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Abstract

Core-periphery trading networks arise endogenously in over-the-counter markets as

an equilibrium balance between trade competition and inventory efficiency. A small

number of firms emerge as core dealers to intermediate trades among a large number

of peripheral firms. The equilibrium number of dealers depends on two countervail-

ing forces: (i) competition among dealers in their pricing of immediacy to peripheral

firms, and (ii) the benefit of concentrated intermediation in balancing dealer inventory

through dealers’ ability to quickly net purchases against sales. For an asset with a

lower frequency of trade demand, intermediation is concentrated among fewer dealers,

and interdealer trades account for a greater fraction of total trade volume. These two

predictions are strongly supported by evidence from the Bund and U.S. corporate bond

markets. From a welfare viewpoint, I show that there are too few dealers for assets

with frequent trade demands, and too many for assets with infrequent trade demands.
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1 Introduction

Using a continuous-time model of network formation and trading in over-the-counter (OTC)

markets, I show how a highly concentrated core-periphery network arises endogenously as an

equilibrium balance between trade competition and inventory efficiency. Even when agents

are all ex-ante identical, a small number of them emerge as core agents, known as “deal-

ers,” to provide trade intermediation for a large number of peripheral “buyside firms.” The

equilibrium number of dealers is determined by a key trade-off between two countervailing

forces: (i) competition among dealers in their pricing of immediacy to buyside firms, and (ii)

the benefits of concentrated intermediation in balancing dealer inventory through dealers’

ability to quickly offset purchases against sales. The equilibrium balance between these two

forces need not be efficient. In addition to predicting the number of dealers providing inter-

mediation, my results point to under-provision of dealer intermediation for actively traded

assets, and over-provision for infrequently traded assets.

Most OTC markets, such as those for bonds, swaps and inter-bank lending, exhibit a

clear and stable core-periphery trading network.1 Roughly the same 10 to 15 dealers, all

affiliated with large banks, form the core. The vast majority of trades have one of these

dealers on at least one side. For example: The largest sixteen derivatives dealers, known as

the “G16,”2 intermediate 53% of the total notional amount of interest rate swaps, 62% of

credit default swaps, and 40% of foreign exchange forwards.3 Figure 1 illustrates the trading

networks of some OTC markets, all of which exhibit a clear core-periphery pattern.

The model works roughly as follows. A finite number of ex-ante identical agents form

bilateral trading relationships in a continuous-time game. It is costly for agents to hold asset

inventory beyond their immediate needs. Dealers arise endogenously to serve requests for

quote from peripheral agents, exploiting their central position to balance inventory by quickly
1Li and Schürhoff (2019) provides evidence on municipal bonds, Di Maggio, Kermani, and Song (2017)

on corporate bonds, Bech and Atalay (2010), Afonso, Kovner, and Schoar (2014) on federal funds, Craig and
von Peter (2014), in’t Veld and van Lelyveld (2014) on foreign interbank lending, Peltonen, Scheicher, and
Vuillemey (2014) on credit default swaps, Hollifield, Neklyudov, and Spatt (2017) on asset-backed securities
and King, Osler, and Rime (2012) on currencies.

2The G16 dealers are BoA, Barclays, BNP Paribas, Citi, Crédit Agricole, Credit Suisse, Deutsche Bank,
Goldman Sachs, HSBC, JPMorgan, Morgan Stanley, Nomura, RBS, Société Générale, UBS and Wells Fargo.

3These statistics are computed by Abad, Aldasoro, Aymanns, D’errico, Fache, Hoffmann, Langfield,
Neychev, and Roukny (2016) using EMIR data as of November 2015.
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Li and Schüerhoff - muni bonds Hollifield, Neklyudov, Spatt - ABS Bech and Atalay - Fed funds

ESRB - Interest rate swaps ESRB - Credit default swaps ESRB - FX forwards

Figure 1: Core-periphery trading networks in OTC markets

netting many purchases against many sales. Dealers compete in their pricing of immediacy

to retain peripheral buyside customers. As more dealers compete for trades, each dealer

must offer a narrower bid-ask spread, while requiring a higher intermediation compensation

given its reduced ability to balance inventory. The equilibrium number of dealers is such

that the equilibrium spread, disciplined by trade competition, is just enough to cover the

minimum spread sustainable by dealer inventory balancing capacity. Figure 2 depicts an

example equilibrium network with 23 agents, 3 of whom emerge as dealers.

Each dealer induces a negative externality on other dealers’ inventory efficiency by taking

away some of their customer order flow. This externality pushes toward over-provision of

dealer intermediation, and is especially pronounced for assets with infrequent trade demands

which limits the scope for netting. For actively traded assets, however, this externality is in-

consequential relative to the distortion caused by dealers’ market power over their customers.

The bilateral nature of OTC trading gives dealers a temporary monopolistic position in each

contact with buyside firms, causing a “holdup” distortion by which dealer rent extraction

deters buyside firms from forming some beneficial trading relationships. For actively traded

assets, the holdup distortion dominates the inventory-efficiency externality, leading overall

to under-provision of dealer intermediation.
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𝑑2 𝑑3

Figure 2: An example of a core-periphery network with 3 dealers and 20 buyside firms

Many studies4 have argued that recent illiquidity in bond markets has been worsened by

crisis-induced regulations (such as the Volcker Rule) and higher bank capital requirements,

which have increased dealers’ cost of accessing their balance sheets. My results suggest that,

aside from financial stability benefits (which I do not model), weighting capital requirements

by asset liquidity can foster more efficient provision of dealer intermediation.

Partly in response to post-crisis regulation, the basic core-periphery network of some OTC

markets includes additional structure in the form of trading platforms on which multiple

dealers provide quotes. Multilateral trading platforms have appeared in OTC markets for

foreign exchange, treasuries, some corporate bonds, and (especially through the force of

recent regulation) standardized swaps. Examples of such platforms include MarketAxess

and Neptune for bonds, 360T and Hotspot for currencies, and Bloomberg for swaps. This

paper restricts its focus, however, to the more “classical” case of purely bilateral OTC trade.

There is a rising interest in providing theoretical foundations for the endogenous core-

periphery structure of OTC markets. In many prior work on this topic, the agents who form

the core have some ex-ante special advantages in serving this role. For example, Hugonnier,

Lester, and Weill (2018) derive the “coreness” of investors from their valuations of the asset.

Those with average valuations act as intermediaries between high and low-value investors;

The models of Neklyudov (2019) and Üslü (2019) are based on exogenous heterogeneity in

investors’ search technologies. On the other hand, Farboodi, Jarosch, Menzio, and Wiriad-

inata (2019), Farboodi, Jarosch, and Shimer (2020) allow agents to actively acquire special
4Adrian, Fleming, Goldberg, Lewis, Natalucci, and Wu (2013) provide a recent discussion. Prior studies

on the relationship between dealer inventories and market liquidity include Ho and Stoll (1983), Grossman
and Miller (1988), Comerton-Forde, Hendershott, Jones, Moulton, and Seasholes (2010), Weill (2007).
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advantages in serving as intermediaries, such as superior search technology and negotiation

skill. In these models, inevitably, ex-ante identical agents also have identical equilibrium

payoff, despite some end up in the core and some on the periphery. Moreover, models based

on random matching lead to a continuum of “core” agents, thus missing realistic predictions

related to the number of dealers intermediating a given market, and more importantly, ruling

out strategic behavior arising from repeated interactions in a dealer-client trading relation-

ship. Chang and Zhang (2019) offers a different mechanism using directed search, showing

a multitiered trading pattern in which each agent trades away other agents’ misallocation

until she is no longer misallocated and is publicly revealed to be so. Also using directed

search, Sambalaibat (2019) shows that agents cluster according to their different frequencies

of preference shocks, resulting in differentially active clusters. Both papers establish posi-

tive assortative matching based on agents’ need to trade, Chang and Zhang (2019) based

on whether agents need to trade, Sambalaibat (2019) on how often they need to trade. In

Farboodi (2017), the endogenous network structure is generated by counterparty default risk

management, and not (as in my model) by trade competition and inventory risk management.

My results contribute to this literature in three ways: First, I provide a non-cooperative

game-theoretic foundation for the formation of core-periphery networks in OTC markets

that is motivated by inventory balancing and trade competition. Even when agents are all

ex-ante identical, an ex-post separation of core from peripheral agents is determined solely by

endogenous forces that tend to concentrate the provision of intermediation. The endogenous

set of dealers has significantly a higher equilibrium payoff than peripheral buyside firms.

Second, I explicitly calculate the equilibrium number of dealers as a function of market

characteristics. Finally, my model characterizes the endogenous relationships among welfare,

trade concentration and asset trade frequency, pointing to under-provision of intermediation

for actively traded assets, and over-provision for infrequently traded assets.

The paper is organized as follows. Section 2 presents the setup of the symmetric-agent

model. Section 3 shows that a core-periphery network emerges in equilibrium, solving for

the endogenous number of dealers as a function of market characteristics. Section 4 provides

comparative statics and welfare analysis, and discusses policy implications. Section 5 extends

the symmetric-agent model by introducing an inter-dealer market. Section 6 concludes.
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2 The Benchmark Model

Asset and preferences. I fix a probability space and the time domain [0,∞). A non-

divisible asset generates independent payoffs whose expected value is normalized to be 0

without loss of generality. A finite number 𝑛 of ex-ante identical risk-neutral agents start

with 0 initial endowment of the asset. Every agent incurs a quadratic cost 𝛽𝑥2 per unit of time

when holding an asset inventory5 of size 𝑥. That is, the agent experiences an instantaneous

disutility when her inventory position deviates from a bliss point, which is normalized to 0.

All agents are infinitely-lived with time preferences determined by a constant discount rate

𝑟, and can borrow and lend in a frictionless money market at the risk-free rate 𝑟.

Network formation, search and trade protocols. Each agent 𝑖 is shocked by exoge-

nously determined needs to buy or sell (equally likely) one unit of the asset at Poisson arrival

times with a mean rate 𝜆, independently of asset payoffs and across agents. If agent 𝑖 can

immediately execute such a trade, then she immediately consumes the traded asset and cap-

tures an immediacy benefit 𝜋. If she cannot, then she would need to wait until the next trade

opportunity arrives. These demand shocks create motives for trading and can be viewed as

outside customer orders, arbitrage opportunities or private hedging needs.

At any time 𝑡 ≥ 0, agent 𝑖 can open a trading account with any other agent 𝑗, allowing

𝑖 to request quotes from 𝑗. Setting up a trading account is costless, but maintaining an

account incurs an ongoing cost of 𝑐 per unit time to agent 𝑖, which can be viewed as a

monitoring or operational cost. Agent 𝑖 is permitted to terminate any of her accounts at

any time to save the associated maintenance costs. On the equilibrium path, these trading

accounts, once set up, will be maintained forever. The option to close an account, however,

plays an important role in supporting competition in equilibrium as a credible threat that

discourages quote providers such as agent 𝑗 from extracting excessive trading rents.

At any time 𝑡 > 0, agent 𝑖 may search, at no additional cost, among the quote providers

with whom she currently has an active account. A search among her 𝑚 current quote
5Broker-dealers and asset-management firms have extra costs for holding inventory of illiquid risky assets.

These costs may be related to regulatory capital requirements, collateral requirements, financing costs, and
the expected cost of being forced to raise liquidity by quickly disposing of inventory in an illiquid market.
The quadratic-holding-cost assumption is common in both static and dynamic trading models, including
those of Vives (2011), Rostek and Weretka (2012).
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providers is successful with probability 𝜃𝑚, upon which one of the 𝑚 quote providers offers a

quote with equal probability 1/𝑚. These search outcomes are independent of asset payoffs,

demand shocks, and across searches. The probability 𝜃𝑚 ∈ (0, 1) of a successful search is

increasing and concave in 𝑚 ≥ 0, and 𝜃0 = 0.6 A feature of the model is that for each trade

request, only one quote provider is available. This gives that quote provider a temporary

monopolistic position in a given trade. Competition is indirect, however, in that a quote

provider 𝑗 would lose 𝑖 to other quote providers as a future customer should 𝑗 “gouges” 𝑖.

At the point of a successful search contact with some quote provider 𝑗, agent 𝑖 submits

a request for quote (RFQ) indicating a desired trade direction (buy or sell). Agent 𝑗 then

posts an executable quote (ask or bid), a binding take-it-or-leave-it offer to trade one unit

of the asset in the desired direction. The quote is observed and executable only by agent 𝑖,

and is good only when offered. The restriction to a trade size of one unit is not realistic for

inter-dealer trading, and will be lifted in Section 5.

From this point, if agent 𝑗 has been selected as a quote provider by one or more other

agents, then I will refer to agent 𝑗 as a “dealer.” Agents that are not dealers are called “buyside

firms.” For clarity, I assume that dealers simply ignore their individual exogenous trade

opportunities. This eases the exposition of an equilibrium. Anticipating the equilibrium,

it will be the case, with reasonable parameters, that the expected payoff that could be

generated by individual trade opportunities is only a small fraction of the aggregate payoff

from serving RFQs from buyside customers. This assumption reflects dealers’ specialized

role in providing intermediation to buyside firms. In practice, a holding company usually

imposes a “China Wall” between its market making arm and its asset management arm, even

before the Volcker Rule (which bans dealers from proprietary trading) was implemented.

Figure 3 illustrates the sequence of events that could happen at a given time 𝑡 > 0.

Start

Stage 1:
Arrival of demand
shocks.

Stage 2:
Agents search linked
quote providers to
request quotes.

Stage 3:
Upon successful
search, quotes are
provided to quote
seekers.

Stage 4:
Agents accept or reject
the quotes, and open or
terminate trading ac-
counts.

Figure 3: Sequence of events that could occur at a given time 𝑡 > 0
6Appendix A microfounds this search technology, and discusses its connection to Diamond Paradox.
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Information structure and solution concept. In a nutshell, each agent only observes

events—demand shocks, trading activities and trading relationships—pertaining to herself.

In particular, each agent does not observe the inventories or trade relationships of other

agents. Technically, if each agent were to observe other agents’ inventories, then that would

set up a complicated problem because all the inventories would become state variables.

Making inventories private information simplifies, but does not entirely bypass this issue.

This is because at some point, the inventory of a given dealer 𝑗 would be so large in magnitude

that 𝑗 would want to reject more inventory-expanding trade requests by quoting a price that

is prohibitively expensive. Then its buyside customer 𝑖 could infer the dealer’s extreme

inventory position from that price. This inference complicates the strategy of agent 𝑖 in an

intractable way. (Agent 𝑖 would learn that keeping an account with 𝑗 is relatively more likely

to be a waste of time.) To avoid this informational complexity, I allow a quote provider the

option, whenever a quote is accepted, of not taking the trade on her own account, instead

allowing the transaction with agent 𝑖 to be diverted, without cost or benefit, to a neutral

third-party account called a “deep pocket.” Agent 𝑖 does not learn whether or not agent 𝑗

invokes this deep pocket. In equilibrium, it turns out that the deep pocket is invoked only

when the inventory of agent 𝑗 hits an exogenous boundary, to prevent the extreme inventory

position from being inferred through pricing. Based on this, I will show in Section 5 that this

inference problem vanishes in a large market. This will allow me to eliminate the deep-pocket

assumption (Proposition 11). I will also show that the deep-pocket account, when assumed,

is technically feasible, in that all trades diverted to it generate positive equilibrium profit.

To formally define agents’ strategies, I let ℱ𝑖𝑡− represent the information available to a

given agent 𝑖 up to but excluding time 𝑡, consisting of the agent’s past demand shocks (arrival

times and directions), her past trading activities (arrival times and directions of RFQ, quotes,

the identities of quote providers or quote seekers, transaction prices and inventories) and her

past trading relationships (incoming or outgoing links). I let ℱ𝑘
𝑖𝑡 represent the information

available to agent 𝑖 right after Stage 𝑘 at time 𝑡, where Stage 𝑘 is described in Figure 3

(𝑘 = 1, 2 and 3). That is, ℱ𝑘
𝑖𝑡 represents the information of ℱ𝑖𝑡− combined with the outcomes

of stages 1, . . . , 𝑘. A strategy for agent 𝑖 consists of

(i) A search strategy 𝑠𝑖 specifying a search decision 𝑠𝑖𝑡 ∈ {Search, Do Not Search} for every
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time 𝑡 > 0. When making this decision, agent 𝑖 possesses her prior information ℱ1
𝑖𝑡. Thus,

𝑠𝑖𝑡 must be measurable with respect to ℱ1
𝑖𝑡. In addition, it is assumed that agent 𝑖 can

search only a finite number of times during any bounded time interval to be consistent

with real-life search behavior.7

(ii) A pricing strategy 𝑝𝑖 specifying, for every time 𝑡 > 0, a price 𝑝𝑖𝑡, measurable with respect

to ℱ2
𝑗𝑡, that 𝑖 would quote upon receiving a request for quote.

(iii) A quote acceptance strategy 𝜌𝑖 specifying, for every time 𝑡 > 0, a trade decision 𝜌𝑖𝑡 ∈

{Accept, Reject} that is measurable with respect to ℱ3
𝑖𝑡.

(iv) An account maintenance strategy 𝑁𝑖 specifying, for every time 𝑡 > 0, a set 𝑁𝑖𝑡, mea-

surable with respect to ℱ3
𝑖𝑡, of agents with whom 𝑖 maintains an account. The process

(𝑁𝑖𝑡)𝑡≥0 is taken to be RCLL.8

An agent’s continuation utility at time 𝑡 right after Stage 𝑘 is

𝑈𝑘
𝑖𝑡 = E

(︃∫︁ ∞

𝑡

𝑒−𝑟(𝑠−𝑡)
(︀
−𝛽𝑥2𝑖𝑠 − |𝑁𝑖𝑠|𝑐

)︀
𝑑𝑠+

∑︁
𝜏ℓ≥𝑡

𝑒−𝑟(𝜏𝑖ℓ−𝑡) 𝜅𝑖ℓ

⃒⃒⃒
ℱ𝑘

𝑖𝑡

)︃
, (1)

where 𝑥𝑖𝑠 is the agent’s inventory size at time 𝑠, |𝑁𝑖𝑠| is her number active accounts, 𝜅𝑖ℓ is

her ℓ’th lump-sum benefit, which could be either an immediacy benefit 𝜋 for fulfilling a need

to trade or a price transferred at a trade, and time 𝜏𝑖ℓ is when she receives the benefit 𝜅𝑖ℓ.

In a perfect Bayesian equilibrium (PBE), each agent maximizes her continuation utility

𝑈𝑘
𝑖𝑡 after each Stage 𝑘 at each time 𝑡, given the strategies of other agents. Appendix C provides

a basic definition of PBE for continuous-time games.9 I focus on PBE with Markovian and

stationary strategies, where agents’ strategies depend only on payoff-relevant histories in

a time-homogenous manner. Specifically, the payoff-relevant history of agent 𝑖 at time 𝑡

consists of her inventory 𝑥𝑖𝑡− and her trading links (incoming and outgoing) connected right
7This also ensures that an agent’s inventory process (𝑥𝑖𝑡)𝑡≥0 is right continuous with left limits (RCLL).
8This ensures that the process 𝑁𝑖 is progressively measurable (Karatzas and Shreve (1998) 1.13 Propo-

sition p5), and that the set 𝑁𝑖𝑡− of quote providers connected right before time 𝑡 is well defined.
9One issue with defining PBE in a continuous-time game is that all information sets, even those on the

equilibrium path, are reached with probability 0 due to the continuous-time nature and the randomness of
event times. Appendix C deals with this issue by providing a basic definition of agents’ beliefs at information
sets on the equilibrium path using regular conditional probabilities.
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before time 𝑡, the directions of a potential demand shock or an RFQ at time 𝑡, the identity

of the quote seeker, or a potential quote received at time 𝑡 and the identity of the quote

provider. Letting 𝑌𝑖𝑡 be the Markov state variable encoding the payoff-relevant history of

agent 𝑖 at time 𝑡, a PBE is a stationary equilibrium if the strategies of every agent 𝑖 can be

written as [𝑓𝑖(𝑌𝑖𝑡)]𝑡>0 for some measurable function 𝑓𝑖 not depending on 𝑡.

Agent 𝑖 having a trading account with 𝑗 is represented by a directed link 𝑖 → 𝑗. A

network 𝐺 is an equilibrium trading network if some stationary equilibrium 𝜎 induces 𝐺 at

all time 𝑡 ≥ 0 on any equilibrium path. Then 𝜎 is said to be a supporting equilibrium for 𝐺.

3 Core-Periphery Network

It is impossible to solve for all equilibria of the model. The focus of this paper, however, is the

structure of equilibrium networks. Given a set of model parameters (𝑛, 𝛽, 𝜆, 𝜋, 𝑐, 𝜃, 𝑟), I show

that a large class of equilibrium networks all exhibit the “core-periphery” trading pattern. I

also provide selection criteria that select a unique equilibrium core-periphery network.

A family of concentrated core-periphery networks

There exists a family of equilibrium core-periphery networks of the form depicted in

Figure 4. In each such network, agents endogenously partition themselves into two types,

𝐼∪𝐽 = 𝑁 , with |𝐽 | = 𝑚 “dealers” only providing quotes and |𝐼| = 𝑛−𝑚 “buyside firms” only

requesting quotes. This network, denoted by 𝐺(𝑚), is called a concentrated core-periphery

network, in that each buyside firm has trading accounts with all the 𝑚 dealers. The dealers

do not trade with each other in equilibrium due to the lack of an inter-dealer market. A

connected core will emerge in Section 5, which introduces an interdealer trade protocol that

does not restrict a trade size to one unit.

Theorem 1. The concentrated core-periphery network 𝐺(𝑚) with 𝑚 dealers is supported by

a buyside-symmetric equilibrium10 if and only if 𝑚 ≤ 𝑚* for some maximum core size 𝑚*.

Proofs of results in this section are in Appendices B and D. I now show how the maximum

number 𝑚* of dealers, equilibrium pricing and dealer inventory size are jointly determined

as functions of model parameters, stating when buyside symmetry is required.
10In a buyside-symmetric supporting equilibrium, buyside firms follow the same strategy.
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Figure 4

There are two sides of the market—the buyside and the dealer side. I first consider

the buyside problem, which will uniquely pin down equilibrium pricing without requiring

symmetry across buyside firms. On the equilibrium path of a stationary equilibrium, a

buyside firm 𝑖 cannot be strictly worse off by terminating any one of its 𝑚 dealer accounts.

Otherwise, every dealer would extract all trading rents from 𝑖 knowing that 𝑖 never has an

incentive to terminate any account. On the other hand, 𝑖 cannot be strictly better off by

closing accounts, because by the definition of an equilibrium, 𝑚 is the optimal number of

dealer accounts for 𝑖. Therefore, a buyside firm must be indifferent between maintaining 𝑚

or 𝑚−1 dealer accounts. This indifference condition implies that all the 𝑚 dealers must post

the same constant spread in equilibrium, because otherwise a dealer posting a wide spread

would be too “expensive” to be maintained relative to a dealer posting a narrow spread. This

is shown more formally in Appendix D. Then a buyside firm’s instantaneous rate of benefit

when it maintains accounts with all the 𝑚 dealers is

Φ𝑚,𝑝 = 𝜆𝜃𝑚(𝜋 − 𝑝) −𝑚𝑐, (2)

where 𝑝 is the mid-to-bid spread charged by the dealers, thus the expected profit given to a

dealer for completing a trade. The mean rate of benefit Φ𝑚,𝑝 is the product of the arrival rate

𝜆 of exogenous trade opportunities, the probability 𝜃𝑚 of successfully executing a trade, and

the expected profit 𝜋−𝑝 of a successful trade, net of the flow cost 𝑚𝑐 of account maintenance.

If buyside firm 𝑖 discontinues its account with a given dealer 𝑗 at some time 𝑡, only

11



𝑖 and 𝑗 would observe this off-the-equilibrium-path deviation. Therefore, the remaining

dealers would continue to post the mid-to-bid spread 𝑝 to 𝑖 who now only has 𝑚− 1 dealer

accounts left. The instantaneous rate of benefit to 𝑖 thus becomes Φ𝑚−1,𝑝 in this continuation

game. The buyside indifference condition Φ(𝑚, 𝑝) = Φ(𝑚 − 1, 𝑝) uniquely determines the

equilibrium mid-to-bid spread 𝑝*(𝑚):

Φ(𝑚, 𝑝) = Φ(𝑚− 1, 𝑝) ⇐⇒ 𝑝 = 𝑝*(𝑚) = 𝜋 − 𝑐

𝜆(𝜃𝑚 − 𝜃𝑚−1)
. (3)

Figure 5 illustrates Φ𝑗,𝑝 as a function of 𝑑 for 𝑝 = 𝑝*(𝑚) and 𝑝 = 𝑝*(𝑚+ 1).
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Figure 5: Indifference condition for buyside firms—If the mid-to-bid spread is 𝑝 = 𝑝*(𝑚), then a buyside
firm reaches its highest instantaneous rate of benefit Φ𝑗,𝑝 with 𝑗 = 𝑚 − 1 or 𝑚 dealer accounts, while
being indifferent between these two choices. If 𝑝 = 𝑝*(𝑚+ 1), the optimal rate of benefit improves, in that
Φ𝑚+1,𝑝*(𝑚+1) > Φ𝑚,𝑝*(𝑚).

The indifference condition (3), reflected as the flat plateau in Figure 5 between having

𝑗 = 𝑚−1 and 𝑚 dealer accounts, gives every buyside firm the ability to costlessly terminate

any given dealer account. No account termination occurs on the equilibrium path. However,

the ability of buyside firms to discontinue a trading relationship constitutes a credible threat

to all the 𝑚 dealers should they extract excessive rents. This off-the-equilibrium-path threat

disciplines the dealers’ quotes, and is the key source of competition among dealers. The next

proposition formally summarizes the results from analyzing the buyside problem and further

shows how dealer competition compresses the equilibrium spread 𝑝*(𝑚).
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Proposition 1. On the equilibrium path of any supporting equilibrium for 𝐺(𝑚), each dealer

𝑗 offers each buyside firm 𝑖 some constant ask 𝑎*𝑗𝑖 and bid 𝑏*𝑗𝑖, with a spread 𝑎*𝑗𝑖−𝑏*𝑗𝑖 = 2𝑝*(𝑚).

