apply the same results to the 

sum of L common factors 
∑ L 

k =1 C k , since the factors C k are 

assumed to be i.i.d., to obtain c (L −1) 
1 

(0) > 0 and c (l) 
1 

(0) = 0 

for l < L − 1 . Additionally, since c ˜ N (x ) = 

1 
˜ N 

c 1 ( 
x 
˜ N 
) , we have 

c (L −1) 
˜ N 

(0) > 0 and c (l) 
˜ N 

(0) = 0 for l < L − 1 and all ˜ N ≥ 1 . 

Combining the above, we obtain the desired result for 

all ˜ N ≥ 1 and L ≥ 1 as: g (k ) 
˜ N 

(0) = 

∑ k −1 
l=0 

s (l) 
˜ N 

(0) c (k −1 −l) 
˜ N 

(0) = 0 

for all k < 

˜ N + L − 1 while: 

g ( ̃
 N + L −1) 

˜ N 
(0) = 

˜ N + L −2 ∑ 

l=0 

s (l) 
˜ N 

(0) c ( ̃
 N + L −2 −l) 

˜ N 
(0) 

= s ( ̃
 N −1) 

˜ N 
(0) c (L −1) 

˜ N 
(0) > 0 . (A.18) 

As with independent assets, every time we add an asset to 

the pool, the next-higher derivative of the density function 

turns to zero, while leaving the derivatives thereafter pos- 

itive. Analogously, every time we add a factor to the com- 

mon component C, the next-higher derivative of the den- 

sity function turns to zero, while leaving the derivatives 

thereafter positive. �

Appendix B. Additional examples of distributions 

In this Appendix, we provide additional examples of 

distributions satisfying the requirements of our baseline 

setting (including Assumption 1 ). 

B.1 Independent asset payoffs 

Figs. B.1- B.4 illustrate the effects of pooling on the 

shapes of the PDF and the elasticity function for indepen- 

dent asset payoffs. 

B.2 Correlated asset payoffs 

We also consider assets with correlated payoffs. 

Figs. B.5 and B.6 show the effects of pooling on the shapes 

of the PDF and the elasticity function when asset pay- 

offs follow a uniform distribution. In particular, the fig- 

ures highlight that the effects of diversification are present 

even if assets are highly correlated and become more pro- 

nounced for lower correlation coefficients. 

Figs. B.7 and B.8 illustrate the effects of pooling for 

assets with payoffs that follow the factor structure intro- 
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Fig. B.1. Effect of pooling on the shape of the probability density function. In the graph, we consider a setting with four independent assets ( N = 4 ), each 

of which has a payoff X i that follows a beta distribution, with shape parameters α = 4 and β = 4 , that is truncated on the interval [0 . 001 , 0 . 999] . We plot 

the payoff distributions of a separate asset, a pool of two assets, and a pool of four assets. To compare the PDFs’ shapes relative to their respective domains, 

we rescale the horizontal axis to represent the interval χ j = [0 , ̄y j ] for each PDF g j . 

Fig. B.2. Effect of pooling on the shape of the elasticity function. In the graph, we consider a setting with four independent assets ( N = 4 ), each of 

which has a payoff X i that follows a beta distribution, with shape parameters α = 4 and β = 4 , that is truncated on the interval [0 . 001 , 0 . 999] . We plot the 

elasticity functions of a separate asset, a pool of two assets, and a pool of four assets. To compare the elasticity functions’ shapes relative to their respective 

domains, we rescale the horizontal axis to represent the interval χ j = [0 , ̄y j ] for each elasticity function e j . 

Fig. B.3. Effect of pooling on the shape of the probability density function. In the graph, we consider a setting with four independent assets ( N = 4 ), each 

of which has a payoff X i that follows a beta distribution, with shape parameters α = 2 and β = 3 , that is truncated on the interval [0 . 001 , 0 . 999] . We plot 

the payoff distributions of a separate asset, a pool of two assets, and a pool of four assets. To compare the PDFs’ shapes relative to their respective domains, 

we rescale the horizontal axis to represent the interval χ j = [0 , ̄y j ] for each PDF g j . 
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Fig. B.4. Effect of pooling on the shape of the elasticity function. In the graph, we consider a setting with four independent assets ( N = 4 ), each of 

which has a payoff X i that follows a beta distribution, with shape parameters α = 2 and β = 3 , that is truncated on the interval [0 . 001 , 0 . 999] . We plot the 

elasticity functions of a separate asset, a pool of two assets, and a pool of four assets. To compare the elasticity functions’ shapes relative to their respective 

domains, we rescale the horizontal axis to represent the interval χ j = [0 , ̄y j ] for each elasticity function e j . 

Fig. B.5. Effect of pooling on the shape of the probability density function for two uniform assets with correlated payoffs. In the graph, we consider a 

setting with two correlated assets ( N = 2 ), each of which has a payoff X i ∼ U [0 , 1] , and where the joint dependence is characterized by a generalized 

diagonal band copula with a generator function given by the density function of a beta distribution Beta 

(
1 
2 

[ √ 

49+ ρ
1+ ρ − 5 

] 
, 1 

)
. We plot the PDF of a pool of 

two assets for three scenarios with distinct correlation coefficients ρ ∈ { 0 , 0 . 5 , −0 . 5 } . 
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Fig. B.6. Effect of pooling on the shape of the elasticity function for two uniform assets with correlated payoffs. In the graph, we consider a setting with 

two correlated assets ( N = 2 ), each of which has a payoff X i ∼ U [0 , 1] , and where the joint dependence is characterized by a generalized diagonal band 

copula with a generator function given by the density function of a beta distribution Beta 

(
1 
2 

[ √ 

49+ ρ
1+ ρ − 5 

] 
, 1 

)
. We plot the elasticity function of a pool of 

two assets for three scenarios with distinct correlation coefficients ρ ∈ { 0 , 0 . 5 , −0 . 5 } . 

Fig. B.7. Effect of pooling on the shape of the probability density function for four assets with payoffs that follow the factor structure. In the graph, we 

consider a setting with four assets ( N = 4 ), each of which has a payoff X i = C + Z i with C, Z i ∼ U [0 , 1] . We plot the payoff distributions of a separate asset, 

a pool of two assets, and a pool of four assets. To compare the PDFs’ shapes relative to their respective domains ([0,2], [0,4], and [0,8]), we rescale the 

horizontal axis to represent the interval χ j = [0 , ̄y j ] for each PDF g j . 

Fig. B.8. Effect of pooling on the shape of the elasticity function for four assets with payoffs that follow the factor structure. In the graph, we consider a 

setting with four assets ( N = 4 ), each of which has a payoff X i = C + Z i with C, Z i ∼ U [0 , 1] . We plot the elasticity functions of a separate asset, a pool of 

two assets, and a pool of four assets. To compare the elasticity functions’ shapes relative to their respective domains ([0,2], [0,4], and [0,8]), we rescale the 

horizontal axis to represent the interval χ j = [0 , ̄y j ] for each elasticity function e j . 
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