The equilibrium mid-to-bid spread 𝑝*(𝑚) is strictly decreasing in the number 𝑚 of dealers.

I now let buyside firms use “grim trigger” to most effectively implements the threat of

account termination. That is, a buyside firm discontinues its trading account with a given

dealer when (a) the buyside firm has𝑚 dealer accounts in total, and (b) the dealer gouges the

buyside firm by offering an ask 𝑎 > 𝑝*(𝑚) or a bid 𝑏 < −𝑝*(𝑚). When these two conditions

are both met, the buyside firm, after accepting the current quote if the trade is still profitable

(that is, if 𝑎 ≤ 𝜋 or 𝑏 ≥ −𝜋), immediately closes its account with this dealer. Since grim

trigger implements the most strict punishment, it gives dealers the strongest disincentive to

gouge buyside customers. Thus, it supports the widest range of equilibrium networks.11

As the number of dealers increases, dealers compete for trades more intensely by offering

tighter bid-ask quotes (Proposition 1). Hence, profit on each trade declines. On the other

hand, each dealer receives a thinner order flow from buyside firms, thus becomes less effi-

cient in balancing its inventory. The benefits of acting as a dealer thus decrease. At some

point, each dealer starts to feel the pressure of its incentive to gouge buyside firms thus has

difficulty convincing buyside firms to open accounts with it at the first place. This limits the

equilibrium scope for dealer competition. Next, I demonstrate this intuition by analyzing

the dealer’s problem and calculate the maximum number 𝑚* of dealers.

Each dealer 𝑗 solves the following dynamic programing problem to determine its optimal

pricing strategy: Each buyside firms submits RFQ to 𝑗 at some Poisson rate 𝜂, requesting to

buy or sell (equally likely) one unit of the asset. Upon receiving a request to buy, if 𝑗 quotes

an ask price 𝑎 such that 𝑎 ≤ 𝑝 for some cutoff price 𝑝, then the buyside firm accepts the

quote and continues to come back to 𝑗 at the same Poisson rate 𝜂. If 𝑝 < 𝑎 ≤ 𝜋, then the

buyside firm accepts the quote but never comes back to 𝑗 again. If 𝑝 > 𝜋, then the buyside

firm rejects the quote and never comes back to 𝑗 again. Whenever a quote is accepted, 𝑗 can

divert the transaction to its deep pocket. The case of a request to sell is symmetric. The

dealer optimizes its pricing strategy to maximize its continuation utility 𝑈𝑗𝑡 given by (1).
11In a grim trigger, the respecitve cutoffs for the bid and ask need not be symmetric around 0, whereas the

spread between the two cutoffs must be 2𝑝*(𝑚) (Proposition 1). However, such an asymmetric grim trigger
cannot expand the range of equilibrium networks supported by a symmetric grim trigger (Appendix D).
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I let 𝑉𝑘(𝑥) be the continuation value of 𝑗 when it has some number 𝑘 of buyside customers

and some asset inventory of size 𝑥 ∈ Z. When 𝑘 = 0, 𝑗 has no buyside customers, thus

𝑉0(𝑥) =
∫︀∞
0
𝑒−𝑟𝑠(−𝛽𝑥2)𝑑𝑠 = −𝛽𝑥2/𝑟. The optimal pricing strategy is characterized by the

following Hamilton-Bellman-Jacob (HJB) equations: for 𝑘 = 1, 2, . . . and every 𝑥 ∈ Z:

𝑟𝑉𝑘(𝑥) = −𝛽𝑥2 + 𝑘
𝜂

2
max{𝑉𝑘(𝑥− 1) − 𝑉𝑘(𝑥) + 𝑝, 0, 𝑉𝑘−1(𝑥− 1) − 𝑉𝑘(𝑥) + 𝜋}

+ 𝑘
𝜂

2
max{𝑉𝑘(𝑥+ 1) − 𝑉𝑘(𝑥) + 𝑝, 0, 𝑉𝑘−1(𝑥+ 1) − 𝑉𝑘(𝑥) + 𝜋}.

(4)

The first term −𝛽𝑥2 is the inventory flow cost for holding 𝑥 units of the asset. The second

and third terms are the dealer’s expected rates of profit associated with serving requests

to buy and sell, respectively. Upon receiving a request to buy, 𝑗 has three options: on the

equilibrium path, 𝑗 sets its ask price 𝑎 = 𝑝 just low enough to retain its buyside customer for

future trades, earning a trade profit 𝑉𝑘(𝑥− 1) + 𝑝− 𝑉𝑘(𝑥); in addition, if 𝑗 invokes the deep

pocket, then 𝑗 earns a trade profit of 0; off the equilibrium path, however, 𝑗 could “gouge”

the buyside customer by posting the maximum ask price 𝑎 = 𝜋 that would be accepted, at

the expense of losing the buyside customer for future trades. Gouging earns 𝑗 a trade profit

of 𝑉𝑘−1(𝑥− 1) + 𝜋 − 𝑉𝑘(𝑥). Dealer 𝑗 maximizes its net trade profit, taking into account its

continuation value after the trade. The case of a request to sell is symmetric.

On the equilibrium path, 𝑗 has no incentive to gouge any buyside firm by raising its ask

or lowering its bid. I let 𝑉 be the value function of 𝑗 if 𝑗 was restricted from gouging buyside

firms. Then 𝑉 satisfies the HJB equations

𝑟𝑉 𝑘(𝑥) = −𝛽𝑥2 +
𝑘𝜂

2
max{𝑉 𝑘(𝑥− 1) − 𝑉 𝑘(𝑥) + 𝑝, 0}

+
𝑘𝜂

2
max{𝑉 𝑘(𝑥+ 1) − 𝑉 𝑘(𝑥) + 𝑝, 0}.

(5)

The HJB equation (5) for 𝑉 is obtained from the HJB equation (4) for 𝑉 by eliminating the

option of gouging. On the equilibrium path, the HJB equation for 𝑉 determines a unique

optimal pricing strategy for 𝑗, characterized by some inventory boundary �̄�:

Proposition 2. On the equilibrium path, each dealer has a unique optimal pricing strategy

[𝑎*(·), 𝑏*(·)], determined by the HJB equation (5) and characterized by an inventory boundary
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�̄�𝑘𝜂 ∈ Z, such that:

• If the dealer’s inventory 𝑥 is within −�̄�𝑘𝜂 < 𝑥 < �̄�𝑘𝜂, then 𝑎*(𝑥) = 𝑝 and 𝑏*(𝑥) = −𝑝.

• If 𝑥 ≤ −�̄�𝑘𝜂, then 𝑎*(𝑥) = 𝑝DP and 𝑏*(𝑥) = −𝑝.

• If 𝑥 ≥ �̄�𝑘𝜂, then 𝑎*(𝑥) = 𝑝 and 𝑏*(𝑥) = −𝑝DP.

Here, the subscript “DP” indicates the use of the deep pocket. If the dealer’s inventory

is within the range (−�̄�𝑘𝜂, �̄�𝑘𝜂), the spread 𝑝 gives it enough profit incentive to warehouse

additional inventory. Whenever the dealer’s inventory drops below −�̄�𝑘𝜂, it is not willing to

sell more assets on its own account at the price 𝑝, which no longer covers its indirect marginal

inventory cost. Using the deep pocket allows the dealer to divert a sell trade. Similarly,

when the dealer’s inventory exceeds �̄�𝑘𝜂, it uses the deep pocket to divert a buy trade. In

equilibrium, the dealer optimally controls its inventory within the interval [−�̄�𝑘𝜂, �̄�𝑘𝜂], and

uses the deep pocket only when its inventory hits the boundaries ±�̄�𝑘𝜂.

Now, I examine the dealer’s incentive to “gouge” buyside customers. Upon gouging, the

dealer earns a one-shot benefit of 𝜋 − 𝑝 for the current trade at the expense of losing a

buyside customer and the associated future profit stream. The future profits forgone from

losing a buyside customer lowers the dealer’s continuation value by

𝐿𝑘,𝜂,𝑝(𝑥) = 𝑉 𝑘(𝑥) − 𝑉𝑘−1(𝑥)

The One-Shot Deviation Principle implies that the dealer has no incentive to gouge if and

only if the one-shot benefit of gouging does not exceed its expected cost, in that

𝜋 − 𝑝 ≤ ℒ(𝑘, 𝜂, 𝑝) = min
𝑥∈Z

𝐿(𝑘, 𝜂, 𝑝)(𝑥), (6)

Lemma 1. The expected cost ℒ(𝑘, 𝜂, 𝑝) of losing a buyside customer is continuous in 𝑝 and,

when �̄�𝑝 ≥ 1, strictly increasing in 𝑝. Thus, the no-gouging condition (6) is satisfied if and

only if 𝑝 ≥ 𝑝(𝑘, 𝜂), where 𝑝(𝑘, 𝜂) is uniquely determined by

𝜋 − 𝑝(𝑘, 𝜂) = ℒ
(︀
𝑘, 𝜂, 𝑝(𝑘, 𝜂)

)︀
.
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Intuitively, when the dealer is receiving a higher spread 𝑝 from buyside customers, losing

a customer is more costly. Lemma 1 implies that 𝑝(𝑘, 𝜂) is the tightest mid-to-bid spread

that the dealer can sustainably offer without having incentive to gouge. On the equilibrium

path, a given dealer receives requests to trade from 𝑘 = 𝑛 − 𝑚 buyside customers at the

rate 𝜂𝑚 = 𝜆𝜃𝑚/𝑚 each. Then 𝑝(𝑚) = 𝑝(𝑛 −𝑚,𝜆𝜃𝑚/𝑚) is the dealer’s tightest sustainable

spread. Next is the key result that illustrates the effect of inventory balancing.

Proposition 3. The tightest sustainable spread 𝑝(𝑘, 𝜂) is strictly decreasing in a dealer’s

number 𝑘 of buyside customers and the Poisson arrival rate 𝜂 of RFQ from each customer.

Hence, the tightest sustainable spread 𝑝(𝑚) is strictly increasing in the number 𝑚 of dealers.

When a dealer has more buyside customers or receives more frequent RFQ from each

buyside customer, it can offer a tighter spread thanks to its ability to more efficiently balance

inventory by more quickly netting purchases against sales. A well connected dealer is in this

sense a liquidity hub. When there are more dealers in the market, however, each dealer

receives a thinner order flow from each buyside firm and becomes less efficient in balancing

its inventory. Thus every dealer has less incentive to sustain a tight spread. Figure 6 provides

a graphical illustration of Lemma 1 and Proposition 3.

𝜋 − 𝑝

(𝑘 = 𝑛−𝑚′ < 𝑛−𝑚)

(𝑚′ > 𝑚)
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ℒ(𝑘, 𝜂𝑚, 𝑝)

ℒ(𝑛−𝑚′, 𝜂𝑚′ , 𝑝)

more dealers,
(𝑚′ > 𝑚),

fewer buyside customers,
(𝑘 < 𝑛−𝑚),

thinner order flow from each customer,
(𝜂𝑚′ < 𝜂𝑚)

Figure 6: The tradeoff between the one-shot benefit 𝜋− 𝑝 and the expected cost ℒ(𝑘, 𝜂, 𝑝) of gouging. The
cost ℒ(𝑘, 𝜂, 𝑝) associated with forgone future profits is increasing in 𝑘, 𝜂 and 𝑝. Hence, the dealer-sustainable
spread 𝑝(𝑚) is increasing in 𝑚.

The equilibrium spread 𝑝*(𝑚), given in (3), must be dealer-sustainable in that 𝑝*(𝑚) ≥

𝑝(𝑚). Since the equilibrium spread 𝑝*(𝑚) is strictly decreasing in the number 𝑚 of dealers

thanks to better competition, while the tightest sustainable spread 𝑝(𝑚) is strictly increasing
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in 𝑚 due to worse inventory efficiency, then 𝑝*(𝑚) ≥ 𝑝(𝑚) is equivalent to 𝑚 ≤ 𝑚*, where

𝑚* is the largest integer such that

𝑝*(𝑚*) ≥ 𝑝(𝑚*). (7)

The number 𝑚* is the maximally sustainable core size. Figure 7 plots both spread curves.
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Figure 7: The equilibrium spread 𝑝*(𝑚), dealer’s sustainable spread 𝑝(𝑚) and the maximum core size 𝑚*

In a supporting equilibrium of 𝐺(𝑚) (𝑚 = 1, . . . ,𝑚*), dealers are deterred from gouging

by the fear of losing buyside customers. Buyside firms do not terminate any account on the

equilibrium path, but their ability to do so constitutes a credible threat that discourages

dealers from gouging, sustaining the equilibrium. Appendix D completes the construction of

the supporting equilibrium by filling in off-the-equilibrium-path actions and a belief system.

Proposition 1 implies that on the equilibrium path of any supporting equilibrium, each

dealer 𝑗 must offer each buyside customer 𝑖 a constant mid quote mid*
𝑗𝑖 = (𝑎*𝑗𝑖 + 𝑏*𝑗𝑖)/2.

However, dealers need not offer a mid quote of 0 as they do in the candidate equilibrium

above. If buyside firms impose, on dealer 𝑗, a grim trigger with bid and ask cutoffs that are

not symmetric around 0, 𝑗 would respond by offering them a non-zero mid quote and opti-

mally shifts its inventory boundaries from [−�̄�, �̄�] to some [𝑥′, �̄�′] accordingly. Appendix D

shows that by offering a non-zero mid-quote, 𝑗 has a stronger incentive to gouge, making it

more difficult to support an equilibrium network, as long as 𝑗 offers the same dealer-specific

non-zero mid*
𝑗 to every buyside customer. In a buyside-symmetric equilibria, buyside firms

employ the same account maintenance strategy, thus a dealer must offer, in response, the

same mid*
𝑗 to every buyside customer. Hence, dealers offering dealer-specific non-zero mid
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quotes cannot expand the range of equilibrium networks supported by dealers offering a

zero mid quote. When a dealer offers different mid quotes to different buyside customers, it

would have a different inventory boundary [𝑥𝑖, �̄�𝑖] for each different buyside customer 𝑖. The

dealer’s problem then becomes excessively complicated.

Considering buyside-symmetric equilibria is tractable, but too restrictive because it rules

out equilibrium networks in which buyside firms are asymmetrically positioned. Without

imposing the full buyside symmetry, I next characterize alternative networks supported by a

one-dealer-one-mid equilibrium, where each dealer 𝑗 offers a dealer-specific mid*
𝑗 to its every

buyside customer on the equilibrium path, without being restricted to do so off the path.12

Core-periphery pattern of all other equilibrium networks

In practice, core-periphery structures in OTC markets are less “concentrated,” in that

a typical buyside firm is connected to some but not all dealers. Figure 8 illustrates an

example of such core-periphery network. I show that other equilibrium networks all have

a flavor of “core-periphery” structure, but are less efficient, in a sense to be specified, than

some concentrated core-periphery equilibrium network. Roughly speaking, a network is an

equilibrium network only if (i) the number of dealers is relatively small (Corollary 1), and (ii)

every dealer has enough buyside customers to efficiently balance its inventory (Theorem 2).

For any given network 𝐺, agents can be partitioned into 𝐼 ∪ 𝐽 = 𝑁 as follows: Agents in

𝐼, representing “buyside firms,” have no incoming links; Agents in 𝐽 , representing “dealers,”

have at least one incoming link. I consider a network 𝐺 with uniform outdegree 𝑚, in which

every buyside firm has the same number 𝑚 of dealer accounts. A dealer with 𝑘 buyside

customers can only sustain a spread of 𝑝(𝑘, 𝜂𝑚). Since 𝑝(𝑘, 𝜂𝑚) is strictly decreasing in 𝑘

(Proposition 3), then 𝑝(𝑘, 𝜂𝑚) ≤ 𝑝*(𝑚) if and only if 𝑘 ≥ 𝑘*(𝑚) for some 𝑘*(𝑚). That is,

12An alternative way (other than buyside symmetry) to motivate the consideration of “same-mid-quote”
equilibria is by assuming that the quote seeker’s identity is not revealed to the quote provider at the time of
an RFQ. This trade protocol, known as “anonymous RFQ,” is being implemented and gaining popularity as
OTC markets move toward electronic trading. On Swap Execution Facilities in 2014, 31% of investors prefer
trading via anonymous RFQ, and 52% prefer name give-up RFQ, according to McPartland (2014) based
on survey responses. With anonymous RFQ, a dealer must offer the same mid-quote to its every buyside
customer, and buyside firms need not follow the same equilibrium strategy. All results in this paper continue
to hold assuming anonymous RFQ. However, the anonymous-RFQ assumption is still too big a hammer from
a modeling perspective because it restricts a dealer’s strategy set thus possible deviations. It weakens the
generality of the results thus is avoided.
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𝑑1

𝑑2 𝑑3

Figure 8: Example: every buyside firm is connected to 2 of the 3 dealers

the dealer needs more than 𝑘 ≥ 𝑘*(𝑚) buyside customers to sustain the equilibrium spread

𝑝*(𝑚) without having an incentive to gouge. This result is summarized by the next Theorem.

Theorem 2. A network 𝐺 with uniform outdegree 𝑚 is supported by a one-dealer-one-mid

equilibrium if and only if (i) 𝑚 ≤ 𝑚*, and (ii) every dealer has more than 𝑘*(𝑚) buyside

customers. In any supporting equilibrium, every dealer offers the equilibrium mid-to-bid

spread 𝑝*(𝑚), and every buyside firm’s equilibrium utility is Φ(𝑚, 𝑝*(𝑚))/𝑟.

Later, I will provide an equilibrium selection criterion, based on trade competition, that

selects 𝑚 = 𝑚*. Focusing on equilibrium networks with 𝑚 = 𝑚*, I derive, from Theorem 2,

an explicit upper bound on the equilibrium number of dealers.

Corollary 1. If network 𝐺 with uniform outdegree 𝑚* is supported by a one-dealer-one-mid

equilibrium, then the total number |𝐽 | of dealers is bounded by

|𝐽 | < 𝑚*𝑛

𝑘*(𝑚*) +𝑚* .

Intuitively, because each buyside firm can have at most 𝑚* dealer accounts, and each

dealer needs at least 𝑘*(𝑚*) buyside customers, then there cannot be too many dealers. As

a numerical example, I consider a market with 𝑛 = 1000 agents, 𝛽 = 0.1, 𝜋 = 1, 𝜆 = 3, 𝜃𝑚 =

1 − 0.8𝑚, 𝑐 = 0.09 and 𝑟 = 0.1. The upper bound on the number of dealers is |𝐽 | ≤ 17.

I made the deep-pocket assumption to avoid an inventory inference problem. Admittedly,

this is not the most natural assumption. It is at least desired that a deep pocket is used in a
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non-biased manner. In a one-dealer-one-mid equilibrium, the expected asset position of each

dealer’s deep pocket is 0 at all time (that is, the deep pocket is neither a net buyer nor a net

seller in expectation) if and only if the dealer offers a mid quote of 0 on the equilibrium path.

In this case, for every trade diverted to it on the equilibrium path, the deep pocket receives

the positive payment 𝑝*(𝑚) from a buyside customer and does not subsidize the dealer.

However, this does not rule out any equilibrium network, because dealers offering a zero

mid quote actually makes them less tempted to gouge, thus can support a wider range of

equilibrium networks. Next, I propose two equilibrium selection criteria, based on inven-

tory balancing efficiency and dealer trade competition respectively, that jointly select the

concentrated core-periphery network 𝐺(𝑚*) with 𝑚* dealers.

Equilibrium selection

The next result, based on inventory balancing efficiency, shows that the concentrated

core-periphery networks induce higher welfare than other equilibrium networks. Given a

strategy profile 𝜎, I define welfare 𝑈(𝜎) as the sum of all agents’ utilities.

Proposition 4. Given a network 𝐺 with uniform outdegree 𝑚 that is not a concentrated

core-periphery network, if 𝐺 is supported by some zero-mid equilibrium 𝜎 where dealers offer

mid quote of 0 to every buyside firms on the equilibrium path, then 𝑈(𝜎′) < 𝑈(𝜎*
𝑚) where

𝜎*
𝑚 is the supporting equilibrium for the concentrated core-periphery network 𝐺(𝑚).

A more concentrated network allows more efficient netting of trade. Specifically, from

an equilibrium network 𝐺 in which every buyside firm has accounts with some but not all

dealers, 𝐺(𝑚) is obtained by concentrating buyside firms’ accounts toward the same, smaller

set of dealers. The networks 𝐺 and 𝐺(𝑚) have the same total number of trading lines,

thus the same total trading volume and account maintenance cost. The same volume of

trade is intermediated, however, by a smaller set of dealers in 𝐺(𝑚) relative to 𝐺. Trade

concentration leads to more efficient netting of trades and thus a lower aggregate dealer

inventory cost, which results in higher welfare in 𝐺(𝑚).

The second criterion, based on trade competition, uses the fact that the equilibria are

Pareto-ranked for buyside firms.
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Corollary 2. Given two equilibrium networks 𝐺 and 𝐺′ with uniform outdegrees 𝑚 and 𝑚′,

the equilibrium utility of buyside firms is strictly lower in 𝐺 than in 𝐺′ if 𝑚 < 𝑚′.

Corollary 2 follows from Theorem 2 and Φ(𝑚, 𝑝*(𝑚)) < Φ(𝑚′, 𝑝*(𝑚′)) if𝑚 < 𝑚′. All buy-

side firms prefer an equilibrium where they are connected to more competing dealers, since

the benefit associated with a tighter equilibrium spread and better trade execution outweighs

additional account maintenance costs. Figure 5 provides an illustration of Corollary 2.

Corollary 2 leads to a natural equilibrium selection criterion: an equilibrium network

𝐺 with uniform outdegree 𝑚 < 𝑚* can be overturned if agents can actively coordinate

the selection of dealers. For example, in a concentrated core-periphery network 𝐺(𝑚) where

𝑚 < 𝑚*, the 𝑛−𝑚 buyside firms can jointly deviate to get rid of the𝑚 incumbent dealers and

trade in their own concentrated core-periphery network 𝐺𝑛−𝑚(𝑚′) with 𝑚′ (𝑚′ > 𝑚) dealers.

Those 𝑚′ buyside firms selected to become dealers in the joint deviation are strictly better

off by exploiting their new network positions as dealers to earn intermediation profits. The

remaining buyside firms also benefit from greater dealer competition, earning Φ(𝑚′, 𝑝*(𝑚′))/𝑟

instead of Φ(𝑚, 𝑝*(𝑚))/𝑟 (Corollary 2). On the other hand, the concentrated core-periphery

network𝐺(𝑚*) with𝑚* dealers cannot be overturned by competitive pressure in this manner.

This selection procedure closely mimics the logic of coalition-proof Nash equilibrium of

Bernheim, Peleg, and Whinston (1987), which can be adapted to this dynamic network

formation setting to obtain a formal equilibrium selection criterion.

Definition 1. (i) Given an equilibrium network 𝐺 supported by some equilibrium 𝜎, a

single-player deviation is coalition-proof if it makes the player strictly better off at some

information set given its belief.

(ii) For any ℓ > 1, I assume that coalition-proofness has been defined for any joint

deviation by any ℓ′-agent coalition where ℓ′ < ℓ.

(a) A joint deviation (𝜎′
𝑆) by an ℓ-agent coalition 𝑆 is self-enforcing if it is stationary, if

(𝜎′
𝑆, 𝜎−𝑆) induces a stable network almost surely and if the deviation’s restriction (𝜎′

𝑆′) to

any proper sub-coalition 𝑆 ′ ⊂ 𝑆 is coalition-proof with respect to (𝜎′
𝑆, 𝜎−𝑆).

(b) A joint deviation by an ℓ-agent coalition 𝑆 is coalition-proof if it is self-enforcing, and

if there is no other self-enforcing deviation by 𝑆 that makes everyone in 𝑆 strictly better off.
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(iii) An equilibrium network is coalition-proof if it has a supporting equilibrium that

cannot be blocked by any coalition-proof deviation that makes every member in the deviating

coalition strictly better off.

Part (i) says that coalition-proofness imposes no additional restriction on a unilateral

deviation. Part (ii) then recursively defines a coalition-proof deviation as one that cannot

be blocked by any other coalition-proof deviation of any sub-coalition.

Proposition 5. If an equilibrium network 𝐺 is coalition-proof, then its maximum outdegree

is 𝑚*. The concentrated core-periphery network 𝐺(𝑚*) with 𝑚* dealers is coalition-proof.

The rational of requiring deviation to be coalition-proof is that “players can freely dis-

cuss their strategies, but cannot make binding commitments...In [such] environments..., any

meaningful agreement to deviate must also be self-enforcing (i.e., immune to deviations by

subcoalitions)” (Bernheim, Peleg, and Whinston (1987)). This underlying assumption fits

well with the non-cooperative game here.

Here, the most interesting application of coalition-proofness is that it rules out collusive

price rigging by any dealer coalition. I suppose that a coalition of dealers were to collude

to offer a wider mid-to-bid spread 𝑝 > 𝑝*(𝑚). Since buyside firms continue to use the grim

trigger, and losing a buyside customer is costly for any given dealer, each dealer in the

coalition would have an incentive to unilaterally switch away from the agreed-upon collusive

spread 𝑝 back to the equilibrium spread 𝑝*(𝑚) in order to retain its own customers. That

is, the dealers cannot credibly engage in such a collusion. In other words, the supporting

equilibrium for 𝐺(𝑚) constructed here is robust against dealer collusion (though not against

the joint deviation by buyside firms to push for more dealers described above unless𝑚 = 𝑚*).

Jointly, the two selection criteria in Propositions 4 and 5, based on inventory balancing

and trade competition respectively, select the concentrated core-periphery network 𝐺(𝑚*).

4 Core Size, Welfare and Policy Implications

To develop comparative statics on the equilibrium number of dealers, I focus attention on the

concentrated core-periphery network𝐺(𝑚*) that is selected by Proposition 4 and Corollary 2.

The equilibrium core size 𝑚* and the equilibrium spread 𝑝*(𝑚*)
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The next result shows how the core size varies as a function of the model parameters

(𝑛, 𝛽, 𝜆, 𝜋, 𝑐, 𝜃, 𝑟), fixing all but one parameter. Proofs are available in Appendix F of the

Full Appendix on my website (Wang (2021)).

Proposition 6. (i) The core size 𝑚* is weakly increasing in the total number 𝑛 of agents,

with a finite limit size 𝑚*
∞. The limit size 𝑚*

∞ is the largest integer 𝑚 such that

𝑚𝑟𝜋

𝜆𝜃𝑚 +𝑚𝑟
< 𝑝*(𝑚).

(ii) The core size 𝑚* is increasing in the arrival rate 𝜆 of demand shocks and the total gain

per trade 𝜋, and decreasing in the account maintenance cost 𝑐.

(iii) The equilibrium spread 𝑝*(𝑚*) is weakly decreasing in the total number 𝑛 of agents.

Part (i) of Proposition 6 has a simple intuitive proof, as follows. As the total number 𝑛 of

agents increases, each dealer becomes more efficient in balancing inventory, thus can sustain

a tighter spread 𝑝(𝑛−𝑚, 𝜂𝑚) (Proposition 3). The equilibrium spread 𝑝*(𝑚), however, does

not depend on 𝑛. The core size 𝑚* is thus increasing in 𝑛, as shown by Figure 9.

Number 𝑚 of dealers0

𝑝*(𝑚)

𝑝(𝑛′ −𝑚, 𝜂𝑚)

𝑝(𝑛−𝑚, 𝜂𝑚)

𝑝(∞, 𝜂𝑚)

𝑛 < 𝑛′

Sp
re

ad

• •
•

•

•

•

•

•• • • • • • • ••
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

1 𝑚*
𝑛 𝑚*

𝑛′ 𝑚*
∞

Figure 9: The core size 𝑚* is increasing in the total number 𝑛 of agents.

Part (i) also implies that even for an “infinite” set of investors, one should anticipate

only a finite number 𝑚*
∞ of dealers. This limiting core size 𝑚*

∞ does not depend on the

inventory cost coefficient 𝛽, because dealers are very efficient in balancing their inventories
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with an infinite number of buyside firms. To provide a numerical example of the number

𝑚*
∞ of dealers in a large market, I let 𝜋 = 1, 𝜆 = 3, 𝜃𝑚 = 1 − 0.8𝑚, 𝑐 = 0.1, and 𝑟 = 0.1.

Then 𝑚*
∞ = 7, and the equilibrium spread in the large market is 𝑝*(𝑚*

∞) ≃ 0.36.

As 𝜋 increases, dealers extract a higher rent per trade (reflected by a wider equilibrium

spread 𝑝*(𝑚)), but also have a stronger incentive to gouge (wider sustainable spread 𝑝(𝑚)).

It is shown, in Appendix F, that the equilibrium spread 𝑝*(𝑚) increases more than the

sustainable spread 𝑝(𝑚). The equilibrium core size 𝑚* thus increases with 𝜋.

The parameter 𝜆 measures each buyside firm’s frequency of liquidity trade demand.

With more frequent buyside demand, it is natural that more dealers emerge to facilitate the

intermediation of the asset, leading to a lower market concentration. This prediction of a

negative relationship between trade frequency and market concentration is consistent with

empirical evidences from OTC markets. Using data on the German Bund market, de Roure

and Wang (2016) shows that higher trade frequency leads to lower Herfindahl index of trade

concentration. In the foreign exchange derivatives market, the Herfindahl index ranking is,

from low to high, USD, EUR, GBP, JPY, CHF, CAD and SEK. The order of the outstanding

notional amounts of these currencies is almost entirely reversed (with the exception of JPY

and GBP, which are close in both measures). Across asset classes, the Herfindahl index is

lowest in the interest rate derivatives market, followed by the credit derivatives market and

finally the equity derivatives market. As a time-series example, Cetorelli, Hirtle, Morgan,

Peristiani, and Santos (2007) document a substantial decline in the market concentration of

the credit derivatives market during 2000-04, as “financial institutions have rushed to take

part in this exploding market.” Figures 10 to 12 and Table 1 illustrate these four examples.

Four firms Eight firms HHI
Notional Percent Notional Percent

Interest rate 173.5 40.0 272.9 62.9 629.4
Credit 10.7 40.8 18.4 69.9 738.5
Equity 2.7 43.0 4.5 70.8 747.9
Total 184.6 39.5 293.2 62.8 630.1

Table 1: Souce: ISDA Market Survey, Mid-Year 2010, by Mengle (2010)

Dealer inventory levels and turnover, aggregate dealer inventory cost.

Given the model parameters (𝑛, 𝛽, 𝜆, 𝜋, 𝑐, 𝜃, 𝑟), the total arrival rate of demand shocks is 𝑛𝜆.
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Figure 11: Source: Semiannual Statistics (BIS)

Figure 12: Source: Cetorelli, Hirtle, Morgan, Peristiani, and Santos (2007)

In a concentrated core-periphery network 𝐺(𝑚) (𝑚 ≤ 𝑚*), I examine how the dealer inven-

tory dynamic depends on 𝑛 and 𝜆. I let �̄� denote the inventory boundary �̄�(𝑛−𝑚)𝜂𝑚,𝑝*(𝑚),𝛽.

Proposition 7. The inventory boundary �̄� is decreasing in 𝛽 and increasing in 𝑛𝜆. As 𝑛𝜆

goes to infinity, �̄� goes to infinity at the rate (𝑛𝜆)1/3, and the mixing time13 of the dealer

inventory process goes to 0 at the rate (𝑛𝜆)−1/3.

Fixing the number of dealers, as it becomes more costly to warehouse inventory (higher
13The mixing time of a Markov process (𝑋𝑡)𝑡≥0 is defined as 𝑡mix = inf{𝑡 : sup𝑥0

||𝑋𝑡, 𝜇||TV ≤ 1/4},
where ||𝑋𝑡, 𝜇||TV is the total variation distance between 𝑋𝑡 and the stationary distribution 𝜇 of the Markov
process (𝑋𝑡)𝑡≥0. Levin, Peres, and Wilmer (2009) provide background on Markov chains and mixing times.
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𝛽), dealers optimally reduce their inventory size. When the asset has more frequent trade

demand (because of either a larger rate 𝜆 or a larger number 𝑛 of market participants), dealers

expand their inventory boundary to take advantage of thicker order flow from buyside firms.

Roughly speaking, the mixing time of dealer inventory process is the expected time it

takes for a dealer to rebalance its inventory. For an actively traded asset, dealer inventory has

quick turnover and exhibits fast mixing. The positive relationship between asset liquidity and

the speed of dealer inventory rebalancing, as predicted by the model, is consistent with prior

empirical studies. Using data on the actual daily U.S.-dollar inventory held by a major dealer,

Duffie (2012) estimates that the “expected half-life” of inventory imbalances is approximately

3 days for the common shares of Apple, versus two weeks for a particular investment-grade

corporate bond. Figure 13 illustrates the two inventory processes of the Dealer. The data

also reveal substantial cross-sectional heterogeneity across individual equities handled by the

same market maker, with the expected half-life of inventory imbalances being the highest

for (the least liquid) stocks with the highest-bid-ask spreads and the lowest trading volume.
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Figure 13: A major US dealer’s inventory processes for Apple (left) and an investment-grade corporate
bond (right) – Source: Duffie (2012)

Next, I examine properties of dealer inventory cost. The equilibrium utility of a dealer

can be decomposed into its inventory cost and profits from trading with buyside firms:

𝑉𝑛−𝑚,𝜂𝑚,𝑝*(𝑚)(0) = −𝐶(𝑛, 𝜆,𝑚) + 𝜆 (𝑛−𝑚)
𝜃𝑚
𝑚

𝑝*(𝑚)

𝑟
.
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Proposition 8. (i) The present value 𝐶(𝑛, 𝜆,𝑚) of individual dealer inventory cost is in-

creasing and strictly concave in 𝑛 and 𝜆. As 𝑛𝜆→ ∞, 𝐶(𝑛, 𝜆,𝑚) goes to infinity at the rate

(𝑛𝜆)2/3. (ii) The aggregate dealer inventory cost 𝑚𝐶(𝑛, 𝜆,𝑚) is strictly increasing in 𝑚.

The inventory holding cost 𝛽𝑥2 is quadratic in inventory size, whereas the present value

𝐶(𝑛, 𝜆,𝑚) of individual dealer inventory cost grows only sublinearly with 𝑛 and 𝜆. This cap-

tures the netting benefit: a dealer is more efficient in balancing its inventory when receiving

a thicker order flow, and the associated netting benefit more than offsets the convexity of

the inventory cost function.

Property (ii) follows from the decreasing returns to scale of the individual inventory

cost function 𝐶(𝑛, 𝜆,𝑚) and Jensen’s inequality. It implies that in order to minimize the

aggregate dealer inventory cost, it is better to concentrate the provision of intermediation at

a smaller set of dealers to maximize the netting efficiency.

Inventory-efficiency externality and holdup distortion.

In OTC markets, it is extremely rare for regulators to directly intervene in asset alloca-

tion. However, regulators may impose transaction tax, capital requirements or some pricing

rule to induce a different equilibrium outcome, in which decisions related to trading and

link formation are still left to market participants. In the model, the concentrated core-

periphery network 𝐺(𝑚*) emerges as the unique equilibrium network that balances market

forces. Therefore, feasible regulations amount to induce a different endogenous core size.

Regulators thus face a one-dimensional problem, in which they choose the optimal number

of dealers intermediating a given market. From a welfare viewpoint, the next result points to

under-provision of dealer intermediation for liquid assets, and over-provision for illiquid as-

sets. I discuss the effects of three regulation policies—a “soft” stub-quote rule, a transaction

tax, and capital requirements—in inducing a more efficient level of dealer intermediation.

I let 𝑚 be the largest integer such that 𝑝*(𝑚) > 0. For any given 𝑚 ≤ 𝑚, I let

𝑈𝑚 = 𝑚𝑉 𝑛−𝑚,𝜂𝑚,𝑝*(𝑚)(0) + (𝑛−𝑚)
Φ𝑚,𝑝*(𝑚)

𝑟
, 𝑚** = argmax

𝑚≤𝑚
𝑈𝑚.

That is, 𝑚** is the socially efficient number of dealers, if the social planner were able to to

dictate the number of dealers.
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Proposition 9. (i) If 𝑛𝜆 is sufficiently large, one has 𝑚* ≤ 𝑚** and under-provision of

dealer intermediation. (ii) Under certain parameter conditions that reduce 𝑛𝜆, one has

𝑚* > 𝑚** and over-provision of dealer intermediation.

That is, in equilibrium, there are too few dealers for actively traded assets, and too

many for thinly traded assets, relative to the socially efficient number of dealers. There

are two sources of inefficiency. First, each dealer induces a negative externality on other

dealers’ inventory efficiency by taking away some of their customer order flow (Proposition 8).

This externality pushes toward over-provision of dealer intermediation, and is especially

pronounced for infrequently traded assets which have limited scope for netting. For actively

traded assets, however, this inventory-efficiency externality is inconsequential, relative to the

distortion caused by the market power of dealers over their buyside customers. This market

power comes from the bilateral nature of OTC trading, which gives dealers a temporary

monopolistic position and thus a private incentive to gouge in each contact with a buyside

firm. Even though dealers do not gouge on the equilibrium path, their incentive to gouge

induces a holdup distortion, by which dealers extract moral hazard rents that preempts

buyside firms from establishing trading links that are socially beneficial. For actively traded

assets, the holdup distortion dominates the inventory-efficiency externality, leading overall

to an under-provision of dealer intermediation. Figure 14 numerically illustrates the welfare

𝑈𝑚 as a function of 𝑚 for a liquid (𝜆 = 240, or 20 trade demands per agent per month) and

an illiquid asset (𝜆 = 24, or 2/agent/month), respectively.
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Figure 14: The welfare 𝑈𝑚, where the number of dealers is 𝑚 = 1, 2, . . . ,𝑚

To improve market efficiency, under-intermediation can be mitigated by regulations that
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aim to discourage dealers from gouging. Such regulations can be, for example, a “soft”

stub-quote rule that imposes a penalty should a dealer widen its spread relative to the

market-prevailing level. Every dealer would internalize the penalty cost 𝐶penalty into its loss

ℒ(𝑛−𝑚, 𝜂𝑚, 𝑝) from gouging and could thus sustain a tighter spread 𝑝(𝑚). Such a penalty

cost on dealers—never triggered on the equilibrium path—allows more dealers to compete

in equilibrium by strengthening dealer’s commitment not to gouge buyside customers. By

choosing an appropriate penalty cost 𝐶penalty, regulators can achieve the socially optimal level

of intermediation provision. Figure 15 illustrates the effect of such a penalty cost. Sometimes,

such rules are proposed by self-regulatory organizations (SRO), such as FINRA. Broker-

dealers have an incentive to join such an SRO, as the improvement of their commitment

power via self regulation gives them an advantage over other non-member competitors.

To reduce dealer intermediation, regulators can impose a transaction tax on dealers,

which would widen their sustainable spread, reducing the endogenous core size 𝑚*.
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Figure 15: Introducing a penalty cost 𝐶penalty on gouging increases dealer competition.

After the financial crisis, the Basel committee implemented new balance-sheet regula-

tions for bank-affiliated dealers. Among these regulations, the capital requirements use risk-

weighted assets, requiring a bank to hold more capital for holdings of risker assets. However,

it does not distinguish between the liquidity of the underlying asset. Likewise, the Basel III

Net Stable Funding Ratio (NSFR) and Supplementary Leverage Ratio (SLR)14 treat high

quality liquid assets (HQLA) equally as non-HQLA. My results suggest that this approach
14The NSFR, implemented in 2018, requires banks to maintain sufficient available stable funding (ASF)

relative to the amount of required stable funding (RSF). The SLR, also implemented in 2018, requires U.S.
globally systemically important bank holding companies to have capital equal to or greater than 5% of their
total assets, regardless of the risk and liquidity composition of the assets.
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can be improved by adding a “liquidity weight” for assets: Regulators should require dealers

to have more capital and stable funding for holdings of illiquid assets in order to discourage

inefficient dealer competition, while encouraging dealer intermediation for liquid assets such

as the Treasuries to reduce dealers’ market power. This result is obtained based on interme-

diation efficiency, and is in line with regulator’s primary goal of improving financial stability,

which I do not consider in this paper.

Recently, more non-bank firms such as fund managers have begun to act as liquidity

providers. However, many question whether these firms can substitute for dealers by taking

an effective role of market makers. This paper highlights the importance of having a large

customer base for a market maker to efficiently balance inventory. Being in a central network

position is essential for enabling financial institution to “lean against the wind”—that is, to

provide liquidity during financial disruptions. Buyside firms are not natural liquidity hubs.

Without having access to the same number of trading lines and a global customer base as

traditional dealers, these firms may be unable or unwilling to absorb external selling pressure

in a selloff. It is worrisome that the liquidity provided by non-bank firms may be “illusory,”

in that liquidity may vanish when it is most needed. This paper does not cover this topic.

5 Inter-Dealer Trading

In the symmetric-agent model, dealers do not trade with each other due to the lack of an

interdealer market. In practice, dealers form a completely connected core to trade with each

other—usually in large quantities—to offset their inventory imbalances accumulated from

trading with buyside firms. Introducing such an interdealer market would thus mitigate the

concern of dealer inventory efficiency when there are too many dealers in the market, thus

supporting a larger core in equilibirum. In this section, I add, on top of the symmetric-agent

model, an artificially efficient interdealer market, in which every interdealer trade clears a

dealer’s entire excess inventory. I show that even with such artificially efficient interdealer

trading, the equilibrium core size remains the same when the market is sufficiently large.

Now, I add an interdealer market to the symmetric-agent model. I partition agents into

𝐼 ∪ 𝐽 = 𝑁 with |𝐽 | = 𝑚 dealers and |𝐼| = 𝑛 − 𝑚 buyside firms. Encounters between

pairs of connected dealers are based on independent random matching, with some pair-wise
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meeting intensity 𝜉. Upon a meeting, each dealer clears all its excess inventories, resetting its

inventory back to zero. This protocol is unrealistically efficient, because two dealers usually

do not have the exact opposite asset positions that could allow them to completely offset their

inventory imbalances with each other. Assuming such interdealer trading keeps the model

tractable, while providing a bound on the effect of interdealer trading on the equilibrium core

size. The buyside firms do not have access to this interdealer market, and trades only via

RFQ as in the benchmark model. This extension model no longer preserves agent symmetry,

as a subset of agents (dealers) have access to an interdealer market that is not available to

other agents (buyside firms). In practice, dealers resist buyside firms’ participation in the

interdealer segment and accuse them of taking liquidity without exposing themselves to the

risks of providing liquidity. Others criticize dealers for trying to prevent competition that

would compress bid-ask spreads.15

Other than the addition of the interdealer market, the remaining setup is identical to

the symmetric-agent model. That is, every agent has 0 initial endowment of a non-divisible

asset with 0 expected payoffs, and is subject to the quadratic inventory flow cost 𝛽𝑥2. Every

buyside firm in 𝐼 has an exogenously determined desire to buy of sell (equally likely) one

unit of the asset at mean rate 𝜆, and receives a fixed benefit 𝜋 for each immediate execution

of such trade. Dealers in 𝐽 do not receive demand shocks. At any time 𝑡 ≥ 0, agents can

open new and terminate existing trading accounts. Maintaining an account costs 𝑐 per unit

of time. Buyside firms use the same search technology 𝜃𝑚 to request quotes among its 𝑚

connected quotes providers. The time discount rate is 𝑟. Therefore, this extension model

embeds the baseline symmetric-agent model when the interdealer meeting intensity 𝜉 = 0.

To take advantage of interdealer trading, dealers will now establish bilateral trading

relationships with each other, forming a completely connected core. As a result, a core-

periphery network ̂︀𝐺(𝑚) as depicted in Figure 2 emerges in equilibrium. The next result

shows that, when the market is sufficiently large, introducing the interdealer market does

not affect the equilibrium number of dealers.

Theorem 3. For a given set of model parameters (𝛽, 𝜆, 𝜋, 𝜉, 𝜃, 𝑐, 𝑟) except 𝑛 and 𝑚, there is

some constant 𝑛0 such that if 𝑛 > 𝑛0, then ̂︀𝐺(𝑚) is an equilibrium trading network if and
15Some recent electronic facilities such as SEF blur the exclusivity of an interdealer market.
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only if 𝑚 ≤ 𝑚*, where 𝑚* is the maximum number of dealers defined by (7).

Proofs are available in Appendix G of the Full Appendix on my website (Wang (2021)).

The supporting equilibrium for ̂︀𝐺(𝑚) in this extension model is identical to that for 𝐺(𝑚)

in the symmetric-agent model, with the exception that dealers now set a larger inventory

boundary �̂� > �̄� because they are less concerned about temporarily holding a large inventory

in the presence of the interdealer market. I let �̂�*(𝑚) denote this supporting equilibrium.

Behind Theorem 3 is the intuition that in a large market, dealers can efficiently balance

their inventories with buyside orders and thus are less reliant on each other to layoff their in-

ventory risk. This intuition is illustrated by the next proposition, predicting that interdealer

trade accounts a small fraction of total trade volume for more actively traded assets.

Proposition 10. As 𝑛𝜆→ ∞, the fraction of interdealer volume is on the order of (𝑛𝜆)−2/3.

Using TRACE transaction data for U.S. corporate bonds between 2005-2014, I estimate

the relationship between the fraction of interdealer volume and annual trade volume across

all 61,823 bonds. Proposition 10 predicts that the logarithms of these two variables are

linearly related, with a negative slope. Consistent with this prediction, the data shows that

a 10% increase in total volume is associated with a 1% decrease in the fraction of interdealer

volume. The t-statistic is −7, with standard errors clustered at the company level.

Figure 16: Interdealer Trading in the U.S. Corporate Bond Market
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A side benefit of working with a large market is that the deep pocket assumption can be

eliminated. Instead of invoking the deep pocket, a dealer would simply quote an ask 𝑎 = ∞ or

a bid 𝑏 = −∞ to reject a trade request. I let �̂�*
No DP(𝑚) be the strategy profile that is obtained

from �̂�*(𝑚) by making this substitution. I use an approximate equilibrium concept: In a

perfect 𝜀-equilibrium, each agent’s continuation utility is within 𝜀 of her maximum attainable

continuation utility at each information set, given her belief and other agents’ strategies.16

Proposition 11. Given any 𝜀 > 0, if 𝑛 is sufficiently large, the strategy profile �̂�*
No DP(𝑚)

is a perfect 𝜀-equilibrium when agents do not have access to deep pockets.

Proposition 11 also holds in the symmetric-agent model (which corresponds to the case

𝜉 = 0). That is, this result is orthogonal to the addition of the interdealer market.

Intuitively, a dealer’s inventory process exhibits fast mixing in a large market. Even

when dealer 𝑗 hits its inventory boundary and thus rejects a trade request from a buyside

firm 𝑖, the dealer’s inventory would have almost totally remixed by the next time 𝑖 requests

a quote from 𝑗. Hence, a buyside firm can safely disregard its inference regarding a dealer’s

inventory position. The deep pocket assumption—designed to circumvent this inventory

inference problem, which vanishes in a large market by itself—becomes no longer necessary.

The next result predicts that there are too few dealers relative to the socially efficient

number of dealers in a large market. I let ̂︀𝑈𝑚 = 𝑈(�̂�*(𝑚)) be the welfare induced by �̂�*(𝑚).

Proposition 12. When 𝑛 is sufficiently large, the welfare ̂︀𝑈𝑚 is strictly increasing in the

number 𝑚 of dealers, for 𝑚 ≤ 𝑚. There is under-provision of dealer intermediation.

This result is identical to the welfare result in the symmetric-agent model that predicts

under-provision of dealer intermediation in a large market, despite the introduction of the

interdealer market. Again, this is because the relative importance of the interdealer market

vanishes in a large market.

6 Conclusion

Extensive empirical work has shown that core-periphery networks dominate conventional

OTC markets. However, few theoretical foundations have been provided. Existing literature
16Mailath, Postlewaite, and Samuelson (2005) defines this solution concept in games of perfect information.
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has a continuum of dealers, and exploits some ex-ante heterogeneity of agents to explain

the ex-post differentiation in their “network” positions. This paper is original in its ability

to (i) provide an endogenous separation of core from peripheral agents solely based on

trade competition and inventory balancing—two countervailing forces that have opposing

effects on the degree of trade concentration, and to (ii) explicitly determine the equilibrium

number of dealers as a trade-off between these two forces. Although financial institutions

are heterogeneous in real OTC markets, the core-periphery separation obtained in this paper

highlights the importance of these two economic forces in determining market structure.

From a welfare viewpoint, the model identifies two sources of inefficiency: (1) the negative

externality of each individual dealer on other dealers’ inventory efficiency, and (2) dealers’

market power over their buyside customers. The first inventory-efficiency externality results

in over-provision of dealer intermediation, and is especially pronounced for an infrequently

traded asset. For actively traded assets, however, this externality is dominated by the

holdup distortion caused by dealers’ market power over their customers, leading overall to

under-provision of dealer intermediation. Regulators or an SFO can implement a soft stub-

quote rule to deter dealers from gouging. Such pricing rule improves dealers’ commitment

power, and therefore creates room for greater dealer competition. These welfare results

suggest balance-sheet regulations that treat assets differently according to their trade demand

through, for example, the introduction of a “liquidity weight,” in addition to the currently

adopted “risk weight.”

One useful direction of future research is to introduce agent heterogeneity in order to

study the relationship between dealer centrality and the pricing of immediacy. Recent em-

pirical work suggests that the price-centrality relationship changes across different markets.

In the municipal bond market, central dealers earn higher markups compared with less cen-

tral dealers.17 This pattern is reversed in the market for asset-backed securities.18

17Li and Schürhoff (2019) provide evidence from the municipal bond market.
18Hollifield, Neklyudov, and Spatt (2017) provide evidence from the market of asset-backed securities.
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Appendices

A A Microfoundation of the Search Technology

This appendix provides an example microfoundation of the search technology in Section 2.

When agent 𝑖 receives a demand shock at time 𝑡, the trade opportunity is assumed to be lost

after an exponentially distributed time with infinitesimal19 mean 𝜈 ∈ *R . To get connected,

each line of contact of 𝑖 has an independent and exponentially distributed latency time with

infinitesimal mean 𝜒 ∈ *R . The two infinitesimal means 𝜈 and 𝜒 are “on the same order,” in

that neither is infinitely larger than the other. Hence, upon receiving a demand shock, agent

𝑖 reaches one of her 𝑚 quote providers before the trade opportunity expires with probability

𝜃𝑚 =
𝑚𝜈

𝑚𝜈 + 𝜒
∈ R,

which is increasing and concave in 𝑚 ≥ 0, and 𝜃0 = 0. Each of 𝑚 quote providers are equally

likely to be the first to be reached.

Further, after rejecting a quote, agent 𝑖 can be given a chance to receive a subsequent

quote from a potentially different quote provider, while being subject to the same search

latency and risk of losing the trade opportunity. This outside option, however, does not

change quote providers’ pricing behavior, and agent 𝑖 accepts the first offer in the unique

equilibrium. The equilibrium outcome of this search model, with or without access to another

quote, is equivalent to the reduce-form search technology in Section 2 where upon a successful

search, only one of the 𝑚 quote providers offers a quote with equal probability 1/𝑚.

The irrelevance of search friction exhibited in this model was predicted by a simple version

of Diamond (1971). However, unlike Diamond (1971), a dealer in this paper offers a non-

monopolistic price, leaving some rent to a buyside customer, for the fear of losing future

trades with the customer. This circumvents the monopolistic pricing problem of Diamond

Paradox. Bagwell and Ramey (1992) also circumvents Diamond Paradox in a similar way.

The distinction is that Bagwell and Ramey (1992) gives a range of sustainable equilibrium
19The hyperreals, *R, are an extension of the real numbers that contain infinite and infinitesimal numbers.

An infinitesimal 𝜈 ∈ *R is a hyperreal such that |𝜈| < 1/𝑛, ∀𝑛 ∈ N. The hyperreals are used in a branch of
mathematics known as nonstandard analysis (Anderson (2000)).
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prices, even when the number of price-setting firms is fixed. This paper predicts, for a

given number 𝑚 of dealers, a unique equilibrium price 𝑝*(𝑚) which renders a buyside firm

indifferent to whether it terminates a trade account.

B Selected Proofs for Section 3

This appendix includes proofs for results concerning the dealer’s problem.

B.1 Proof of Proposition 2

I reparametrize the subscripts by letting 𝑉 𝜗 denote 𝑉 𝑘,𝜂, where 𝜗 = 𝑘𝜂.

Lemma 2. For every 𝜗 ≥ 0, the value function 𝑉 𝜗 is even and strictly concave, with

𝑉 𝜗(𝑥) − 𝑉 𝜗(𝑥+ 1) ≥ (2𝑥+ 1)𝛽

𝑟 + 𝜗
.

Proof. I let Γ be a set of functions from Z to R defined as

Γ ≡
{︂
𝑓 : Z → R such that 𝑓(𝑥) ≥ −𝛽

𝑟
𝑥2 for all 𝑥, and 𝑓 ≤ 𝑓 for some constant 𝑓 ∈ R

}︂
.

I let 𝐵𝜗,𝑝,𝛽 be an operator on Γ defined as

𝐵𝜗,𝑝,𝛽(𝑓)(𝑥) =
1

𝑟 + 𝜗

[︂
− 𝛽𝑥2 +

𝜗

2
max {𝑓(𝑥− 1) + 𝑝, 𝑓(𝑥))}

+
𝜗

2
max {𝑓(𝑥+ 1) + 𝑝, 𝑓(𝑥)}

]︂
,

(8)

With a slight abuse of notation, I omit some or all subscripts whenever there is no ambiguity.

The operator 𝐵 maps Γ into itself, and satisfies

• (monotonicity) Given two functions 𝑓, 𝑔 ∈ Γ, if 𝑓 ≤ 𝑔, then 𝐵(𝑓) ≤ 𝐵(𝑔).

I let the functional space Γ be equipped with the weighted sup-norm 𝑑 defined as

𝜚(𝑓, 𝑔) = sup
𝑥∈Z

|𝑓(𝑥) − 𝑔(𝑥)|
𝜑(𝑥)

, (9)

where 𝜑(𝑥) = 𝛽𝑥2/𝑟 + 𝑎|𝑥| + 𝑏, and 𝑎, 𝑏 > 0 are such that operator 𝐵 satisfies
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• (discounting) For every 𝑓 ∈ Γ and 𝐴 > 0, 𝐵(𝑓 + 𝐴𝜑) ≤ 𝐵(𝑓) + 𝛼𝐴𝜑 for some 𝛼 < 1.

One can choose 𝛼 to be any number between 𝜗/(𝑟 + 𝜗) and 1, and 𝑎, 𝑏 such that

𝜗

[︂
𝛽

𝑟
𝑥2 + 𝑎|𝑥| + 𝑏+

𝛽

𝑟
(2|𝑥| + 1) + 𝑎

]︂
≤ 𝛼(𝑟 + 𝜗)

(︂
𝛽

𝑟
𝑥2 + 𝑎|𝑥| + 𝑏

)︂
for every 𝑥 ∈ Z. For example, 𝑎 and 𝑏 can be chosen such that

𝑎 [𝛼(𝑟 + 𝜗) − 𝜗] > 2𝜗𝛽/𝑟, and 𝑏 [𝛼(𝑟 + 𝜗) − 𝜗] > 𝜗(𝛽/𝑟 + 𝑎).

Operator 𝐵 satisfies Blackwell-Boyd sufficient conditions as a contraction on the complete

metric space (Γ, 𝜚). By the Banach Fixed Point Theorem, 𝐵 admits a unique fixed point.

The HJB equation (5) for 𝑉 𝜗 (with 𝑘𝜂 replaced by 𝜗) can be rewritten as 𝑉 𝜗 = 𝐵(𝑉 𝜗).

Since 𝑉 𝜗 ∈ Γ, then 𝑉 𝜗 is the unique fixed point of 𝐵. I let 𝑉 0 = −𝛽𝑥2/𝑟, and 𝑉 ℎ = 𝐵ℎ(𝑉 0)

for every ℎ ≥ 1. As ℎ→ ∞, one has

𝜚
(︀
𝑉 ℎ, 𝑉 𝜗

)︀
→ 0,

Convergence in 𝜚 implies that 𝑉 ℎ converges to 𝑉 𝜗 pointwise. Since the Bellman operator

𝐵 preserves concavity (Lemma D.1), it follows by an induction that for every ℎ ≥ 0, 𝑉 ℎ is

even and strictly concave, with

𝑉 ℎ(𝑥+ 1) + 𝑉 ℎ(𝑥− 1) − 2𝑉 ℎ(𝑥) ≤ − 2𝛽

𝑟 + 𝜗
.

By letting ℎ→ ∞, one obtains Lemma 2.

Proof of Proposition 2. It follows from Lemma 2 that there exists a unique �̄�𝑘𝜂 is such that

𝑉 𝑘𝜂(�̄�− 1) − 𝑉 𝑘𝜂(�̄�) ≤ 𝑝, 𝑉 𝑘𝜂(�̄�− 1) − 𝑉 𝑘𝜂(�̄�) > 𝑝.

Then the dealer’s optimal pricing strategy is characterized by the inventory boundary �̄�𝑘𝜂

as provided in Proposition 2.

B.2 Proof of Lemma 1

A function 𝑓 : Z → R is said to be W-shaped if 𝑓 is even and 𝑓(𝑥) < 𝑓(𝑥+ 2), ∀𝑥 ≥ 0.
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Lemma 3. If �̄�𝜗 ≥ 1 for some 𝜗, then 𝑉 𝜗 − 𝑉𝑘 is W-shaped for every 𝑘 such that 𝑘𝜂 < 𝜗.

The proof of Lemma 3 is long thus is deferred to the Online Appendix (Appendix D).

Proof of Lemma 1. If �̄�𝑘,𝑝1 ≥ 1 and given some 𝑝2 > 𝑝1, I let 𝑓 = 𝑉 𝑘,𝑝2
− 𝑉 𝑘,𝑝1

and 𝜗 =

sup
{︀
𝜗 ≥ 0 : 𝑉 𝜗,𝑝2

(0) = 0
}︀
. For every 𝑘′ < 𝑘, I let 𝜗𝑘′ = 𝑘′𝜂 ∨ 𝜗, 𝑀𝑘′ = 𝑉𝑘′,𝑝2 − 𝑉 𝜗𝑘′ ,𝑝2

, and

𝑔𝑘′(𝑥) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑓(𝑥) ∀ |𝑥| ≤ 1, if 𝑀𝑘′(0) < 𝑀𝑘′(1),

𝛿
1−|𝑥|
𝑘𝜂 𝑓(0) ∀ |𝑥| ≤ 1, if 𝑀𝑘′(0) ≥𝑀𝑘′(1), where 𝛿𝜗 =

𝜗

𝜗+ 𝑟
,

𝑓(𝑥− 1) ∀ 2 ≤ |𝑥| ≤ �̄�𝑘,𝑝2 , if 𝑀𝑘′(�̄�𝑘,𝑝2) < 𝑀𝑘′(�̄�𝑘,𝑝2 + 1),

𝑓(𝑥) ∀ 2 ≤ |𝑥| ≤ �̄�𝑘,𝑝2 , if 𝑀𝑘′(�̄�𝑘,𝑝2) ≥𝑀𝑘′(�̄�𝑘,𝑝2 + 1),

𝑓(�̄�𝑘 − 1) ∀ |𝑥| > �̄�𝑘,𝑝2 . if 𝑀𝑘′(𝑥) < 𝑀𝑘′(𝑥+ 1),

𝑓(�̄�𝑘) ∀ |𝑥| > �̄�𝑘,𝑝2 , if 𝑀𝑘′(𝑥) ≥𝑀𝑘′(𝑥+ 1),

𝑊𝑘′ = 𝑉𝑘′,𝑝2 − 𝑔𝑘′ .

I show that 𝑉𝑘′,𝑝1 ≥ 𝑊𝑘′ for every 𝑘′ < 𝑘. When 𝑘′ = 0, 𝑉0,𝑝1 = 𝑉0,𝑝2 ≥ 𝑊0. I suppose

𝑉𝑘′−1,𝑝1 ≥ 𝑊𝑘′−1 for some 𝑘′ < 𝑘. Since 𝑉𝑘′,𝑝1 is the unique fixed point for 𝐵𝑘′,𝑝1 , where

𝐵𝑘′,𝑝(𝑉 )(𝑥) =
1

𝑟 + 𝑘′𝜂

[︂
− 𝛽𝑥2 +

𝑘′𝜂

2
max {𝑉𝑘′−1,𝑝(𝑥− 1) + 𝜋, 𝑉 (𝑥− 1) + 𝑝, 𝑉 (𝑥)}

+
𝑘′𝜂

2
max {𝑉𝑘′−1,𝑝(𝑥+ 1) + 𝜋, 𝑉 (𝑥+ 1) + 𝑝, 𝑉 (𝑥)}

]︂
,

to show that 𝑉𝑘′,𝑝1 ≥ 𝑊𝑘′ , it suffices to verify that 𝐵𝑘′,𝑝1(𝑊𝑘′) ≥ 𝑊𝑘′ . If 𝑀𝑘′(0) < 𝑀𝑘′(1),

max {𝑉𝑘′−1,𝑝1(1) + 𝜋, 𝑊𝑘′(1) + 𝑝1, 𝑊𝑘′(0)}

≥ max {𝑉𝑘′−1,𝑝2(1) + 𝜋, 𝑉𝑘′,𝑝2(1) + 𝑝2, 𝑉𝑘′,𝑝2(0)} − max {𝑓(0), 𝑓(1) + 𝑝2 − 𝑝1} ,

≥ max {𝑉𝑘′−1,𝑝2(1) + 𝜋, 𝑉𝑘′,𝑝2(1) + 𝑝2, 𝑉𝑘′,𝑝2(0)} − [𝑓(1) + 𝑝2 − 𝑝1],

=⇒ 𝐵𝑘′,𝑝1(𝑊𝑘′)(0) = 𝑉𝑘′,𝑝2(0) − 𝛿𝑘′𝜂[𝑓(1) + 𝑝2 − 𝑝1] > 𝑉𝑘′,𝑝2(0) − 𝑓(0) = 𝑊𝑘′(0).

The first inequality above follows from 𝑉𝑘′−1,𝑝1 ≥ 𝑊𝑘′−1 and the second from Lemma D.6.

Next, I show that 𝐵𝑘′,𝑝1(𝑊𝑘′)(1) ≥ (𝑊𝑘′)(1). If 𝑘′𝜂 < 𝜗, then the fact that 𝑀𝑘′ is inverse
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W-shaped (Lemma 3) implies

𝑉𝑘′,𝑝2(1) = 𝑉 𝜗,𝑝2
(1)+𝑀𝑘′(1) > 𝑉 𝜗,𝑝2

(2)+𝑝2+𝑀𝑘′(0) > 𝑉 𝜗,𝑝2
(2)+𝑝2+𝑀𝑘′(2) = 𝑉𝑘′,𝑝2(2)+𝑝2.

Hence, max {𝑉𝑘′−1,𝑝1(2) + 𝜋, 𝑊𝑘′(2) + 𝑝1, 𝑊𝑘′(1)}

≥ max {𝑉𝑘′−1,𝑝2(2) + 𝜋, 𝑉𝑘′,𝑝2(1)} − 𝑓(1) (10)

= max {𝑉𝑘′−1,𝑝2(2) + 𝜋, 𝑉𝑘′,𝑝2(2) + 𝑝2, 𝑉𝑘′,𝑝2(1)} − 𝑓(1).

On the other hand,

max {𝑉𝑘′−1,𝑝1(0) + 𝜋, 𝑊𝑘′(0) + 𝑝1, 𝑊𝑘′(1)}

≥ max {𝑉𝑘′−1,𝑝2(0) + 𝜋, 𝑉𝑘′,𝑝2(0) + 𝑝2, 𝑉𝑘′,𝑝2(1)} − max {𝑓(0) + 𝑝2 − 𝑝1, 𝑓(1)} ,

= max {𝑉𝑘′−1,𝑝2(0) + 𝜋, 𝑉𝑘′,𝑝2(0) + 𝑝2, 𝑉𝑘′,𝑝2(1)} − [𝑓(0) + 𝑝2 − 𝑝1] .

(11)

Combining (11) with (10), one obtains,

𝐵𝑘′,𝑝1(𝑊𝑘′)(1) ≥ 𝑉𝑘′,𝑝2(1) − 𝛿𝑘′𝜂
2

[𝑓(1) + 𝑓(0) + 𝑝2 − 𝑝1] > 𝑉𝑘′,𝑝2(1) − 𝑓(1) = 𝑊𝑘′(1).

If 𝑘′𝜂 ≥ 𝜗, then

𝑀𝑘′(1) =
𝛿𝑘′𝜂
2

[max{𝑀𝑘′(0), 𝜋 − 𝑝2 − 𝐿𝑘′,𝑝2(0)} + max{𝑀𝑘′(2), 𝜋 − 𝑝2 − 𝐿𝑘′,𝑝2(2)}]

≤ 𝛿𝑘′𝜂 max{𝑀𝑘′(0), 𝜋 − 𝑝2 − 𝐿𝑘′,𝑝2(0)} (Lemma 3)

< max{𝑀𝑘′(0), 𝜋 − 𝑝2 − 𝐿𝑘′,𝑝2(0)}.

Then, 𝑀𝑘′(0) < 𝑀𝑘′(1) < 𝜋 − 𝑝2 − 𝐿𝑘′,𝑝2(0), thus 𝑉𝑘′,𝑝2(0) + 𝑝2 < 𝑉𝑘′−1,𝑝2(0) + 𝜋. Hence,

max {𝑉𝑘′−1,𝑝1(0) + 𝜋, 𝑊𝑘′(0) + 𝑝1, 𝑊𝑘′(1)}

≥ max {𝑉𝑘′−1,𝑝2(0) + 𝜋, 𝑉𝑘′,𝑝2(1)} − max {𝑓(0), 𝑓(1)} ,

= max {𝑉𝑘′−1,𝑝2(0) + 𝜋, 𝑉𝑘′,𝑝2(0) + 𝑝2, 𝑉𝑘′,𝑝2(1)} − 𝑓(0).

(12)

On the other hand,

max {𝑉𝑘′−1,𝑝1(2) + 𝜋, 𝑊𝑘′(2) + 𝑝1, 𝑊𝑘′(1)}

≥ max {𝑉𝑘′−1,𝑝2(2) + 𝜋, 𝑉𝑘′,𝑝2(2) + 𝑝2, 𝑉𝑘′,𝑝2(1)} − [𝑓(1) + 𝑝2 − 𝑝1].
(13)
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Combining (12) with (13), one obtains,

𝐵𝑘′,𝑝1(𝑊𝑘′)(1) ≥ 𝑉𝑘′,𝑝2(1) − 𝛿𝑘′𝜂
2

[𝑓(0) + 𝑓(1) + 𝑝2 − 𝑝1] > 𝑉𝑘′,𝑝2(1) − 𝑓(1) = 𝑊𝑘′(1).

That is, if 𝑀𝑘′(0) < 𝑀𝑘′(1), and |𝑥| ≤ 1,

𝐵𝑘′,𝑝1(𝑊𝑘′)(𝑥) > 𝑊𝑘′(𝑥). (14)

Using the same technique, one can verify that (14) also holds if 𝑀𝑘′(0) ≥𝑀𝑘′(1) or |𝑥| > 1.

Thus, 𝐵𝑘′,𝑝1(𝑊𝑘′) > 𝑊𝑘′ . Therefore, 𝑉𝑘′,𝑝1 > 𝑊𝑘′ , or equivalently, 𝑉𝑘′,𝑝2 − 𝑉𝑘′,𝑝1 < 𝑔𝑘′ for

every 𝑘′ < 𝑘 and in particular, for 𝑘′ = 𝑘 − 1. If 𝑀𝑘−1(0) < 𝑀𝑘−1(1), then

𝐿𝑘,𝑝1(𝑥) < 𝐿𝑘,𝑝2(𝑥) − [𝑓(𝑥) − 𝑔𝑘−1(𝑥)] = 𝐿𝑘,𝑝2(𝑥), for |𝑥| ≤ 1,

=⇒ ℒ(𝑘, 𝜂, 𝑝1) = min
|𝑥|≤1

𝐿𝑘,𝑝1(𝑥) ≤ min
|𝑥|≤1

𝐿𝑘,𝑝2(𝑥) = ℒ(𝑘, 𝜂, 𝑝2).

If 𝑀𝑘−1(0) ≥𝑀𝑘−1(1), then

ℒ(𝑘, 𝜂, 𝑝1) ≤ 𝐿𝑘,𝑝1(0) < 𝐿𝑘,𝑝2(0) − [𝑓(0) − 𝑔𝑘−1(0)] < 𝐿𝑘,𝑝2(0) = ℒ(𝑘, 𝜂, 𝑝2).

That is, ℒ(𝑘, 𝜂, 𝑝1) < ℒ(𝑘, 𝜂, 𝑝2) if 𝑝1 < 𝑝2 and �̄�𝑘,𝑝1 ≥ 1, completing the proof.

B.3 Proof of Proposition 3

A function 𝑓 : Z → R is said to be U-shaped if 𝑓 is even and 𝑓(𝑥+ 1) > 𝑓(𝑥), ∀𝑥 ≥ 0.

Lemma 4. Function 𝜕
𝜕𝜗
𝑉 is U-shaped. Thus, inventory boundary �̄�𝜗 is increasing in 𝜗.

Proof. The proof of Lemma D.6 can be adapted to show that 𝜕
𝜕𝜗
𝑉 is U-shaped. Details are

omitted. Then 𝑉 𝜗(𝑥)−𝑉 𝜗(𝑥+ 1) is strictly decreasing in 𝜗. Proposition 2 then implies that

�̄�𝜗 is increasing in 𝜗.

A function 𝑓 : Z → R is said to be weakly U-shaped if 𝑓 is even, non-constant and

𝑓(𝑥+ 1) ≥ 𝑓(𝑥), ∀𝑥 ≥ 0.

Lemma 5. The function 𝜓𝑘 = 𝑉𝑘 + 𝛽𝑥2/𝑟 is convex and weakly U-shaped for every 𝑘 ≥ 1.

The function 𝜓
𝜗

= 𝑉 𝜗 + 𝛽𝑥2/𝑟 is convex and U-shaped for every 𝜗 > 0.

40



The proof of Lemma 5 is deferred to Appendix D

Lemma 6. If �̄�𝜗 ≥ 1, then 𝑉 𝜗(0) is strictly increasing and strictly convex in 𝜗.

Proof. Since 𝑉 𝜗(0) is continuous in 𝜗 (Lemma D.7), it is equivalent to establish that 𝜕
𝜕𝜗
𝑉 𝜗(0)

is strictly increasing in 𝜗. I formally differentiate (5) with respect to 𝜗 twice to obtain

𝐴 𝜕2

𝜕𝜗2 𝑉 𝜗 = 𝜒 where 𝐴 is the matrix in (E.1) with 𝑛 = (2�̄�𝜗 + 1) and 𝜁 = (𝜗+ 𝑟)/𝜗, and

𝜒(𝑥) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

𝜗

[︂
𝜕

𝜕𝜗
𝑉 𝜗(𝑥+ 1) +

𝜕

𝜕𝜗
𝑉 𝜗(𝑥− 1) − 2

𝜕

𝜕𝜗
𝑉 𝜗(𝑥)

]︂
, |𝑥| ≤ �̄�𝜗,

1

𝜗

[︂
𝜕

𝜕𝜗
𝑉 𝜗(𝑥− 1) − 𝜕

𝜕𝜗
𝑉 𝜗(𝑥)

]︂
, 𝑥 = �̄�𝜗,

1

𝜗

[︂
𝜕

𝜕𝜗
𝑉 𝜗(𝑥+ 1) − 𝜕

𝜕𝜗
𝑉 𝜗(𝑥)

]︂
, 𝑥 = −�̄�𝜗,

Since the function 𝜕
𝜕𝜗
𝑉 𝜗 is U-shaped (Lemma 4), thus the function 𝜒 is even and

𝑥∑︁
�̃�=−𝑥

𝜒(�̃�) =

⎧⎪⎪⎨⎪⎪⎩
2

𝜗

[︂
𝜕

𝜕𝜗
𝑉 𝜗(𝑥+ 1) − 𝜕

𝜕𝜗
𝑉 𝜗(𝑥)

]︂
> 0, for 0 ≤ 𝑥 < �̄�𝜗,

0, for 𝑥 = �̄�𝜗.

(15)

Then 𝜕2

𝜕𝜗2 𝑉 𝜗 = 𝐴−1𝜒. In particular,

𝜕2

𝜕𝜗2
𝑉 𝜗(0) =

�̄�𝜗∑︁
𝑥=−�̄�𝜗

𝐴−1
0,𝑥 · 𝜒(𝑥) =

�̄�𝜗−1∑︁
𝑥=0

(︀
𝐴−1

0,𝑥 − 𝐴−1
0,𝑥+1

)︀ 𝑥∑︁
�̃�=−𝑥

𝜒(�̃�) + 𝐴−1
0,�̄�𝜗

�̄�𝜗∑︁
�̃�=−�̄�𝜗

𝜒(�̃�) > 0.

The last inequality follows from (15) and property (ii) of Lemma E.1 in Online Appendix E.

It remains to show that the left derivative 𝜕
𝜕𝜗
𝑉 𝜗−(0) of 𝑉 (0) is not greater than its right

derivative 𝜕
𝜕𝜗
𝑉 𝜗+(0). That is, 𝜕

𝜕𝜗
𝑉 𝜗(0) cannot jump downward as 𝜗 increases. I take the

right derivative in (5) to obtain 𝐴 𝜕
𝜕𝜗
𝑉 𝜗+ = 𝑟𝜓

𝜗
/𝜗. On the other hand, for every 𝜗′ < 𝜗, 𝑉 𝜗′

is at least as high as if the dealer used �̄�𝜗 as its inventory boundary:

𝑟𝑉 𝜗′(𝑥) ≥

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
− 𝛽𝑥2 +

𝜗′

2
[𝑉 𝜗′(𝑥− 1) + 𝑉 𝜗′(𝑥+ 1) − 2𝑉 𝜗′(𝑥) + 2𝑝] , |𝑥| < �̄�𝜗,

− 𝛽𝑥2 +
𝜗′

2
[𝑉 𝜗′(𝑥− 1) − 𝑉 𝜗′(𝑥) + 𝑝] , 𝑥 = �̄�𝜗,

− 𝛽𝑥2 +
𝜗′

2
[𝑉 𝜗′(𝑥+ 1) − 𝑉 𝜗′(𝑥) + 𝑝] , |𝑥| = −�̄�𝜗.
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This implies 𝐴 𝜕
𝜕𝜗
𝑉 𝜗− ≤ 𝑟𝜓

𝜗
/𝜗. Then 𝜕

𝜕𝜗
𝑉 𝜗−(0) ≤ 𝜕

𝜕𝜗
𝑉 𝜗+(0).

Lemma 7. If 𝐿𝑘(0) ≥ 𝜋 − 𝑝 for some 𝑘, then

𝐿𝑘(0) < 𝐿𝑘(1),

and in particular, 𝐿𝑘(0) = min𝑥 𝐿𝑘(𝑥) since 𝐿𝑘 is W-shaped (Lemma 3).

The proof of Lemma 7 is deferred to the Online Appendix (Appendix D).

Lemma 8. If ℒ(𝑘, 𝜂, 𝑝) ≥ 𝜋 − 𝑝, then ℒ(𝑘, 𝜂′, 𝑝) > ℒ(𝑘, 𝜂, 𝑝) for every 𝜂′ > 𝜂.

Proof. I proceed with an induction over 𝑘. The case 𝑘 = 1 is straightforward:

ℒ(𝑘, 𝜂′, 𝑝) = min (𝑉 𝑘,𝜂′ − 𝑉0) > min (𝑉 𝑘,𝜂 − 𝑉0) = ℒ(𝑘, 𝜂, 𝑝).

I suppose that the statement of Lemma 8 holds for 𝑘 − 1, and consider the case for 𝑘. I let

𝜂0 satisfy (𝑘 − 1)𝜂0 = 𝑘𝜂, I first establish Lemma 8 for 𝜂′ ≥ 𝜂0. Since (𝑘 − 2)𝜂0 < (𝑘 − 1)𝜂,

then 𝑉𝑘−2,𝜂0 < 𝑉𝑘−1,𝜂. Thus,

ℒ(𝑘 − 1, 𝜂0, 𝑝) = min (𝑉 𝑘−1,𝜂0
− 𝑉𝑘−2,𝜂0) > min (𝑉 𝑘,𝜂 − 𝑉𝑘−1,𝜂) = ℒ(𝑘, 𝜂, 𝑝) ≥ 𝜋 − 𝑝.

Then the induction hypothesis implies that ℒ(𝑘− 1, 𝜂′, 𝑝) > ℒ(𝑘− 1, 𝜂0, 𝑝) ≥ 𝜋− 𝑝 for every

𝜂′ > 𝜂0. Then 𝑉𝑘−1,𝜂′ = 𝑉 𝑘−1,𝜂′ . Thus,

ℒ(𝑘, 𝜂′, 𝑝) = min
(︀
𝑉 𝑘,𝜂′ − 𝑉𝑘−1,𝜂′

)︀
= min

(︀
𝑉 𝑘,𝜂′ − 𝑉 𝑘−1,𝜂′

)︀
= 𝑉 𝑘,𝜂′(0) − 𝑉 𝑘−1,𝜂′(0) (Lemma 4)

> 𝑉 𝑘,𝜂(0) − 𝑉 𝑘−1,𝜂(0) ≥ ℒ(𝑘, 𝜂, 𝑝) (Lemma 6)

It remains to establish Lemma 8 for 𝜂′ < 𝜂0. For such a 𝜂′, I conjecture that

𝜓𝑘′,𝜂′ ≤ 𝑎(𝜂′)𝜓𝑘′,𝜂 + 𝑏(𝜂′)𝜓𝑘′+1,𝜂 ∀𝑘′ < 𝑘,

where 𝑎(𝜂′) + 𝑏(𝜂′) = 1 for some 𝑎(𝜂′), 𝑏(𝜂′) > 0 to be determined. That is, 𝑉𝑘′,𝜂′ is bounded

by some weighted average of 𝑉𝑘′,𝜂 and 𝑉𝑘′+1,𝜂. This is trivially the case when 𝑘′ = 0. If this
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holds for 𝑘′ − 1 for some 1 ≤ 𝑘′ < 𝑘, then, letting 𝜓𝑘′,𝜂′ = 𝑎(𝜂′)𝜓𝑘′,𝜂 + 𝑏(𝜂′)𝜓𝑘′+1,𝜂,

𝑇𝑘′,𝜂′
(︀
𝜓𝑘′,𝜂′

)︀
(𝑥)

≤ 1

1 + 2𝑟
𝑘′𝜂′

(︂[︂
𝜓𝑘′,𝜂′(𝑥− 1) +

𝛽(2𝑥− 1)

𝑟
+ 𝑝

]︂
∨ 𝜓𝑘′,𝜂′(𝑥) ∨

[︂
𝜓𝑘′−1,𝜂′(𝑥− 1) +

𝛽(2𝑥− 1)

𝑟
+ 𝜋

]︂
+

[︂
𝜓𝑘′,𝜂′(𝑥+ 1) − 𝛽(2𝑥+ 1)

𝑟
+ 𝑝

]︂
∨ 𝜓𝑘′,𝜂′(𝑥) ∨

[︂
𝜓𝑘′−1,𝜂′(𝑥+ 1) − 𝛽(2𝑥+ 1)

𝑟
+ 𝜋

]︂)︂
≤

1 + 2𝑟
𝑘′𝜂

1 + 𝑟
𝑘′𝜂′

𝑎(𝜂′)𝜓𝑘′,𝜂(𝑥) +
1 + 2𝑟

(𝑘′+1)𝜂

1 + 2𝑟
𝑘′𝜂′

𝑏(𝜂′)𝜓𝑘′+1,𝜂(𝑥)

for every 𝑥 ∈ Z, where 𝑇𝑘,𝜂 is defined in (D.1). To have 𝜓𝑘′,𝜂′ ≤ 𝜓𝑘′,𝜂′ , it suffices to have

𝑇𝑘′,𝜂′
(︀
𝜓𝑘′,𝜂′

)︀
≤ 𝜓𝑘′,𝜂′ . Since 0 ≤ 𝜓𝑘′,𝜂 ≤ 𝜓𝑘′+1,𝜂, then it suffices to have

1 + 2𝑟
𝑘′𝜂

1 + 2𝑟
𝑘′𝜂′

𝑎(𝜂′) +
1 + 2𝑟

(𝑘′+1)𝜂

1 + 2𝑟
𝑘′𝜂′

𝑏(𝜂′) ≤ 𝑎(𝜂′) + 𝑏(𝜂′) = 1.

Therefore, it suffices to set

𝑏(𝜂′) = 𝑘
𝜂′ − 𝜂

𝜂′
, 𝑎(𝜂′) = 1 − 𝑏(𝜂′).

It then follows from an induction over 𝑘′ that

𝜓𝑘−1,𝜂′ ≤ 𝑎 (𝜂′)𝜓𝑘−1,𝜂 + 𝑏 (𝜂′)𝜓𝑘,𝜂

=⇒ 𝜓𝑘−1,𝜂′(0) − 𝜓𝑘−1,𝜂(0) ≤ 𝑏 (𝜂′) [𝜓𝑘,𝜂(0) − 𝜓𝑘−1,𝜂(0)]

< 𝑘(𝜂′ − 𝜂)
[𝜓𝑘,𝜂(0) − 𝜓𝑘−1,𝜂(0)]

𝜂

≤ 𝑘(𝜂′ − 𝜂)

[︁
𝜓

𝑘,𝜂
(0) − 𝜓

𝑘−1,𝜂
(0)
]︁

𝜂

< 𝜓
𝑘,𝜂′

(0) − 𝜓
𝑘,𝜂

(0) (Lemma 6).

Therefore, 𝜓
𝑘,𝜂′

(0)−𝜓𝑘−1,𝜂′(0) > 𝜓
𝑘,𝜂

(0)−𝜓𝑘−1,𝜂(0) ≥ 𝜋−𝑝. It then follows from Lemmas 3

and 7 that ℒ(𝑘, 𝜂′, 𝑝) > ℒ(𝑘, 𝜂, 𝑝).

Lemma 9. If 𝑉 𝑘+1,𝜂,𝑝 − 𝑉 𝑘,𝜂,𝑝 ≥ 𝜋 − 𝑝, then ℒ(𝑘, 𝜂, 𝑝) < ℒ(𝑘 + 1, 𝜂, 𝑝).
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Proof. I show that 𝑉𝑘,𝜂,𝑝 ≤ 𝑊 where

𝑊 = 𝑉 𝑘,𝜂,𝑝 + [𝜋 − 𝑝− ℒ(𝑘, 𝜂, 𝑝)]+.

Then min
𝑥∈Z

[𝑊 (𝑥) − 𝑉𝑘−1,𝜂,𝑝(𝑥)] ≥ 𝜋 − 𝑝.

Thus, 𝐵𝑘,𝜂,𝑝 (𝑊 ) = 𝐵𝑘,𝜂,𝑝 (𝑊 ) ≤ 𝑊 . It follows from the monotonicity of operator 𝐵𝑘,𝜂,𝑝 that

𝑉𝑘,𝜂,𝑝 ≤ 𝑊 . Since 𝑉 𝑘+1,𝜂,𝑝 − 𝑉 𝑘,𝜂,𝑝 ≥ 𝜋 − 𝑝, it then follows that

ℒ(𝑘 + 1, 𝜂, 𝑝) ≥ min
𝑥∈Z

[︀
𝑉 𝑘+1,𝜂,𝑝 −𝑊

]︀
= 𝑉 𝑘+1,𝜂,𝑝(0) − 𝑉 𝑘,𝜂,𝑝(0) − [𝜋 − 𝑝− ℒ(𝑘, 𝜂, 𝑝)]+ (16)

> max
{︀
𝜋 − 𝑝, 𝑉 𝑘,𝜂,𝑝(0) − 𝑉 𝑘−1,𝜂,𝑝(0)

}︀
− [𝜋 − 𝑝− ℒ(𝑘, 𝜂, 𝑝)]+ ≥ ℒ(𝑘, 𝜂, 𝑝).

Proposition 3 follows immediately from Lemmas 8 and 9.
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Online Appendix

C Perfect Bayesian Equilibrium in Continuous-Time Games

I define a basic version of perfect Bayesian equilibrium (PBE) for continuous-time games

with imperfect information. Players’ beliefs are given in the form of regular conditional

probabilities that satisfy no-signaling-what-you-don’t-know.20 A game consists of (i) a finite

set 𝑁 of players, (ii) a nice measurable space21 (Ω,ℱ) and a filtration (ℱ1
𝑡 )𝑡≥0, where each

outcome 𝜔 ∈ Ω is a complete play of the game, and the 𝜎-algebra ℱ1
𝑡 describes what has

happened when players are about to take their time-𝑡 actions simultaneously, (iii) for each

player 𝑖 ∈ 𝑁 , a sub-filtration (ℱ1
𝑖𝑡)𝑡≥0 where the sub-𝜎-algebra ℱ1

𝑖𝑡 ⊆ ℱ𝑡 represents the

information available to 𝑖 before 𝑖 takes her time-𝑡 action, (iv) a measurable action space A,

(v) a utility function 𝑢𝑖 for each player 𝑖 that is a measurable function from the outcome

space Ω to R, and (vi) a probability measure P𝜎 on the outcome space (Ω,ℱ) induced by

each strategy profile 𝜎, and a regular condition probability 𝜅𝑡,𝜎 : Ω×ℱ ↦→ [0, 1] of P𝜎 given

ℱ1
𝑡 that describes the likelihood of potential outcomes given what has happened up to time

𝑡. A strategy of player 𝑖 is a process (𝜎𝑖𝑡)𝑡≥0, where 𝜎𝑖𝑡 is a mapping from Ω to A that is

ℱ1
𝑖𝑡-measurable. A strategy profile 𝜎 is the collection of all players’ strategies.

Given a strategy profile 𝜎, a system of consistent beliefs is a system of regular conditional

probabilities22 𝜇𝑖𝑡 : Ω ×ℱ1
𝑡 ↦→ [0, 1] given ℱ1

𝑖𝑡 for every player 𝑖 ∈ 𝑁 and time 𝑡 ≥ 0,23 such

that for every time 𝑡 and 𝐵 ∈ ℱ1
𝑡+ ≡

⋂︀
𝑠>𝑡

ℱ1
𝑠 , the mapping 𝑠 → 𝜇𝑖𝑠(𝜔,𝐵) has at every

𝑡 ≥ 0 a right-hand limit lim𝑠↓𝑡 𝜇𝑖𝑠(𝜔,𝐵). It is easy to show that these limits constitute a

regular conditional probability 𝜇𝑖𝑡+ on (Ω,ℱ1
𝑡+) given ℱ1

𝑖𝑡+ . The system of beliefs satisfies no-

signaling-what-you-don’t-know 24 if for every given player 𝑖, time 𝑡 and 𝐵 ∈ ℱ1
𝑡 , the player’s

belief 𝜇𝑖𝑡+(𝜔,𝐵) does not depend on 𝜔 through her own action taken at or after time 𝑡. A
20The notion was first set forth by Fudenberg and Tirole (1991) for discrete-time games.
21That is, there is a 1-1 map 𝜑 from (Ω,ℱ) into (R,ℬ) so that 𝜑 and 𝜑−1 are both measurable. Assuming

a nice measurable space guarantees the existence of regular conditional probabilities. Most spaces arising in
applications are nice. Durrett (2019) provides more details.

22The definition of a regular condition probability embeds the Bayesian-updating requirement on the
equilibrium path, without imposing any restriction on off-the-path beliefs.

23For every 𝜔 ∈ Ω, 𝜇𝑖𝑡(𝜔, ·) is a probability measure on (Ω,ℱ1
𝑡 ) that describes the player’s belief regarding

what has happened so far given her available information ℱ1
𝑖𝑡.

24Watson (2016) imposes a stronger independence restriction on players’ beliefs, which is unnecessary here.
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PBE is a strategy profile 𝜎 and a system 𝜇 of consistent beliefs such that, for any player 𝑖,

strategy 𝜎′
𝑖 and time 𝑡,∫︁

𝜔′′

∫︁
𝜔′
𝜇𝑖𝑡(𝜔, 𝑑𝜔

′)𝜅𝑡,𝜎(𝜔′, 𝑑𝜔′′)𝑢𝑖(𝜔
′′) ≥

∫︁
𝜔′′

∫︁
𝜔′
𝜇𝑖𝑡(𝜔, 𝑑𝜔

′)𝜅𝑡,(𝜎−𝑖,𝜎′
𝑖)

(𝜔′, 𝑑𝜔′′)𝑢𝑖(𝜔
′′)

for every 𝜔 ∈ Ω. The right hand side above is the player’s expected utility under belief 𝜇𝑖𝑡

if she deviates to 𝜎′
𝑖 from time 𝑡 onward. Requiring the inequality above to hold everywhere

instead of almost surely is to require sequentiality both on and off the equilibrium path.

D Supporting Lemmas, Remaining Proofs for Section 3

This appendix contains supporting lemmas and the remaining proofs for Section 3.

D.1 Supporting Lemmas

The proof of Lemma 2 in Appendix B invoked the next lemma.

Lemma D.1. I let 𝑇1 and 𝑇2 be two functional operators such that for every 𝑓 : Z ↦→ R,

𝑇1(𝑓)(𝑥) = max{𝑓(𝑥− 1) + 𝑎, 𝑓(𝑥)} ∀𝑥 ∈ Z, and

𝑇2(𝑓)(𝑥) = max{𝑓(𝑥+ 1) − 𝑏, 𝑓(𝑥)} ∀𝑥 ∈ Z,

where 𝑎, 𝑏 ∈ R are two constants. Then 𝑇1 and 𝑇2 preserve concavity.

Proof. If 𝑓 is a concave function from Z to R, then for every 𝑥 ∈ Z,

𝑇1(𝑓)(𝑥− 1) − 𝑇1(𝑓)(𝑥) ≤ max{𝑓(𝑥− 2) − 𝑓(𝑥− 1), 𝑓(𝑥− 1) − 𝑓(𝑥)}

≤ min{𝑓(𝑥− 1) − 𝑓(𝑥), 𝑓(𝑥) − 𝑓(𝑥+ 1)}

≤ 𝑇1(𝑓)(𝑥) − 𝑇1(𝑓)(𝑥+ 1).

Therefore, 𝑇1 preserves concavity. The same property holds for 𝑇2.

The proof of Lemma 5 is given here:

Lemma D.2. The function 𝜓𝑘 = 𝑉𝑘 +𝛽𝑥2/𝑟 is convex and weakly U-shaped for every 𝑘 ≥ 1.

The function 𝜓
𝜗

= 𝑉 𝜗 + 𝛽𝑥2/𝑟 is convex and U-shaped for every 𝜗 > 0.
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Proof of Lemma 5. I show that 𝜓𝑘 is convex by an induction over 𝑘 ≥ 0. When 𝑘 = 0,

function 𝜓0 = 0 is convex. I suppose that 𝜓𝑘−1 is convex. The HJB equation (4) for 𝑉𝑘 can

be rewritten as 𝜓𝑘 = 𝑇𝑘(𝜓𝑘), where

𝑇𝑘(𝜓)(𝑥)

=
𝛿𝑘𝜂
2

(︂[︂
𝜓(𝑥− 1) +

𝛽(2𝑥− 1)

𝑟
+ 𝑝

]︂
∨ 𝜓(𝑥) ∨

[︂
𝜓𝑘−1(𝑥− 1) +

𝛽(2𝑥− 1)

𝑟
+ 𝜋

]︂
+

[︂
𝜓(𝑥+ 1) − 𝛽(2𝑥+ 1)

𝑟
+ 𝑝

]︂
∨ 𝜓(𝑥) ∨

[︂
𝜓𝑘−1(𝑥+ 1) − 𝛽(2𝑥+ 1)

𝑟
+ 𝜋

]︂)︂
,

(D.1)

for every 𝑥 ∈ Z, where 𝛿𝑘𝜂 = 𝑘𝜂/(𝑟 + 𝑘𝜂). It follows again from Blackwell-Boyd sufficiency

conditions and the Contraction Mapping Theorem that operator 𝑇𝑘 admits a unique fixed

point which is 𝜓𝑘. Since operator 𝑇𝑘+1 preserves convexity, then its unique fixed point 𝜓𝑘

is even and convex. If function 𝜓𝑘 is not weakly U-shaped, it must be that 𝜓𝑘 is constant.

However, no constant function solves 𝜓 = 𝑇𝑘(𝜓). Therefore, function 𝜓𝑘 is weakly U-shaped.

Similarly, 𝜓
𝜗

is convex since it is the unique fixed point for the operator 𝑇 𝜗 defined as

𝑇 𝜗(𝜓)(𝑥) =
𝛿𝜗
2

(︂[︂
𝜓(𝑥− 1) +

𝛽(2𝑥− 1)

𝑟
+ 𝑝

]︂
∨ 𝜓(𝑥)

+

[︂
𝜓(𝑥+ 1) − 𝛽(2𝑥+ 1)

𝑟
+ 𝑝

]︂
∨ 𝜓(𝑥)

)︂
, where 𝛿𝜗 =

𝜗

𝜗+ 𝑟
.

Further, if the dealer never gouges buyside customers and never invokes the deep pocket,

then its continuation utility would be −𝛽𝑥2

𝑟
+ 𝜗

𝑟
(𝑝− 𝛽

𝑟
) which is a strict lower bound for 𝑉 𝜗.

Then 𝜓
𝜗
> 𝜗

𝑟
(𝑝− 𝛽

𝑟
). Thus,

𝜓
𝜗
(0) ≤ 𝛿𝜗

[︂
𝜓

𝜗
(1) + 𝑝− 𝛽

𝑟

]︂
< 𝜓

𝜗
(1).

Therefore, 𝜓 must be U-shaped.

The proof of Lemma 3 in Appendix B is given here:

Lemma D.3. If �̄�𝜗 ≥ 1 for some 𝜗, then 𝑉 𝜗−𝑉𝑘 is W-shaped for every 𝑘 such that 𝑘𝜂 < 𝜗.

Proof. For simplicity of notation, I write 𝐿𝜗,𝑘 for 𝑉 𝜗 − 𝑉𝑘 and 𝛿𝜗 = 𝜗/(𝜗+ 𝑟). First,

𝐿𝜗,𝑘(𝑥) = 𝜓
𝜗
(𝑥) − 𝜓𝑘(𝑥) =

𝛿𝑘𝜂
𝛿𝜗

𝜓
𝜗
(𝑥) − 𝜓𝑘(𝑥) +

(︂
1 − 𝛿𝑘𝜂

𝛿𝜗

)︂
𝜓

𝜗
(𝑥)
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It follows from Lemma D.4 that for every 𝑥 ≥ 1,

𝛿𝑘𝜂
𝛿𝜗

𝜓
𝜗
(𝑥) − 𝜓𝑘(𝑥)

=
𝛿𝑘𝜂
𝛿𝜗

𝑇 𝜗(𝜓
𝜗
)(𝑥) − 𝑇𝑘(𝜓𝑘)

=
𝛿𝑘𝜂
2

[︀
(𝑉 𝜗(𝑥− 1) + 𝑝− max {𝑉𝑘−1(𝑥− 1) + 𝜋, 𝑉𝑘(𝑥− 1) + 𝑝})

+ (max {𝑉 𝜗(𝑥+ 1) + 𝑝, 𝑉 𝜗(𝑥)} − max {𝑉𝑘−1(𝑥+ 1) + 𝜋, 𝑉𝑘−1(𝑥+ 1) + 𝑝, 𝑉𝑘(𝑥)})
]︀
.

Since �̄�𝜗 ≥ 1, the second equality above becomes “≤” when 𝑥 = 0. Then for every 𝑥 ≥ 1

(when 𝑥 = 0, the equality below becomes “≤”),

𝐿𝜗,𝑘(𝑥)

=
𝛿𝑘𝜂
2

[︀
min {𝐿𝜗,𝑘−1(𝑥− 1) + 𝑝− 𝜋, 𝐿𝜗,𝑘(𝑥− 1)}

+ (max {𝑉 𝜗(𝑥+ 1) + 𝑝, 𝑉 𝜗(𝑥)} − max {𝑉𝑘−1(𝑥+ 1) + 𝜋, 𝑉𝑘−1(𝑥+ 1) + 𝑝, 𝑉𝑘(𝑥)})
]︀

+

(︂
1 − 𝛿𝑘𝜂

𝛿𝜗

)︂
𝜓

𝜗
(𝑥)

When 𝑥 is sufficiently large,

𝑉 𝜗(𝑥) > 𝑉 𝜗(𝑥+ 1) + 𝑝,

𝑉𝑘(𝑥) > max{𝑉𝑘(𝑥+ 1) + 𝑝, 𝑉𝑘+1(𝑥+ 1) + 𝜋}.

Hence, for 𝑥 sufficiently large,

𝐿𝜗,𝑘(𝑥) =
𝛿𝑘𝜂

2 − 𝛿𝑘𝜂
min {𝐿𝜗,𝑘−1(𝑥− 1) + 𝑝− 𝜋, 𝐿𝜗,𝑘(𝑥− 1)} +

1 − 𝛿𝑘𝜂
𝛿𝜗

1 − 𝛿𝑘𝜂
2

𝜓
𝜗
(𝑥).

When 𝑘 = 0, it follows from Lemma 5 that 𝐿𝜗,0 = 𝜓
𝜗

is U-shaped and thus W-shaped. I

suppose that 𝐿𝜗,𝑘−1 is W-shaped, but 𝐿𝜗,𝑘 is not. For 𝑥 sufficiently large, if 𝐿𝜗,𝑘(𝑥 − 1) −

𝐿𝜗,𝑘(𝑥+ 1) ≥ 0, then

𝐿𝜗,𝑘(𝑥− 1) − 𝐿𝜗,𝑘(𝑥+ 1)

< min {𝐿𝜗,𝑘−1(𝑥− 2) + 𝑝− 𝜋, 𝐿𝜗,𝑘(𝑥− 2)} − min {𝐿𝜗,𝑘−1(𝑥) + 𝑝− 𝜋, 𝐿𝜗,𝑘(𝑥)}

≤ 𝐿𝜗,𝑘(𝑥− 2) − 𝐿𝜗,𝑘(𝑥).
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Therefore, one can find some 𝑥′ ≥ 1 such that

𝑥′ = argmax
𝑥≥1

{𝐿𝜗,𝑘(𝑥− 1) − 𝐿𝜗,𝑘(𝑥+ 1)} .

I consider four cases and show that they all lead to a contraction. First, if

𝑉 𝜗(𝑥′ − 1) ≤ 𝑉 𝜗(𝑥′) + 𝑃, and 𝑉𝑘(𝑥′ + 1) ≤ max{𝑉𝑘(𝑥′ + 2) + 𝑃, 𝑉𝑘−1(𝑥
′ + 2) + 𝜋},

then 𝐿𝜗,𝑘(𝑥′ − 1) − 𝐿𝜗,𝑘(𝑥′ + 1)

<
𝛿𝑘𝜂
2

(︀
[min {𝐿𝜗,𝑘−1(𝑥

′ − 2) + 𝑝− 𝜋, 𝐿𝜗,𝑘(𝑥′ − 2)} − min {𝐿𝜗,𝑘−1(𝑥
′) + 𝑝− 𝜋, 𝐿𝜗,𝑘(𝑥′)}]

+ [min {𝐿𝜗,𝑘−1(𝑥
′) + 𝑝− 𝜋, 𝐿𝜗,𝑘(𝑥′)} − min {𝐿𝜗,𝑘−1(𝑥

′ + 2) + 𝑝− 𝜋, 𝐿𝜗,𝑘(𝑥′ + 2)}]
)︀

≤ 𝛿𝑘𝜂
2

(︀
[𝐿𝜗,𝑘(𝑥′ − 2) − 𝐿𝜗,𝑘(𝑥′)]

+
+ [𝐿𝜗,𝑘(𝑥′) − 𝐿𝜗,𝑘(𝑥′ + 2)]

+ )︀
≤ 𝐿𝜗,𝑘(𝑥′ − 1) − 𝐿𝜗,𝑘(𝑥′ + 1).

This leads to a contradiction. Second, if

𝑉 𝜗(𝑥′ − 1) ≤ 𝑉 𝜗(𝑥′) + 𝑝, and 𝑉𝑘(𝑥′ + 1) > max{𝑉𝑘(𝑥′ + 2) + 𝑃, 𝑉𝑘−1(𝑥
′ + 2) + 𝜋},

then 𝐿𝜗,𝑘(𝑥′ − 1) − 𝐿𝜗,𝑘(𝑥′ + 1)

<
𝛿𝑘𝜂
2

(︀
[𝐿𝜗,𝑘(𝑥′ − 2) − 𝐿𝜗,𝑘(𝑥′)]

+
+ [min {𝐿𝜗,𝑘−1(𝑥

′) + 𝑝− 𝜋, 𝐿𝜗,𝑘(𝑥′)} − 𝐿𝜗,𝑘(𝑥′ + 1)]
)︀

<
𝛿𝑘𝜂
2

(︀
[𝐿𝜗,𝑘(𝑥′ − 1) − 𝐿𝜗,𝑘(𝑥′ + 1)] + [min {𝐿𝜗,𝑘−1(𝑥

′) + 𝑝− 𝜋, 𝐿𝜗,𝑘(𝑥′)} − 𝐿𝜗,𝑘(𝑥′ + 1)]
)︀
.

This implies that

0 ≤ 𝐿𝜗,𝑘(𝑥′ − 1) − 𝐿𝜗,𝑘(𝑥′ + 1) < min {𝐿𝜗,𝑘−1(𝑥
′) + 𝑝− 𝜋, 𝐿𝜗,𝑘(𝑥′)} − 𝐿𝜗,𝑘(𝑥′ + 1) (D.2)

≤ 𝐿𝜗,𝑘(𝑥′) − 𝐿𝜗,𝑘(𝑥′ + 1). (D.3)

However,

𝐿𝜗,𝑘(𝑥′) − 𝐿𝜗,𝑘(𝑥′ + 1)

<
𝛿𝑘𝜂
2

(︀
𝐿𝜗,𝑘(𝑥′ − 1) − 𝐿𝜗,𝑘(𝑥′ + 1) − min {𝐿𝜗,𝑘−1(𝑥

′) + 𝑝− 𝜋, 𝐿𝜗,𝑘(𝑥′)}

+ [max {𝑉 𝜗(𝑥′ + 1) + 𝑝, 𝑉 𝜗(𝑥′)} − max {𝑉𝑘−1(𝑥
′ + 1) + 𝜋, 𝑉𝑘(𝑥′ + 1) + 𝑝, 𝑉𝑘(𝑥′)}]

)︀
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Since max {𝑉 𝜗(𝑥′ + 1) + 𝑝, 𝑉 𝜗(𝑥′)} − max {𝑉𝑘−1(𝑥
′ + 1) + 𝜋, 𝑉𝑘(𝑥′ + 1) + 𝑝, 𝑉𝑘(𝑥′)}

≤ max {𝑉 𝜗(𝑥′ + 1) + 𝑝, 𝑉 𝜗(𝑥′)} − max {𝑉𝑘(𝑥′ + 1) + 𝑝, 𝑉𝑘(𝑥′)}

≤ max {𝐿𝜗,𝑘(𝑥′ + 1), 𝐿𝜗,𝑘(𝑥′)} ,

and max {𝐿𝜗,𝑘(𝑥′ + 1), 𝐿𝜗,𝑘(𝑥′)} − min {𝐿𝜗,𝑘−1(𝑥
′) + 𝑝− 𝜋, 𝐿𝜗,𝑘(𝑥′)}

≤ max {𝐿𝜗,𝑘(𝑥′ + 1), 𝐿𝜗,𝑘(𝑥′)} − 𝐿𝜗,𝑘(𝑥′ + 1) (following from Inequality (D.2))

≤ 𝐿𝜗,𝑘(𝑥′) − 𝐿𝜗,𝑘(𝑥′ + 1) (following from Inequality (D.3)),

thus, 𝐿𝜗,𝑘(𝑥′) − 𝐿𝜗,𝑘(𝑥′ + 1) < 𝛿𝑘𝜂 [𝐿𝜗,𝑘(𝑥′) − 𝐿𝜗,𝑘(𝑥′ + 1)] ,

contradicting (D.3). Third, if

𝑉 𝜗(𝑥′ − 1) > 𝑉 𝜗(𝑥′) + 𝑝, and 𝑉𝑘(𝑥′ + 1) ≤ max{𝑉𝑘(𝑥′ + 2) + 𝑝, 𝑉𝑘−1(𝑥
′ + 2) + 𝜋},

then 𝐿𝜗,𝑘(𝑥′ − 1) − 𝐿𝜗,𝑘(𝑥′ + 1)

<
𝛿𝑘𝜂
2

(︁
[𝐿𝜗,𝑘(𝑥′ − 2) − 𝐿𝜗,𝑘(𝑥′)]

+

+
[︀

(𝑉 𝜗(𝑥′ − 1) − max {𝑉𝑘−1(𝑥
′) + 𝜋, 𝑉𝑘(𝑥′) + 𝑝})

− (𝑉 𝜗(𝑥′ + 1) − max {𝑉𝑘−1(𝑥
′ + 2) + 𝜋, 𝑉𝑘(𝑥′ + 2) + 𝑝})

]︀)︁
.

Since 𝑉 𝜗(𝑥′ − 1) − 𝑉 𝜗(𝑥′ + 1) < 𝑉 𝜗(𝑥′) − 𝑉 𝜗(𝑥′ + 2),

and min {𝐿𝜗,𝑘−1(𝑥
′) − 𝜋, 𝐿𝜗,𝑘(𝑥′) − 𝑝} − min {𝐿𝜗,𝑘−1(𝑥

′ + 2) − 𝜋, 𝐿𝜗,𝑘(𝑥′ + 2) − 𝑝}

≤ [𝐿𝜗,𝑘(𝑥′) − 𝐿𝜗,𝑘(𝑥′ + 2)]
+
,

it then follows that

𝐿𝜗,𝑘(𝑥′ − 1) − 𝐿𝜗,𝑘(𝑥′ + 1) <
𝛿𝑘𝜂
2

(︀
[𝐿𝜗,𝑘(𝑥′ − 2) − 𝐿𝜗,𝑘(𝑥′)]

+
+ [𝐿𝜗,𝑘(𝑥′) − 𝐿𝜗,𝑘(𝑥′ + 2)]

+ )︀
≤ 𝐿𝜗,𝑘(𝑥′ − 1) − 𝐿𝜗,𝑘(𝑥′ + 1).

This leads to a contradiction. Lastly, if

𝑉 𝜗(𝑥′ − 1) > 𝑉 𝜗(𝑥′) + 𝑝, and 𝑉𝑘(𝑥′ + 1) > max{𝑉𝑘(𝑥′ + 2) + 𝑝, 𝑉𝑘−1(𝑥
′ + 2) + 𝜋},

then

𝐿𝜗,𝑘(𝑥′ − 1) − 𝐿𝜗,𝑘(𝑥′ + 1) <
𝛿𝑘𝜂
2

(︁
[𝐿𝜗,𝑘(𝑥′ − 2) − 𝐿𝜗,𝑘(𝑥′)]

+
+ [𝐿𝜗,𝑘(𝑥′ − 1) − 𝐿𝜗,𝑘(𝑥′ + 1)]

)︁
≤ 𝐿𝜗,𝑘(𝑥′ − 1) − 𝐿𝜗,𝑘(𝑥′ + 1).

This leads to a contradiction. Hence, 𝐿𝜗,𝑘 must be W-shaped, completing the proof.

The proof of Lemma 3 invoked the next lemma.
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Lemma D.4. For every 𝑥 ≥ 1, max{𝑉𝑘−1(𝑥− 1) + 𝜋, 𝑉𝑘(𝑥− 1) + 𝑝} > 𝑉𝑘(𝑥).

Proof. If there was some 𝑥 ≥ 1 such that max{𝑉𝑘−1(𝑥−1) +𝜋, 𝑉𝑘(𝑥−1) +𝑝} ≤ 𝑉𝑘(𝑥), then

max {𝑉𝑘−1(𝑥+ 1) + 𝜋 − 𝑉𝑘(𝑥), 𝑉𝑘(𝑥+ 1) + 𝑝− 𝑉𝑘(𝑥), 0} =
2𝑟𝜓𝑘(𝑥)

𝑘𝜂

≥2𝑟𝜓𝑘(𝑥− 1)

𝑘𝜂
≥ max {𝑉𝑘−1(𝑥) + 𝜋 − 𝑉𝑘(𝑥− 1), 𝑉𝑘(𝑥) + 𝑝− 𝑉𝑘(𝑥− 1), 0} ≥ 2𝑝.

Since 𝑉𝑘−1(𝑥+ 1) + 𝜋 − 𝑉𝑘(𝑥) < 𝑉𝑘−1(𝑥− 1) + 2𝑝+ 𝜋 − 𝑉𝑘(𝑥) ≤ 2𝑝 (Lemma D.5),

then 𝑉𝑘(𝑥+ 1) + 𝑝− 𝑉𝑘(𝑥) ≥ max {𝑉𝑘−1(𝑥) + 𝜋 − 𝑉𝑘(𝑥− 1), 𝑉𝑘(𝑥) + 𝑝− 𝑉𝑘(𝑥− 1), 0}

=⇒ 𝑉𝑘(𝑥+ 1) ≥ max{𝑉𝑘−1(𝑥) + 𝜋, 𝑉𝑘(𝑥) − 𝑝}.

An induction implies that 𝑉𝑘(𝑥 + 𝑦) ≥ 𝑉 (𝑥) + 𝑦𝑃 for every 𝑦 ∈ Z+, which contridicts with

the value function 𝑉𝑘 being upper-bounded. Hence, Lemma D.4 holds for every 𝑘 ≥ 0.

The proof of Lemma D.4 invoked the next lemma:

Lemma D.5. For every 𝑥 ≥ 1, 𝑉𝑘(𝑥− 1) + 2𝑝 > 𝑉𝑘(𝑥+ 1).

Proof. Lemma D.5 trivially holds for 𝑘 = 0. I suppose that Lemma D.5 holds for 𝑘 − 1 but

not for 𝑘. I let 𝑥 be the smallest integer in Z+ such that 𝑉𝑘(𝑥− 1) + 2𝑝 ≤ 𝑉𝑘(𝑥+ 1). Then

max{𝑉𝑘−1(𝑥− 2) − 𝑉𝑘(𝑥− 1) + 𝜋, 𝑉𝑘(𝑥− 2) − 𝑉𝑘(𝑥− 1) + 𝑝, 0}

+ max{𝑉𝑘−1(𝑥) − 𝑉𝑘(𝑥− 1) + 𝜋, 𝑉𝑘(𝑥) − 𝑉𝑘(𝑥− 1) + 𝑝, 0}

=
2𝑟𝜓𝑘(𝑥− 1)

𝑘𝜂
≤ 2𝑟𝜓𝑘(𝑥+ 1)

𝑘𝜂

= max{𝑉𝑘−1(𝑥) − 𝑉𝑘(𝑥+ 1) + 𝜋, 𝑉𝑘(𝑥) − 𝑉𝑘(𝑥+ 1) + 𝑝, 0}

+ max{𝑉𝑘−1(𝑥+ 2) − 𝑉𝑘(𝑥+ 1) + 𝜋, 𝑉𝑘(𝑥+ 2) − 𝑉𝑘(𝑥+ 1) + 𝑝, 0}.

Since 𝑉𝑘−1(𝑥− 2) − 𝑉𝑘(𝑥− 1) + 𝜋 > 𝑉𝑘−1(𝑥) − 𝑉𝑘(𝑥+ 1) + 𝜋,

𝑉𝑘(𝑥− 2) − 𝑉𝑘(𝑥− 1) + 𝑝 > 𝑉𝑘(𝑥) − 𝑉𝑘(𝑥+ 1) + 𝑝,

𝑉𝑘−1(𝑥) − 𝑉𝑘(𝑥− 1) + 𝜋 > 𝑉𝑘−1(𝑥+ 2) − 𝑉𝑘(𝑥+ 1) + 𝜋,

thus, 𝑉𝑘(𝑥) − 𝑉𝑘(𝑥− 1) + 𝑝 ≤ 𝑉𝑘(𝑥+ 2) − 𝑉𝑘(𝑥+ 1) + 𝑝.
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Then 𝑉𝑘(𝑥) + 2𝑝 ≤ 𝑉𝑘(𝑥 + 2). An induction implies that 𝑉𝑘(𝑥 + 2𝑦) ≥ 𝑉 (𝑥) + 2𝑦𝑝 for

every 𝑦 ∈ Z+, which contradicts with the value function 𝑉𝑘 being upper-bounded. Hence,

Lemma D.5 holds for every 𝑘 ≥ 0.

The proof of Lemma 1 in Appendix B.2 invoked the next lemma:

Lemma D.6. If 𝑝1 < 𝑝2 and �̄�𝑝1 ≥ 1, then �̄�𝑝1 ≤ �̄�𝑝2 and for every 𝑥 > 0,

0 < 𝑉 𝑝2
(𝑥− 1) − 𝑉 𝑝1

(𝑥− 1) −
[︀
𝑉 𝑝2

(𝑥) − 𝑉 𝑝1
(𝑥)
]︀
< 𝑝2 − 𝑝1.

Proof. Given any 𝑝 such that �̄�𝑝 ≥ 1, for every |𝑥| ≤ �̄�𝑝, I formally differentiate (5) with

respect to 𝑝 to obtain

𝐴
𝜕

𝜕𝑝
𝑉 𝑝 = (1/2, 1, . . . , 1, 1/2)⊤

where 𝐴 is the matrix in (E.1) in Online Appendix E with 𝑛 = (2�̄�𝑝 + 1) and 𝜁 = (𝜗+ 𝑟)/𝜗.

Since (1/2, 1, . . . , 1, 1/2)⊤ is weakly inverse U-shaped, then 𝑉 𝑝 is inverse U-shaped and

𝜗

2𝑟
<

𝜕

𝜕𝑝
𝑉 𝑝(𝑥) <

𝜗

𝑟
.

for −�̄�𝑝 ≤ 𝑥 ≤ �̄�𝑝 (property (v) of Lemma E.1 in Online Appendix E). For every 𝑥 ≥ �̄�𝑝,

𝜗

2𝑟
<

𝜕

𝜕𝑝
𝑉 𝑝(𝑥) =

𝜗

𝜗+ 2𝑟

(︂
𝜕

𝜕𝑝
𝑉 𝑝(𝑥− 1) + 1

)︂
<
𝜗

𝑟
,

That is, 𝜗/(2𝑟) < 𝜕
𝜕𝑝
𝑉 𝑝(𝑥) < 𝜗/𝑟 for every 𝑥 ∈ Z. Thus, for every 𝑥 ≥ �̄�𝑝,

𝜕

𝜕𝑝
𝑉 𝑝(𝑥− 1) − 1 <

𝜕

𝜕𝑝
𝑉 𝑝(𝑥) =

𝜗

𝜗+ 2𝑟

(︂
𝜕

𝜕𝑝
𝑉 𝑝(𝑥− 1) + 1

)︂
<

𝜕

𝜕𝑝
𝑉 𝑝(𝑥− 1). (D.4)

The same inequalities hold for every 0 < 𝑥 < �̄�𝑝, since

2𝜁
𝜕

𝜕𝑝
𝑉 𝑝(𝑥) =

𝜕

𝜕𝑝
𝑉 𝑝(𝑥+ 1) +

𝜕

𝜕𝑝
𝑉 𝑝(𝑥− 1) + 2 >

𝜕

𝜕𝑝
𝑉 𝑝(𝑥) +

𝜕

𝜕𝑝
𝑉 𝑝(𝑥− 1) + 1

=⇒ 𝜕

𝜕𝑝
𝑉 𝑝(𝑥) >

𝜗

𝜗+ 2𝑟

(︂
𝜕

𝜕𝑝
𝑉 𝑝(𝑥− 1) + 1

)︂
>

𝜕

𝜕𝑝
𝑉 𝑝(𝑥− 1) − 1.

That is, 𝑉 𝑝(𝑥 − 1) − 𝑉 𝑝(𝑥) − 𝑝 is strictly decreasing in 𝑝 as long as �̄�𝑝 ≥ 1. Thus, �̄�𝑝 is

increasing in 𝑝. Integrating (D.4) over 𝑝 ∈ [𝑝1, 𝑝2], one obtains the desired inequalities.
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The proof of Lemma 6 in Appendix B invoked the next lemma.

Lemma D.7. For every 𝑥 ∈ Z, 𝑉 𝜗,𝑝,𝛽(𝑥) is jointly continuous in (𝜗, 𝑝, 𝛽) ∈ R+3.

Proof. First, given some fixed (𝑝, 𝛽), if 0 ≤ 𝜗1 ≤ 𝜗2, then 𝑉 𝜗1
≤ 𝑉 𝜗2

. This is because

𝐵ℓ+1
𝜗2

(𝑉 𝜗1
) ≥ 𝐵ℓ

𝜗2
(𝑉 𝜗1

) for every ℓ ≥ 0 by induction, and 𝐵ℓ
𝜗2

(𝑉 𝜗1
) converges to 𝑉 𝜗2

point-

wise. Likewise, 𝑉 𝜗,𝑝,𝛽(𝑥) is non-decreasing in 𝑝 and non-increasing in 𝛽 for every 𝑥 ∈ Z.

Given a converging sequence of triples (𝜗ℓ, 𝑝ℓ, 𝛽ℓ)ℓ≥0 of non-negative reals with some limit

(𝜗∞, 𝑝∞, 𝛽∞). The sequence (𝜗ℓ, 𝑝ℓ, 𝛽ℓ)ℓ≥0 must be bounded. For simplicity, I write 𝑉 ℓ for

𝑉 𝜗ℓ,𝑝ℓ,𝛽ℓ
and 𝐵ℓ for 𝐵𝜗ℓ,𝑝ℓ,𝛽ℓ

. For every 𝑥 ∈ Z, the sequence (𝑉 ℓ(𝑥))ℓ≥0 is bounded. Thus,

there exists a subsequence
(︀
𝑉 𝜙(ℓ)

)︀
ℓ≥0

that converges pointwise to some 𝑉 . It is easy to

verify that 𝑉 = 𝐵∞(𝑉 ). Thus, 𝑉 = 𝑉∞. Likewise, every subsequence of (𝑉ℓ)ℓ≥0 admits a

sub-subsequence that converges to 𝑉∞ pointwise. The next lemma implies that 𝑉ℓ converges

to 𝑉∞ pointwise. Thus, for every 𝑥 ∈ Z, 𝑉𝜗,𝑝,𝛽(𝑥) is jointly continuous in (𝜗, 𝑝, 𝛽) ∈ R+3.

Lemma D.8. If a real sequence (𝑦ℓ)ℓ≥0 is such that every subsequence of (𝑦ℓ)ℓ≥0 admits a

sub-subsequence that converges to the same constant 𝑦∞ ∈ R, then 𝑦ℓ converges to 𝑦∞.

Proof. Otherwise, there exists some 𝜀 > 0 and a subsequence
(︀
𝑦𝜙(ℓ)

)︀
such that

⃒⃒
𝑦𝜙(ℓ) − 𝑦∞

⃒⃒
>

𝜀 for all ℓ. Subsequence
(︀
𝑦𝜙(ℓ)

)︀
would not admit a sub-subsequence that converges to 𝑦∞.

The proof of Lemma 7 in Appendix B is given here:

Lemma D.9. If 𝐿𝑘(0) ≥ 𝜋 − 𝑝 for some 𝑘, then

𝐿𝑘(0) < 𝐿𝑘(1),

and in particular, 𝐿𝑘(0) = min𝑥 𝐿𝑘(𝑥) since 𝐿𝑘 is W-shaped (Lemma 3).

Proof. If 𝐿𝑘(0) = 0, then Lemma 7 holds trivially. If 𝐿𝑘(0) > 0, then 𝑉 𝑘(0) > 0 thus

�̄�𝑘 ≥ 1. In this case, since 𝑉 𝑘(1) + 𝑝 − 𝑉 𝑘(0) = 𝑟𝜓
𝑘
(0)/(𝑘𝜂) and 𝑉𝑘−1(1) + 𝑝 − 𝑉𝑘−1(0) ≤

𝑟𝜓𝑘−1(0)/[(𝑘 − 1)𝜂], then it suffices to show that

𝜓𝑘−1(0) <
𝑘 − 1

𝑘
𝜓

𝑘
(0).
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I suppose that the inequality above does not hold. Then

𝜋 − 𝑝 ≤ 𝜓
𝑘
(0) − 𝜓𝑘−1(0) ≤ 1

𝑘
𝜓

𝑘
(0).

If 𝜓𝑘′(0) ≥ 𝑘′𝜓
𝑘
(0)/𝑘 for some 0 < 𝑘′ < 𝑘, then

max {𝑉𝑘′−1(1) + 𝜋, 𝑉𝑘′(1) + 𝑝} − 𝑉𝑘′(0) ≥ 𝑉 𝑘(1) + 𝑝− 𝑉 𝑘(0).

If 𝑉𝑘′(1) + 𝑝− 𝑉𝑘′(0) ≥ 𝑉 𝑘(1) + 𝑝− 𝑉 𝑘(0), then

𝜓𝑘′(1) ≥ 𝜓
𝑘
(1) − [𝑉 𝑘(0) − 𝑉𝑘′(0)] ≥ 𝜓

𝑘
(1) − 𝑘 − 𝑘′

𝑘
𝜓

𝑘
(0) >

𝑘′

𝑘
𝜓

𝑘
(1). (D.5)

Thus,

max{𝑉𝑘′−1(0) + 𝜋, 𝑉𝑘′(0) + 𝑝} + max{𝑉𝑘′−1(2) + 𝜋, 𝑉𝑘′(2) + 𝑝, 𝑉𝑘′(1)} − 2𝑉𝑘′(1)

> 𝑉 𝑘(0) + 𝑝+ max{𝑉 𝑘(2) + 𝑝, 𝑉 𝑘(1)} − 2𝑉 𝑘(1)
(D.6)

Since 𝐿𝑘,𝑘′ and 𝐿𝑘,𝑘′−1 are W-shaped (Lemma 3) and 𝐿𝑘,𝑘′(0) ≥ 𝐿𝑘,𝑘′(1), (D.6) implies that

2𝐿𝑘𝜂,𝑘′(1) > min{𝐿𝑘,𝑘′−1(0) − (𝜋 − 𝑝), 𝐿𝑘,𝑘′(0)} + min{𝐿𝑘,𝑘′−1(2) − (𝜋 − 𝑝), 𝐿𝑘,𝑘′(2), 𝐿𝑘,𝑘′(1)}

≥ 2 min{𝐿𝑘,𝑘′−1(0) − (𝜋 − 𝑝), 𝐿𝑘,𝑘′(0), 𝐿𝑘,𝑘′(1)}.

Thus, 𝐿𝑘,𝑘′−1(0) − (𝜋 − 𝑝) < 𝐿𝑘,𝑘′(1) ≤ 𝐿𝑘,𝑘′(0) ≤ 𝑘 − 𝑘′

𝑘
𝜓

𝑘
(0).

Thus, 𝜓𝑘′−1(0) > (𝑘′ − 1)𝜓
𝑘
(0)/𝑘. If 𝑉𝑘′−1(1) + 𝜋 − 𝑉𝑘′(0) ≥ 𝑉 𝑘(1) + 𝑝− 𝑉 𝑘(0), then

𝜓𝑘′−1(1) ≥ 𝜓
𝑘
(1) −

[︁
𝜓

𝑘
(0) − 𝜓𝑘′(0)

]︁
− (𝜋 − 𝑝) ≥ 𝜓

𝑘
(1) − 𝑘 − 𝑘′ + 1

𝑘
𝜓

𝑘
(0) >

𝑘′ − 1

𝑘
𝜓

𝑘
(1).

Then it must be that 𝑘′ > 1. The same steps following (D.5) implies that 𝜓𝑘′−2(0) >

(𝑘′ − 2)𝜓
𝑘
(0)/𝑘. An immediate induction over 𝑘′ implies that 0 = 𝜓0(0) > 0 · 𝜓

𝑘
(0)/𝑘 = 0

which is a contradiction, thus completing the proof.

D.2 Proof of Proposition 1

Step 1 (indifference condition): I first show that each individual dealer 𝑗 is dispensable, in

that almost surely, a buyside firm is never strictly worse off by permanently terminating its
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account with 𝑗.

Formally, since the state evolution of the trading game is right-continuous, then the

regular condition probability 𝜅𝑠,𝜎 : Ω ×ℱ ↦→ [0, 1] that describes the likelihood of potential

outcomes under any strategy profile 𝜎 given what has happened up to Stage 325 at time 𝑠

has at every 𝑡 ≥ 0 a right-hand limit 𝜅𝑡+,𝜎 = lim𝑠↓𝑡 𝜅𝑠,𝜎. For every outcome 𝜔 whose Stage

4 at time 𝑡 proceeds as prescribed by 𝜎 (that is, if 𝜔𝑡4 = 𝜎𝑡4(𝜔), where 𝜔𝑡4 is what happens

in Stage 4 at time 𝑡 under outcome 𝜔, and 𝜎𝑡4(𝜔) are agents’ actions prescribed by strategy

profile 𝜎),

𝜅𝑡+,𝜎(𝜔,𝐵) = 𝜅𝑡,𝜎(𝜔,𝐵), ∀𝐵 ∈ ℱ . (D.7)

That is, the likelihood of potential outcomes does not alter as long as the trading game

proceeds as prescribed by strategy profile 𝜎.

I fix a supporting equilibrium (𝜎, 𝜇) for 𝐺(𝑚), and a buyside firm 𝑖 and some ℱ3
𝑖𝑡-stopping

time26 𝜏 . Then for almost every27 time-𝜏 -Stage-3 information set ℎ𝑖𝜏3,

𝜇𝑖𝜏 (ℎ𝑖𝜏3, 𝐵) =

∫︁
𝜔′′

∫︁
𝜔′
𝜇𝑖𝜏 (ℎ𝑖𝜏3, 𝑑𝜔

′)𝜅𝜏,𝜎(𝜔′, 𝑑𝜔′′)𝜇𝑖𝜏+(𝜔′, 𝐵) = 𝜇𝑖𝜏+(ℎ𝑖𝜏,𝐽 , 𝐵), ∀𝐵 ∈ ℱ3
𝜏 ,

where ℎ𝑖𝑡,𝐽 ′ = [ℎ𝑖𝑡3, 𝜔𝑖𝑡4 = (𝜌𝑖𝑡(ℎ𝑖𝑡3), 𝐽
′)] is the information set consisting of ℎ𝑖𝑡3 followed by

𝑖, as its time-𝑡-Stage-4 actions, accepting/rejecting a potential quote as prescribed by the

equilibrium acceptance strategy 𝜌𝑖𝑡 and opening accounts with some subset 𝐽 ′ of dealers,

and 𝜇𝑖𝑡+ is the buyside firm’s right-hand limiting belief which does not depend on its own

account choice28 𝐽 ′. Then for almost every ℎ𝑖𝜏3,

𝜇𝑖𝜏 (ℎ𝑖𝜏3, 𝐵) = 𝜇𝑖𝜏+(ℎ𝑖𝜏,𝐽 ′ , 𝐵), ∀𝐵 ∈ ℱ3
𝜏 , (D.8)

for any 𝐽 ′ ⊆ 𝐽 . On the other hand, almost surely, the buyside firm’s belief 𝜇𝑖𝜏+(ℎ𝑖𝜏,𝐽 ′ , ·)
25Since agents open/terminate their accounts in Stage 4, hence the proof focuses on Stage-4 actions at

Stage-3 information sets.
26A ℱ3

𝑖𝑡-stopping time 𝜏 is a (potentially) random time at which 𝑖 can be asked to take its Stage-4 actions.
Karatzas and Shreve (1998) provides the definition and properties for a stopping time.

27Almost every is with respect to the 𝜎-induced unconditional probability distribution P𝜎 over the outcome
space (Ω,ℱ).

28This is the no-signaling-what-you-don’t-know requirement in the continuous-time game, as provided by
Appendix C.
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must be consistent with its information set ℎ𝑖𝜏,𝐽 ′ being reached:

supp(𝜇𝑖𝜏+(ℎ𝑖𝜏,𝐽 ′ , ·)) ⊆ {𝜔′ : ℎ𝑖𝜏 (𝜔′) = ℎ𝑖𝜏,𝐽 ′} almost surely. (D.9)

For any strategy 𝜎′
𝑖 such that 𝜌′𝑖𝜏 = 𝜌𝑖𝜏 , I let 𝐽 ′ = 𝑁 ′

𝑖𝜏 be the buyside firm’s account

choice, ℎ𝑖(𝜏+𝑠)3,𝐽 ′ be the time-(𝜏+𝑠)-Stage-3 information set that succeeds ℎ𝑖𝜏,𝐽 ′ after nothing

happens to 𝑖 between time 𝜏 and 𝜏 + 𝑠 for every 𝑠 > 0, and 𝑈𝑖(𝜎
′
𝑖 |ℎ𝑖(𝜏+𝑠)3,𝐽 ′) be the buyside

firm’s payoff conditional on reaching the information set ℎ𝑖(𝜏+𝑠)3,𝐽 ′ following which 𝑖 deviates

to 𝜎′
𝑖, given belief 𝜇. Then for almost-every ℎ𝑖𝜏3,

𝑈𝑖

(︀
𝜎′
𝑖 |ℎ𝑖(𝜏+𝑠)3,𝐽 ′

)︀
=

∫︁
𝜔′′

∫︁
𝜔′
𝜇𝑖(𝜏+𝑠)(ℎ𝑖(𝜏+𝑠)3,𝐽 ′ , 𝑑𝜔′)𝜅𝜏+𝑠,𝜎′

𝑖
(𝜔′, 𝑑𝜔′′)𝑢𝑖(𝜔

′′)

𝑠↓0−−→
∫︁
𝜔′′

∫︁
𝜔′
𝜇𝑖𝜏+(ℎ𝑖𝜏,𝐽 ′ , 𝑑𝜔′)𝜅𝜏+,𝜎′

𝑖
(𝜔′, 𝑑𝜔′′)𝑢𝑖(𝜔

′′)

=

∫︁
𝜔′′

∫︁
𝜔′
𝜇𝑖𝜏+(ℎ𝑖𝜏,𝐽 ′ , 𝑑𝜔′)𝜅𝜏,𝜎′

𝑖
(𝜔′, 𝑑𝜔′′)𝑢𝑖(𝜔

′′) (following from (D.7) and (D.9))

=

∫︁
𝜔′′

∫︁
𝜔′
𝜇𝑖𝜏 (ℎ𝑖𝜏3, 𝑑𝜔

′)𝜅𝜏,𝜎′
𝑖
(𝜔′, 𝑑𝜔′′)𝑢𝑖(𝜔

′′) (following from (D.8))

= 𝑈𝑖 (𝜎′
𝑖 |ℎ𝑖𝜏3) .

I let �̃�𝑖 be the strategy obtained from 𝜎𝑖 by substituting the account maintenance strategy

𝑁𝑖 with the constant strategy �̃�𝑖 = 𝐽 which always maintain accounts with all dealers. Then∫︁
𝜔′′
𝜅𝑡,�̃�𝑖

(𝜔′, 𝑑𝜔′′)𝑢𝑖(𝜔
′′) =

∫︁
𝜔′′
𝜅𝑡+,�̃�𝑖

(𝜔′, 𝑑𝜔′′)𝑢𝑖(𝜔
′′)

for every 𝑡 ≥ 0 and every 𝜔′ such that 𝜔′
𝑖𝑡4 = [𝜌𝑖𝑡(𝜔

′), 𝐽 ′′] for any 𝐽 ′′ ⊆ 𝐽.

(D.10)

Since 𝑖 maintains accounts with all the dealers on the equilibrium path (almost surely,

𝑁𝑖𝑡 = 𝐽, ∀𝑡), then

For almost-every 𝜔′, 𝜅𝑡,𝜎𝑖
(𝜔′, 𝐵) = 𝜅𝑡,�̃�𝑖

(𝜔′, 𝐵), for every 𝐵 ∈ ℱ and 𝑡, (D.11)
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Then for almost every ℎ𝑖𝜏3,

𝑈𝑖(�̃�𝑖 |ℎ𝑖(𝜏+𝑠)3,𝐽 ′)

=

∫︁
𝜔′′

∫︁
𝜔′
𝜇𝑖(𝜏+𝑠)(ℎ𝑖(𝜏+𝑠)3,𝐽 ′ , 𝑑𝜔′)𝜅𝜏+𝑠,�̃�𝑖

(𝜔′, 𝑑𝜔′′)𝑢𝑖(𝜔
′′)

𝑠↓0−−→
∫︁
𝜔′′

∫︁
𝜔′
𝜇𝑖𝜏+(ℎ𝑖𝜏,𝐽 ′ , 𝑑𝜔′)𝜅𝜏+,�̃�𝑖

(𝜔′, 𝑑𝜔′′)𝑢𝑖(𝜔
′′)

=

∫︁
𝜔′′

∫︁
𝜔′
𝜇𝑖𝜏+(ℎ𝑖𝜏,𝐽 ′ , 𝑑𝜔′)𝜅𝜏,�̃�𝑖

(𝜔′, 𝑑𝜔′′)𝑢𝑖(𝜔
′′) (following from (D.10))

=

∫︁
𝜔′′

∫︁
𝜔′
𝜇𝑖𝜏 (ℎ𝑖𝜏3, 𝑑𝜔

′)𝜅𝜏,�̃�𝑖
(𝜔′, 𝑑𝜔′′)𝑢𝑖(𝜔

′′) (following from (D.8))

=

∫︁
𝜔′′

∫︁
𝜔′
𝜇𝑖𝜏 (ℎ𝑖𝜏3, 𝑑𝜔

′)𝜅𝜏,𝜎𝑖
(𝜔′, 𝑑𝜔′′)𝑢𝑖(𝜔

′′) (following from (D.11))

= 𝑈𝑖(𝜎𝑖 |ℎ𝑖𝜏3).

Now, I fix some dealer 𝑗. I first show that almost surely, 𝑖 is not worse off by switching from

the equilibrium strategy 𝜎𝑖 to some stationary strategy 𝜎(0)
𝑖 following Stage 3 at time 𝜏 that

has the same quote acceptance strategy as 𝜎𝑖 (𝜌′𝑖𝜏 = 𝜌𝑖𝜏 ) but connects 𝑖 to a subset 𝐽 (0) of

dealers not including 𝑗 at time 𝜏 . If this is not the case, that is, if given every stationary

strategy 𝜎′
𝑖 such that 𝜌′𝑖𝜏 = 𝜌𝑖𝜏 and 𝑗 /∈ 𝐽 ′ everywhere, one has 𝑈𝑖(𝜎

′
𝑖 |ℎ𝑖𝜏3) < 𝑈𝑖(𝜎𝑖 |ℎ𝑖𝜏3) for

ℎ𝑖𝜏3 in a non-zero probability set. Then 𝑈𝑖(𝜎
′
𝑖 |ℎ𝑖(𝜏+𝑠)3,𝐽 ′) < 𝑈𝑖(�̃�𝑖 |ℎ𝑖(𝜏+𝑠)3,𝐽 ′) for 𝑠 sufficiently

close to 0. Then it is strictly optimal for 𝑖 to open an account with 𝑗 at ℎ𝑖(𝜏+𝑠)3,𝐽 ′ given

belief 𝜇, that is, 𝑗 ∈ 𝑁𝑖𝜏+𝑠(ℎ𝑖(𝜏+𝑠)3,𝐽 ′). Since the search strategy of 𝑖 is stationary, and 𝑖

can search only a finite number of times during any finite time interval, thus 𝑖 must not

search without receiving an exogenous need to trade. Hence, 𝑖 always has an inventory of

size 0. In addition, since the equilibrium account maintenance strategy 𝑁𝑖𝑡 is stationary,

then it is strictly optimal for 𝑖 to open an account with 𝑗 whenever 𝑖 doesn’t have one yet.

Then, 𝑗 would extract all rent in every trade with 𝑖, knowing that 𝑖 would never terminate

its account with 𝑗. It is then suboptimal for 𝑖 to maintain its account with 𝑗, contradicting

the optimality of 𝜎𝑖.

Next, I show that 𝑖 can permanently terminate its account with 𝑗 at and after time 𝜏

without being worse off. Since the equilibrium strategy 𝜎𝑖 is optimal at every information

set, including ℎ𝑖𝜏3, then 𝜎
(0)
𝑖 must be optimal at almost every ℎ𝑖𝜏3 given belief 𝜇. Since the

account maintenance strategy 𝑁
(0)
𝑖 of 𝜎(0)

𝑖 is stationary, it suffices to modify 𝜎
(0)
𝑖 at times
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when 𝑖 receives exogenous needs to trade and show that not opening an account with 𝑗 at

those times remains optimal.

I let 𝜏 (1) be the first time that 𝑖 receives an exogenous need to trade after time 𝜏 . Viewing

P
𝜎
(0)
𝑖

as a probability measure on
(︀
Ω,ℱ3

𝑖𝜏 (1)

)︀
, I let

𝑆 = supp
(︁

P
𝜎
(0)
𝑖

)︁
∈ ℱ3

𝑖𝜏 (1) .

I let 𝜑 be an operator on Ω that modifies an outcome 𝜔′′ ∈ Ω by switching the dealer accounts

of 𝑖 from 𝐽 (0)(𝜔′′) to 𝐽 for 𝑡 ∈
[︀
𝜏(𝜔′′), 𝜏 (1)(𝜔′′)

)︀
. Then 𝜑 is a 1-1 mapping between 𝑆 and

𝜑(𝑆), and both 𝜑 and 𝜑−1 are ℱ3
𝑖𝜏 (1)

-measurable. Then for every 𝐴 ∈ ℱ3
𝑖𝜏 (1)

such that 𝐴 ⊆ 𝑆,

P𝜎𝑖
(𝜑(𝐴)) = 0 =⇒ P

𝜎
(0)
𝑖

(𝐴) = 0

It follows from the Radon-Nikodym Theorem that there exists some ℱ3
𝑖𝜏 (1)

-measurable P𝜎𝑖
∘𝜑-

integrable function 𝑓 : 𝑆 ↦→ R+ such that

P
𝜎
(0)
𝑖

(𝐴) =

∫︁
𝜔∈𝐴

(𝑃𝜎𝑖
∘ 𝜑)(𝑑𝜔) 𝑓(𝜔) =

∫︁
𝜔∈𝜑(𝐴)

P𝜎𝑖
(𝑑𝜔) 𝑓(𝜑−1(𝜔)) (D.12)

I define a transition kernel 𝜇(1) from (Ω,ℱ3
𝑖𝜏 (1)

) to (Ω,ℱ3
𝜏 (1)

) as follows:

𝜇(1)(𝜔,𝐵) = 𝜇𝑖𝜏 (1)(𝜑(𝜔), 𝜑(𝐵)) ∀𝜔 and 𝐵 ∈ ℱ3
𝜏 (1) ,

Then for every 𝐵 ∈ ℱ3
𝜏 (1)

and 𝐴 ∈ ℱ3
𝑖𝜏 (1)

,∫︁
𝜔

P
𝜎
(0)
𝑖

(𝑑𝜔)𝜇(1)(𝜔,𝐵)1𝐴(𝜔)

=

∫︁
𝜔∈𝑆

P
𝜎
(0)
𝑖

(𝑑𝜔)𝜇𝑖𝜏 (1)(𝜑(𝜔′), 𝜑(𝐵)),1𝐴(𝜔)

=

∫︁
𝜔∈𝜑(𝑆)

P𝜎𝑖
(𝑑𝜔) 𝑓(𝜑−1(𝜔))𝜇𝑖𝜏 (1)(𝜔, 𝜑(𝐵))1𝜑(𝐴)(𝜔) (following from (D.12))

=

∫︁
𝜔∈𝜑(𝑆)

P𝜎𝑖
(𝑑𝜔) 𝑓(𝜑−1(𝜔))1𝜑(𝐵∩𝐴)(𝜔)

= P
𝜎
(0)
𝑖

(𝐴 ∩𝐵) (following from (D.12)).
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Then 𝜇(1)(·, 𝐵) = P
𝜎
(0)
𝑖

(︀
𝐵 | ℱ3

𝑖𝜏 (1)

)︀
, P

𝜎
(0)
𝑖

-almost-surely. (D.13)

Now, I turn to modify 𝜎(0)
𝑖 . There exists some stationary strategy 𝜎′

𝑖 that is optimal at

almost every ℎ𝑖𝜏 (1)3 given belief 𝜇 with the same quote acceptance strategy as 𝜎𝑖 (𝜌′
𝑖𝜏 (1)

= 𝜌𝑖𝜏 (1)

everywhere) without having an account with 𝑗 (𝑗 /∈ 𝑁 ′
𝑖𝜏 (1)

everywhere). I define 𝜎
(1)
𝑖 as

follows: for every time-𝑡-Stage-𝑘 information set ℎ𝑖𝑡𝑘 (𝑘 = 1, 2, 3), I let

𝜎
(1)
𝑖𝑡𝑘 (𝜔) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜎
(0)
𝑖𝑡𝑘 (𝜔) 𝑡 < 𝜏 (1), or 𝑡 = 𝜏 (1), 𝑘 = 1, 2,

𝜎′
𝑖𝑡𝑘(𝜑(𝜔)) 𝑡 = 𝜏 (1), 𝑘 = 3,

𝜎′
𝑖𝑡𝑘(𝜔) 𝑡 > 𝜏 (1), 𝑘 = 1, 2, 3.

That is, 𝜎(1)
𝑖 is obtained by switching from 𝜎

(0)
𝑖 to 𝜎′

𝑖 following Stage 3 at time 𝜏 (1). Then

𝜌
(1)

𝑖𝜏 (1)
= 𝜌𝑖𝜏 (1) ∘ 𝜑.

If 𝜎′
𝑖 is optimal at some ℎ𝑖𝜏 (1)3 ⊆ 𝜑(𝑆) given belief 𝜇, then 𝜎

(1)
𝑖 is optimal at 𝜑−1 (ℎ𝑖𝜏 (1)3)

given belief 𝜇(1). Since 𝜎′
𝑖 is optimal at almost every ℎ𝑖𝜏 (1)3 given belief 𝜇, and

For some 𝐴 ∈ ℱ3
𝑖𝜏 (1) , P𝜎𝑖

(𝐴) = 1,

=⇒ P
𝜎
(0)
𝑖

(𝜑−1(𝐴 ∩ 𝜑(𝑆))) =

∫︁
𝜔′∈𝐴∩𝜑(𝑆)

P𝜎𝑖
(𝑑𝜔′) 𝑓(𝜔′) (following from (D.12))

=

∫︁
𝜔′∈𝜑(𝑆)

P𝜎𝑖
(𝑑𝜔′) 𝑓(𝜔′) = P

𝜎
(0)
𝑖

(𝑆) = 1,

then 𝜎
(1)
𝑖 is optimal at P

𝜎
(0)
𝑖

-almost-every ℎ𝑖𝜏 (1)3 given belief 𝜇(1). Since 𝜎(1)
𝑖 and 𝜎

(0)
𝑖 are

identical prior to Stage 3 of time 𝜏 (1), thus P
𝜎
(0)
𝑖

and P
𝜎
(1)
𝑖

are identical as a probability

distribution on (Ω,ℱ3
𝑖𝜏 (1)

). Thus

E
𝜎
(1)
𝑖

(︀
𝑢𝑖 | ℱ3

𝑖𝜏 (1)

)︀
≥ E

𝜎
(0)
𝑖

(︀
𝑢𝑖 | ℱ3

𝑖𝜏 (1)

)︀
P
𝜎
(0)
𝑖

-almost-surely, (following from (D.13))

=⇒ E
𝜎
(1)
𝑖

(︀
𝑢𝑖 | ℱ3

𝑖𝜏

)︀
≥ E

𝜎
(0)
𝑖

(︀
𝑢𝑖 | ℱ3

𝑖𝜏

)︀
almost surely.

Since 𝜎(0)
𝑖 is optimal at almost every ℎ𝑖𝜏3 given belief 𝜇, then 𝜎

(1)
𝑖 is also optimal at almost

every ℎ𝑖𝜏3 given belief 𝜇, with the same equilibrium time-𝜏 (1) quote acceptance strategy as

if 𝑖 had maintained accounts with all dealers (𝜌(1)
𝑖𝜏 (1)

= 𝜌𝑖𝜏 (1) ∘ 𝜑 everywhere) and without

opening an account with 𝑗 at time 𝜏 (1) under any circumstance (𝑗 /∈ 𝑁
(1)

𝑖𝜏 (1)
everywhere).

It follows from an induction over 𝑘 = 1, 2, . . . , that there exists some stationary strategy

60



𝜎
(𝑘)
𝑖 such that 𝜎(𝑘)

𝑖𝑡 = 𝜎
(𝑘−1)
𝑖𝑡 at all times 𝑡 < 𝜏 (𝑘) prior to the arrival of the 𝑘’th exogenous need

to trade, 𝜎(𝑘)
𝑖 is optimal at almost every ℎ𝑖𝜏3 given belief 𝜇 with the same equilibrium time-

𝜏 (𝑘) quote acceptance strategy as if 𝑖 had maintained accounts with all dealers and without

opening an account with 𝑗 at time 𝜏 (𝑘) under any circumstance (𝑗 /∈ 𝑁
(𝑘)

𝑖𝜏 (𝑘)
everywhere). Then

the limiting stationary strategy 𝜎(∞)
𝑖 is optimal at almost every ℎ𝑖𝜏3 given belief 𝜇 without

opening an account with 𝑗 at and after time 𝜏 . That is, 𝑖 can permanently terminate its

account with 𝑗 following almost every ℎ𝑖𝜏3 without being worse off.

Step 2 (constant pricing): Now, I show that each dealer 𝑗 offers each buyside firm 𝑖 some

constant ask 𝑎*𝑗𝑖 and bid 𝑏*𝑗𝑖 with a spread 𝑎*𝑗𝑖−𝑏*𝑗𝑖 = 2𝑝*(𝑚) almost surely, where 𝑝*(𝑚) is the

equilibrium mid-to-bid spread given by (3). Intuitively, if 𝑗 were to offer non-constant prices,

then 𝑖 cannot always be indifferent to whether it terminates its account with 𝑗—keeping an

account with 𝑗 is relatively more likely to be a waste of time when 𝑖 expects to receive a

worse price from 𝑗. This contradicts the indifference condition established in Step 1.

Formally, I let 𝑎*𝑗𝑖 and 𝑏*𝑗𝑖 be the highest ask and the lowest bid from 𝑗 that 𝑖 would accept

on the equilibrium path without terminating its account with 𝑗. Then, on the equilibrium

path, 𝑗 always offers 𝑖 𝑎*𝑗𝑖 and 𝑏*𝑗𝑖 whenever it executes a trade on its own account.

Hence, the optimal pricing strategy of 𝑗 is characterized by the HJB equation

𝑟𝑉 (𝑥) = −𝛽𝑥2 +
∑︁
𝑖∈𝐼

𝜂𝑚
2

(︁[︀
𝑉 (𝑥− 1) − 𝑉 (𝑥) + 𝑎*𝑗𝑖

]︀+
+
[︀
𝑉 (𝑥+ 1) − 𝑉 (𝑥) − 𝑏*𝑗𝑖

]︀+)︁
.

Adapting the proof of Proposition 2 shows that 𝑉 is concave, thus 𝑗 offers 𝑖 the ask 𝑎*𝑗𝑖

(or the bid 𝑏*𝑗𝑖) when its inventory position is above (below) certain threshold �̄�−𝑗𝑖 (�̄�+𝑗𝑖) and

otherwise would not take a trade into its inventory.

Next, I show that 𝑗 offers 𝑖 the same 𝑎*𝑗𝑖 and 𝑏*𝑗𝑖 on the equilibrium path even when its

inventory position is outside the range (�̄�−𝑗𝑖, �̄�
+
𝑗𝑖). If this is not the case, say 𝑗 offers 𝑖 some

bid 𝑏 < 𝑏* at some inventory position in excess of the upper-threshold �̄�+𝑗𝑖, and

P(At some time, 𝑗 offers 𝑖 the bid price 𝑏) > 0.

I now show that it is more likely to be a waste of time for 𝑖 to keep an account with 𝑗 after

receiving the lower bid 𝑏 relative to the case where 𝑖 had received the bid 𝑏*𝑗𝑖 instead, all else
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the same. Thus, 𝑖 cannot be indifferent to whether it maintains its account with 𝑗 in both

cases. Upon receiving the bid 𝑏, since 𝑖 is not worse off by immediately and permanently

terminating its account with 𝑗, then its conditional payoff is the same as if 𝑖 had received the

bid 𝑏*𝑗𝑖 instead of 𝑏, all else the same. If 𝑖 maintains its account with 𝑗 for an extra instant 𝑑𝑡,

its continuation payoff after time 𝑑𝑡 is again the same regardless of whether 𝑖 had received

𝑏 or 𝑏*𝑗𝑖, all else the same, because 𝑖 is again not worse off by permanently terminating its

account with 𝑗 after time 𝑑𝑡. This would imply that the instantaneous rate of benefit to 𝑖

of keeping its account with 𝑗 should the same regardless of whether 𝑖 received the bid 𝑏*𝑗𝑖

instead of 𝑏. However, conditional on receiving the bid 𝑏, 𝑖 would reject the bid because

otherwise, 𝑗 would be strictly better off raising its bid to 𝑏*𝑗𝑖. At the same time, 𝑖 would infer

that the inventory position of 𝑗 is in excess of the upper-threshold �̄�+𝑗𝑖. Thus, if 𝑖 maintains

its account with 𝑗 for an extra instant 𝑑𝑡, and if 𝑖 were to receive another quote from 𝑗 in

the next instant, then 𝑖 expects to be offered the ask 𝑎*𝑗𝑖 and the same low bid 𝑏. Therefore,

the expected benefit to 𝑖 of having another trade with 𝑗 in the next instant is lower than

that if 𝑖 had received 𝑏*𝑗𝑖 instead of 𝑏 at the first place. This contradiction shows that 𝑗 must

offer 𝑖 the constant bid 𝑏*𝑗𝑖 (and likewise, the constant ask 𝑎*𝑗𝑖) with probability 1.

Then the buyside firm indifference condition established in Step 1 implies that the bid-

ask spread 𝑎*𝑗𝑖 − 𝑏*𝑗𝑖 offered by 𝑗 must the same across all dealers 𝑗 ∈ 𝐽 . Otherwise, if

dealer 𝑗 offered a wider spread than another dealer 𝑗′, then terminating the account with 𝑗

strictly dominates terminating the account with 𝑗′. Then 𝑖 cannot be indifferent to whether

it terminates its account with 𝑗 while also being indifferent to whether it terminates its

account with 𝑗′, contradicting the indifference condition.

Letting 𝑝 be the mid-to-bid spread offered by the dealers, then the rate of benefit when

maintaining 𝑑 dealer accounts is Φ𝑑,𝑝 given by (2), which is strictly concave in 𝑑 (Figure 5).

Every individual dealer to be dispensable if and only if Φ𝑚,𝑝 = Φ𝑚−1,𝑝, or 𝑝 = 𝑝*𝑚, where the

equilibrium spread 𝑝*(𝑚), given in (3), is strictly decreasing in the number 𝑚 of dealers.

D.3 Proof of Theorem 1

Sufficient condition: I first show that 𝑚 ≤ 𝑚* is sufficient for 𝐺(𝑚) to be an equilibrium

networkrk by formally completing the construction of the supporting equilibrium.
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Buyside firms employ the same strategy, as follows: Each buyside firm 𝑖 searches among

its connected dealer counterparties upon receiving an exogenous need to trade, and accepts

any ask 𝑎 ≤ 𝜋 or any bid 𝑏 ≥ −𝜋. For account maintenance, each buyside firm employs the

“grim-trigger” strategy as described in Section 3.

Next, I complete each dealer’s strategy. Upon receiving an RFQ from a buyside firm, each

dealer 𝑗 employs the optimal pricing strategy characterized by its HJB equation Equation (4).

If 𝑗 receives an RFQ from another dealer 𝑗′ (which is an off-the-equilibrium path event), then

𝑗 quotes the highest ask (or the lowest bid) that 𝑗′ would ever possibly accept. Formally, I

let {𝜋ℓ}ℓ=1,...,ℎ be all conceivable reservation prices of 𝑗′, with 𝜋1 ≤ 𝜋2 ≤ . . . ≤ 𝜋ℎ, and each

𝜋ℓ = 𝑉𝑘(𝑥 + 1) − 𝑉𝑘(𝑥) for some 𝑘 ≤ 𝑛 −𝑚 and 𝑥. Then 𝑗 quotes 𝑎 = 𝜋ℎ or 𝑏 = −𝜋ℎ. If

𝑗 receives a quote from another dealer (which is an off-the-equilibrium path event), then 𝑗

accepts the quote if and only if the quote is within its reservation price. A dealer never opens

any trade accounts, on or off the equilibrium path, thus never searches. This completes the

equilibrium strategy profile.

I next turn to the belief system. Since all strategies are Markovian, it suffices to specify,

at each information set, an agent’s belief about the game’s current state consisting of the

current network structure and the current inventory position of each agent. Each agent

always believes, on or off the equilibrium path, that other agents are connected to each other

as prescribed by the equilibrium network 𝐺𝑚, and holds any consistent belief about other

dealers’ inventory positions29, with the following exception. If dealer 𝑗 receives an RFQ from

another dealer 𝑗′ (which is an off-the-equilibrium-path event), then 𝑗 believes that 𝑗′ is in a

state (𝑘, 𝑥) such that 𝑗′ has the widest conceivable reservation price 𝑉𝑘(𝑥+1)−𝑉𝑘(𝑥) = 𝑝ℎ.30

Each agent always believes, on or off the equilibrium path, that other buyside firms have an

inventory of size 0. This completes the construction of the belief system.
29There is no need to assume any specific off-the-equilibrium-path belief about the inventory position of

a given dealer 𝑗 because with 𝑛 − 𝑚 buyside customers, 𝑗 quotes constant bid and ask regardless of its
inventory position.

30This is the most natural belief given iterated elimination of dominated strategies as follows: for 𝑗, quoting
any ask price 𝑎 < 𝜋1 is strictly dominated by quoting 𝑎 = 𝜋1 because any type of 𝑗′ would be willing to
accept 𝑎 = 𝜋1. After eliminating these dominated pricing choices of 𝑗, then for the lowest type 𝜋1 of 𝑗′,
opening an account with 𝑗 is strictly dominated by not opening one, because type 𝜋1 would only have link
cost to incur with no gains from trade to capture. Then for 𝑗, quoting any ask price 𝑎 < 𝜋2 is strictly
dominated by quoting 𝑎 = 𝜋2, and so on. . . . Such choice of off-the-equilibrium-path beliefs is not necessary
for ruling out non-equilibrium networks, as shown later.
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It is easy to check that the belief system is consistent with the strategy profile, which in

turn is sequentially rational given the belief system. Therefore, the strategy profile and the

belief system constitute a PBE.

Necessary condition: Next, I show that𝑚 ≤ 𝑚* is necessary. If dealer 𝑗 offers 𝑎* = 𝑝*(𝑚) and

𝑏* = −𝑝*(𝑚) with a mid-price of 0 to its buyside customers, then the no-gouging condition

for 𝑗 implies that that 𝑚 ≤ 𝑚*. It remains to establish the same if 𝑗 offers 𝑎* = 𝑝*(𝑚) + ℎ

and 𝑏* = −𝑝*(𝑚)+ℎ with a potentially non-zero mid-price ℎ. Intuitively, offering a negative

(positive) equilibrium mid price gives the dealer a larger one-shot benefit from gouging upon

receiving a request to buy (sell) from 𝑖, which tightens the dealer’s no-gouging condition.

The one-shot benefit from gouging a buyside firm is

max {𝜋 − 𝑝− ℎ, 𝜋 − 𝑝+ ℎ} = 𝜋 − 𝑝+ |ℎ|,

For every ℎ ∈ R, I let 𝑉𝑘,ℎ be the value function of a dealer offering mid price ℎ and mid-to-

bid spread 𝑝 to its 𝑘 buyside customers, 𝑉 𝑘,ℎ be the dealer’s value function if the dealer was

restricted from gouging buyside firms, and 𝜓𝑘,ℎ = 𝑉𝑘,ℎ + 𝛽𝑥2/𝑟, 𝜓
𝑘,ℎ

= 𝑉 𝑘,ℎ + 𝛽𝑥2/𝑟. Then

the dealer optimally controls its inventory within some range [𝑥, �̄�]. Thus the expected cost

of losing a buyside customer is at most

ℒ(ℎ) = min
𝑥∈(𝑥,�̄�)

[𝑉 𝑘,ℎ(𝑥) − 𝑉𝑘−1,ℎ(𝑥)] = min
𝑥∈(𝑥,�̄�)

[︁
𝜓

𝑘,ℎ
(𝑥) − 𝜓𝑘−1,ℎ(𝑥)

]︁
Then a necessary condition for no-gouging is that the one-shot benefit not exceeding the

expected cost of gouging: ℒ(ℎ) ≥ 𝜋 − 𝑝+ |ℎ|.

The function 𝜓𝑘−1,ℎ solves the fixed point problem 𝜓 = 𝑇𝑘−1,ℎ(𝜓), where

𝑇𝑘−1,ℎ(𝜓)(𝑥)

=
𝛿(𝑘−1)𝜂

2

(︂[︂
𝜓(𝑥− 1) +

𝛽(2𝑥− 1)

𝑟
+ 𝑝+ ℎ

]︂
∨ 𝜓(𝑥) ∨

[︂
𝜓𝑘−1(𝑥− 1) +

𝛽(2𝑥− 1)

𝑟
+ 𝜋

]︂
+

[︂
𝜓(𝑥+ 1) − 𝛽(2𝑥+ 1)

𝑟
+ 𝑝− ℎ

]︂
∨ 𝜓(𝑥) ∨

[︂
𝜓𝑘−1(𝑥+ 1) − 𝛽(2𝑥+ 1)

𝑟
+ 𝜋

]︂)︂
.

The fixed point problem 𝜓 = 𝑇𝑘−1,ℎ(𝜓) can be viewed as the HJB equation to the following

hypothetical dynamic programming problem: at mean rate 𝜂/2, an agent with an inventory
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position 𝑥, which is not subject to any inventory cost, receives an opportunity to trade one

unit of the asset with customer 𝑖 and receive 𝛽(2𝑥−1)/𝑟+𝑝+ℎ when selling (−𝛽(2𝑥+1)/𝑟+

𝑝 − ℎ when buying) or a higher payment 𝛽(2𝑥 − 1)/𝑟 + 𝜋 when selling (−𝛽(2𝑥 + 1)/𝑟 + 𝜋

when buying) at the expense of losing the customer.

For a given 𝑥0 ∈ Z, I let 𝜓𝑘−1,ℎ be the agent’s value function if the agent acts as if it had

an inventory position of 𝑥 − 𝑥0 while its actual inventory position is 𝑥. For every ℎ ∈ R,

the agent follows the same strategy which is symmetric around 𝑥0: for example, if the agent

sells without gouging at inventory position 𝑥 − 𝑥0, then it would buy without gouging at

inventory position 2𝑥0 − 𝑥. Thus, the value 𝜓𝑘−1,ℎ(𝑥0) evaluated at 𝑥0 is not affected by ℎ:

offering a positive mid-quote ℎ means that the dealer receives more when selling but less

when buying, with the net effect being 0. Hence,

𝜓𝑘−1,ℎ(𝑥0) = 𝜓𝑘−1,0(𝑥0), and likewise, 𝜓𝑘−1,0(𝑥0) = 𝜓𝑘−1,0(0).

Since the optimized value function 𝜓𝑘−1,ℎ is at least as large as the non-optimized value

function 𝜓𝑘−1,ℎ, it then follows that

𝜓𝑘−1,ℎ(𝑥0) ≥ 𝜓𝑘−1,ℎ(𝑥0) = 𝜓𝑘−1,0(𝑥0) = 𝜓𝑘−1,0(0), ∀𝑥0 ∈ Z.

Then the no-gouging condition ℒ(ℎ, 𝑘) ≥ 𝜋 − 𝑝+ |ℎ| implies that

min
𝑥∈(𝑥,�̄�)

𝜓
𝑘,ℎ

(𝑥) − 𝜓𝑘−1,0(0) ≥ 𝜋 − 𝑝+ |ℎ|,

If I can show that

min
𝑥∈(𝑥,�̄�)

𝜓
𝑘,ℎ

(𝑥) − 𝜓
𝑘,0

(0) ≤ |ℎ|, (D.14)

then the no-gouging condition would imply 𝜓
𝑘,0

(0) − 𝜓𝑘,0(0) ≥ 𝜋 − 𝑝, which is equivalent to

the desired necessary condition 𝑚 ≤ 𝑚* when 𝑘 = 𝑛−𝑚 and 𝑝 = 𝑝*(𝑚).

To establish (D.14), I remove 𝑘 from subscripts to ease notation. It can be verified that

𝜓
ℎ
(𝑥) = 𝜓

ℎ+2𝛽𝑥/𝑟
(0)

I can then extend domain of 𝜓
ℎ
(𝑥) from 𝑥 ∈ Z to 𝑥 ∈ R using the above equation, and the
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domain of 𝑉 ℎ(𝑥) from 𝑥 ∈ Z to 𝑥 ∈ R by defining 𝑉 ℎ = 𝜓
ℎ
− 𝛽𝑥2/𝑟. The value function 𝑉 ℎ

solves the HJB equation: for every 𝑥 ∈ R,

𝑟𝑉 ℎ(𝑥) = −𝛽𝑥2 +
𝑘𝜂

2

(︀
[𝑉 ℎ(𝑥− 1) − 𝑉 ℎ(𝑥) + 𝑝+ ℎ)]+

+[𝑉 ℎ(𝑥+ 1) − 𝑉 ℎ(𝑥) + 𝑝− ℎ]+
)︀
.

(D.15)

Since 𝜓
ℎ
(𝑥) and thus 𝑉ℎ(𝑥) are jointly continuous in (𝑥, ℎ), the Intermediate Value Theorem

implies the existence of some �̃�0 ∈ R such that

�̄� = ⌊�̃�⌋, 𝑉0(�̃�− 1) − 𝑉0(�̃�) = 𝑝.

Then the dealer optimally controls its inventory within the interval 𝐼ℎ =
[︁
−�̃�− 𝑟ℎ

2𝛽
, �̃�− 𝑟ℎ

2𝛽

]︁
.

I formally differentiate 𝑉 ℎ(𝑥) with respect to ℎ in (D.15) to obtain, for every 𝑥 ∈ Z,

𝜁
𝜕

𝜕ℎ
𝑉 ℎ(𝑥) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2

[︂
𝜕

𝜕ℎ
𝑉 ℎ(𝑥− 1) +

𝜕

𝜕ℎ
𝑉 ℎ(𝑥+ 1)

]︂
, − �̃�+ 1 ≤ 𝑥+

𝑟ℎ

2𝛽
≤ �̃�− 1,

1

2

[︂
𝜕

𝜕ℎ
𝑉 ℎ(𝑥− 1) +

𝜕

𝜕ℎ
𝑉 ℎ(𝑥) + 1

]︂
, 𝑥+

𝑟ℎ

2𝛽
> �̃�− 1,

1

2

[︂
𝜕

𝜕ℎ
𝑉 ℎ(𝑥+ 1) +

𝜕

𝜕ℎ
𝑉 ℎ(𝑥) − 1

]︂
, 𝑥+

𝑟ℎ

2𝛽
< −�̃�+ 1.

I let ℓ be the number of integers in the interval 𝐼ℎ and 𝜛 be the vector

𝜛 = (−1/2, 0, . . . , 0, 1/2)⊤.

The linear system can be written as 𝐴 𝜕
𝜕ℎ
𝑉 ℎ = 𝜛, where 𝐴 is the matrix (E.1) in Online

Appendix E of size ℓ× ℓ.

For every −𝛽/𝑟 ≤ ℎ ≤ 𝛽/𝑟, then 𝑉 ℎ(0) is the middle entry of 𝑉 ℎ. Letting 𝑠 = ⌊(ℓ+1)/2⌋,

it then follows from property (vi) of Lemma E.1 in Online Appendix E that

0 ≤ 𝜕

𝜕ℎ
𝑉 ℎ(0) =

1

2

(︀
−𝐴−1

ℓ+1−𝑠,1 + 𝐴−1
ℓ+1−𝑠,ℓ

)︀
=

1

2

(︀
−𝐴−1

ℓ+1−𝑠,1 + 𝐴−1
𝑠,1

)︀
≤ 1.

=⇒ 𝜓
ℎ
(0) − 𝜓

0
(0) = 𝑉 ℎ(0) − 𝑉 0(0) ≤ ℎ.
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For any ℎ ∈ R, I let 𝑥 ∈ Z be such that −𝛽/𝑟 ≤ ℎ+ 2𝛽𝑥/𝑟 ≤ 𝛽/𝑟, then 𝑥 ∈ 𝐼ℎ and

𝜓
ℎ
(𝑥) − 𝜓

0
(0) = 𝜓

ℎ+2𝛽𝑥/𝑟
(0) − 𝜓

0
(0) ≤ ℎ.

This establishes the desired inequality (D.14), which implies 𝑚 ≤ 𝑚*.

D.4 Proof of Corollary 1

In network 𝐺, the sum of outdegrees equals to the sum of indegrees. Thus,

∑︁
𝑗∈𝐽

𝑘𝑗 = 𝑚*(𝑛− |𝐽 |).

Since 𝑘𝑗 ≥ 𝑘(𝑚*) for every 𝑗 ∈ 𝐽 (Theorem 2), it then follows from that

(𝑘(𝑚*) +𝑚*)|𝐽 | ≤ 𝑚*𝑛, =⇒ |𝐽 | ≤ 𝑚*𝑛

𝑘(𝑚*) +𝑚* .

D.5 Proof of Proposition 4

Since a dealer’s value 𝑉𝜗(0) is increasing and strictly convex in its rate of customer order

flow 𝜗 (Lemma 6), then by Jensen’s inequality, it is strictly more efficient to concentrate the

order flow on a smaller set of dealers. Thus, 𝑈(𝜎) < 𝑈(𝜎*
𝑚).

D.6 Proof of Proposition 5

Step 1: I first show that the supporting equilibrium 𝜎*(𝑚*) for 𝐺(𝑚*) constructed in Ap-

pendix D.3 is coalition-proof. In any joint deviation by a coalition involving at least one

buyside firm, at least one agent 𝑖 does not receive any incoming link, thus is on the buyside

in the deviation. If 𝑖 was also on the buyside in the underlying equilibrium 𝜎*(𝑚*), then its

expected payoff in the proposed deviation cannot be higher than its equilibrium expected

payoff Φ(𝑚, 𝑝*(𝑚))/𝑟 in 𝜎*(𝑚*). Otherwise, at least one agent 𝑗 in the coalition would need

to offer 𝑖 a mid-to-bid spread tighter than 𝑝*(𝑚) as part of its deviation. Then 𝑗 would be

strictly better off gouging 𝑖, deviating away from its deviation. Thus, the joint deviation

is not coalition proof. If 𝑖 was a dealer without the deviation, then 𝑖 is worse off in the

deviation because it no longer captures any intermediation profits.
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In any joint deviation by a coalition of dealers, if some of the deviating dealers become a

buyside firm in the deviation, then that dealer is worse off in the deviation. If all dealers in

the coalition remain dealers in the deviation, then they cannot be better off. This is because

all the buyside firms, not part of the deviating coalition, still employ the same grim trigger

as their account maintenance strategy. In response, any dealer would optimally stick to its

equilibrium pricing strategy.

Step 2: Given any equilibrium network𝐺 with a maximum outdegree 𝑑(𝐺) < 𝑚*, the buyside

firms can jointly deviate to get rid of all dealers and trade in their own concentrated core-

periphery network 𝐺𝐼(𝑚
*) with 𝑚* dealers, in the same way as they would in the supporting

equilibrium 𝜎*
𝐼 (𝑚*) for 𝐺𝐼(𝑚

*). Such a deviation is coalition proof because 𝜎*
𝐼 (𝑚*) is, and

makes every buyside firm strictly better off. Hence, 𝐺 is not coalition-proof.
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E A Symmetric Tri-Diagonal Matrix

This appendix establishes some properties for the inverse of a symmetric tri-diagonal matrix.

I let 𝑛 be a strictly positive integer. A vector 𝜓 of length 𝑛 is said to be U-shaped if

𝜓𝑖 = 𝜓𝑛+1−𝑖, ∀ 1 ≤ 𝑖 ≤ 𝑛, and 𝜓1 > 𝜓2 > · · · > 𝜓𝑚, where 𝑚 =

⌊︂
𝑛+ 1

2

⌋︂
.

The vector 𝜓 is weakly U-shaped if the inequalities above become weak inequalities while at

least one remains strict. Given two vectors 𝜓 and 𝜙, I write 𝜓 < 𝜙 if 𝜓 is strictly less than

𝜙 entry-wise. Given a constant 𝜁 > 1, I let 𝐴 be the following 𝑛× 𝑛 tri-diagonal matrix:

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜁 − 1
2

−1
2

−1
2

𝜁 −1
2

−1
2

𝜁 −1
2

. . . . . . . . .

−1
2

𝜁 −1
2

−1
2

𝜁 − 1
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(E.1)

Lemma E.1. The matrix 𝐴 is invertible. Its inverse 𝑀 ≡ 𝐴−1 satisfies the following

properties:

(i) The matrix 𝑀 is symmetric, with strictly positive entries.

(ii) For every 1 ≤ 𝑖 ≤ 𝑛, 𝑀𝑖,1 < 𝑀𝑖,2 < · · · < 𝑀𝑖,𝑖 and 𝑀𝑖,𝑖 > 𝑀𝑖,𝑖+1 > · · · > 𝑀𝑖,𝑛.

(iii) For every 𝑖 ̸= 𝑗, 𝑀𝑖,𝑗−1 +𝑀𝑖,𝑗+1 > 2𝑀𝑖,𝑗.

(iv) For every 𝑖, 𝑗, 𝑀𝑖,𝑗 = 𝑀𝑛+1−𝑖,𝑛+1−𝑗.

(v) If a vector 𝜓 is weakly U-shaped, then 𝑀𝜓 is U-shaped and

𝜓𝑚

𝜁 − 1
< (𝑀𝜓)𝑛 <

𝜓𝑛

𝜁 − 1
.

(vi) Letting 𝑚 = ⌊(𝑛+ 1)/2⌋, then 𝑀𝑚,1 −𝑀𝑛+1−𝑚,1 < 2.

(vii) If 𝑛→ ∞ and 𝜁 → 1 with (𝜁 − 1)𝑛→ 0, letting range𝑀 = max(𝑖,𝑗)𝑀𝑖𝑗 − min(𝑖,𝑗)𝑀𝑖𝑗,

(𝜁 − 1) range𝑀 ∼ (𝜁 − 1)𝑛.
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Proof. Properties (i). Since 𝜁 > 1, the matrix 𝐴 is diagonally dominant thus invertible. Its

inverse 𝑀 is symmetric since 𝐴 is. The matrix 𝐴 can be written as 𝐴 = 𝜁𝐼 −𝐷/2, where

𝐷 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 1

1 1
. . . . . .

1 1

1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
The sup-norm of the matrix 𝐷 is ||𝐷||∞ = 2. All entries of 𝑀 are strictly positive, since

𝑀 = 𝐴−1 = 𝜁−1

(︂
𝐼 − 𝐷

2𝜁

)︂−1

= 𝜁−1

[︃
𝐼 +

𝐷

2𝜁
+

(︂
𝐷

2𝜁

)︂2

+ . . .

]︃
.

Properties (ii) and (iii). One has 𝑀𝐵/2 = 𝜁𝑀 − 𝐼. Then for every 𝑖 > 1,

𝑀𝑖,1 +𝑀𝑖,2

2
= 𝜁𝑀𝑖,1 > 𝑀𝑖,1 =⇒ 𝑀𝑖,1 < 𝑀𝑖,2.

I suppose 𝑀𝑖,𝑗−1 < 𝑀𝑖,𝑗 for some 𝑗 ∈ (1, 𝑖), then

𝑀𝑖,𝑗−1 +𝑀𝑖,𝑗+1

2
= 𝜁𝑀𝑖,𝑗 > 𝑀𝑖,𝑗 =⇒ 𝑀𝑖,𝑗 < 𝑀𝑖,𝑗+1.

By induction, one has 𝑀𝑖,𝑗 < 𝑀𝑖,𝑗+1 if 𝑗 < 𝑖. Similarly, one has 𝑀𝑖,𝑗 < 𝑀𝑖,𝑗−1 if 𝑗 > 𝑖.

Property (iv). It is clear that 𝐷𝑖,𝑗 = 𝐷𝑛+1−𝑖,𝑛+1−𝑗 for every 𝑖, 𝑗. If 𝐷ℓ
𝑖,𝑗 = 𝐷ℓ

𝑛+1−𝑖,𝑛+1−𝑗, then

𝐷ℓ+1
𝑖,𝑗 =

∑︁
𝑘

𝐷𝑖,𝑘

(︀
𝐷ℓ
)︀
𝑘,𝑗

=
∑︁
𝑘

𝐷𝑛+1−𝑖,𝑛+1−𝑘

(︀
𝐷ℓ
)︀
𝑛+1−𝑘,𝑛+1−𝑗

= 𝐷ℓ+1
𝑛+1−𝑖,𝑛+1−𝑗.

Therefore, 𝑀𝑖,𝑗 = 𝑀𝑛+1−𝑖,𝑛+1−𝑗 for every 𝑖, 𝑗.

Property (v). Given a weakly U-shaped vector 𝜓, then for every 𝑖,

(𝑀𝜓)𝑖 =
∑︁
𝑗

𝑀𝑖,𝑗𝜓𝑗 =
∑︁
𝑗

𝑀𝑛+1−𝑖,𝑛+1−𝑗𝜓𝑛+1−𝑗 = (𝑀𝜓)𝑛+1−𝑖.
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I let 𝑒 = (1, . . . , 1)⊤ and for every 0 < 𝑘 ≤ 𝑚, I let

𝑤(𝑘) =

⎛⎜⎝1, . . . , 1⏟  ⏞  
𝑘 1′𝑠

, 0, . . . , 0⏟  ⏞  
(𝑛−2𝑘) 0′𝑠

, 1, . . . , 1⏟  ⏞  
𝑘 1′𝑠

⎞⎟⎠
⊤

.

Any weakly U-shaped vector 𝜓 can be written as a linear combination of the vectors 𝑤(𝑘)

and 𝑒. Thus, to show that 𝑀𝜓 is U-shaped for any weakly U-shaped vectors 𝜓, it is sufficient

to show that 𝑀𝑤(𝑘) is U-shaped for every 0 < 𝑘 ≤ 𝑚. For every 𝑖 ∈ [𝑘,𝑚),

[𝑀𝑤(𝑘)]𝑖+1 =
∑︁
𝑗≤𝑘

𝑀𝑖+1,𝑗 +
∑︁

𝑗>𝑛−𝑘

𝑀𝑖+1,𝑗

=
∑︁
𝑗≤𝑘

(𝑀𝑗,𝑖+1 +𝑀𝑗,𝑛−𝑖) <
∑︁
𝑗≤𝑘

(𝑀𝑗,𝑖 +𝑀𝑗,𝑛−𝑖+1) = [𝑀𝑤(𝑘)]𝑖.

Since 𝐴𝑒 = (𝜁 − 1)𝑒, thus 𝑀𝑒 = 𝑒/(𝜁 − 1). Then for every 𝑖 < 𝑘,

[𝑀𝑤(𝑘)]𝑖+1 =
1

𝜁 − 1
−

∑︁
𝑘<𝑗≤𝑛−𝑘

𝑀𝑗,𝑖+1 <
1

𝜁 − 1
−

∑︁
𝑘<𝑗≤𝑛−𝑘

𝑀𝑗,𝑖 = [𝑀𝑤(𝑘)]𝑖.

Therefore, 𝑀𝑤(𝑘) is U-shaped. Given a weakly U-shaped vector 𝜓 and for every 𝑖,

1

𝜁 − 1
𝜓𝑚 =

∑︁
𝑗

𝑀𝑛,𝑗 𝜓𝑚 < (𝑀𝜓)𝑛 =
∑︁
𝑗

𝑀𝑛,𝑗 𝜓𝑗 <
∑︁
𝑗

𝑀𝑛,𝑗 𝜓𝑛 =
1

𝜁 − 1
𝜓𝑛.

Property (vi). I let 𝐻 = (−2𝐴)−1. Then property (vi) is equivalent to 𝐻𝑛+1−𝑚,1 −𝐻𝑚,1 < 1.

If 𝑛 = 2, 𝐻𝑛+1−𝑚,1−𝐻𝑚,1 = 1/(2𝜁) < 1. If 𝑛 > 2, I define the second-order linear recurrences

𝑧𝑘 = −2𝜁𝑧𝑘−1 − 𝑧𝑘−2, 𝑘 = 2, 3, . . . , 𝑛− 1

where 𝑧0 = 1, 𝑧1 = 1 − 2𝜁. I let 𝜁 = cosh 𝛾 where 𝛾 > 0. It follows from induction that

𝑧𝑘 = (−1)𝑘
cosh

(︀(︀
𝑘 + 1

2

)︀
𝛾
)︀

cosh 𝛾
2

𝑘 = 0, 1, . . . , 𝑛− 1.
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Huang and McColl (1997) calculate the entries of 𝐻 in closed form. In particular,

𝐻1,1 =
1

1 − 2𝜁 − 𝑧𝑛−2

𝑧𝑛−1

= −
cosh

(︀(︀
𝑛− 1

2

)︀
𝛾
)︀

2 sinh (𝑛𝛾) sinh(𝛾/2)
, (E.2)

𝐻𝑖,1 = (−1)𝑖−1 𝑧𝑛−𝑖

𝑧𝑛−1

𝐻1,1 ∀𝑖 > 1.

It then follows that for every 1 ≤ 𝑖 ≤ 𝑛,

𝐻𝑛+1−𝑖,1 −𝐻𝑖,1 =

(︂⃒⃒⃒⃒
𝑧𝑖−1

𝑧𝑛−1

⃒⃒⃒⃒
−
⃒⃒⃒⃒
𝑧𝑛−𝑖

𝑧𝑛−1

⃒⃒⃒⃒)︂
𝐻1,1

=
cosh

(︀(︀
𝑛− 𝑖+ 1

2

)︀
𝛾
)︀
− cosh

(︀(︀
𝑖− 1

2

)︀
𝛾
)︀

2 sinh(𝑛𝛾) sinh 𝛾
2

=
2 sinh(𝑛𝛾/2) sinh((𝑛− 2𝑖+ 1)𝛾/2)

2 sinh(𝑛𝛾) sinh(𝛾/2)

(E.3)

When 𝑖 = 𝑚, one has

𝐻𝑛+1−𝑚,1 −𝐻𝑚,1 ≤
sinh(𝑛𝛾/2) sinh 𝛾

sinh (𝑛𝛾) sinh(𝛾/2)
=

cosh(𝛾/2)

cosh (𝑛𝛾/2)
< 1.

Property (vii): Since 𝑛𝛾 goes to 0, it follows from (E.2) that 𝐻1,1 ∼ −1/(𝑛𝛾2). Letting

𝑖 = 𝑗 = 1 in (E.3), one has 𝐻1,1 −𝐻𝑛,1 ∼ −𝑛/2. This implies that

(𝜁 − 1)

(︂
max
(𝑖,𝑗)

𝑀𝑖𝑗 − min
(𝑖,𝑗)

𝑀𝑖𝑗

)︂
= (𝜁 − 1)(𝑀1,1 −𝑀𝑛,1) ∼ (𝜁 − 1)𝑛.

F Proofs for Section 4

F.1 Proof of Proposition 6

Part (i): I fix 𝑚 ≥ 1 and 𝑝 > 0, and suppress 𝜂𝑚 and 𝑝 from the subscripts to simplify

notation. Since 𝜕
𝜕𝜗
𝑉 𝜗 is U-shaped (Lemma 4), then for every 𝑥 ≥ 0,

[𝑉 𝑛+1−𝑚(𝑥) − 𝑉 𝑛+1−𝑚(𝑥+ 1)] − [𝑉 𝑛−𝑚(𝑥) − 𝑉 𝑛−𝑚(𝑥+ 1)]

=

∫︁ (𝑛−𝑚+1)𝜂𝑚

(𝑛−𝑚)𝜂𝑚

[︂
𝜕

𝜕𝜗
𝑉 𝜗(𝑥) − 𝜕

𝜕𝜗
𝑉 𝜗(𝑥+ 1)

]︂
𝑑𝜗 < 0.
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Since 𝑉 𝑛−𝑚(𝑥) − 𝑉 𝑛−𝑚(𝑥+ 1) is strictly decreasing in 𝑛, it admits some limit ∆∞(𝑥).

It will be shown in the proof of Proposition 7 that �̄�𝑛 → ∞ as 𝑛 → ∞. Then given any

𝑥 ≥ 0, 𝑥 < �̄�𝑛 for 𝑛 sufficiently large, and it follows from (5) that

𝑟𝑉 𝑛−𝑚(𝑥)

= − 𝛽𝑥2 +
(𝑛−𝑚)𝜂𝑚

2
[𝑉 𝑛−𝑚(𝑥+ 1) + 𝑉 𝑛−𝑚(𝑥− 1) − 2𝑉 𝑛−𝑚(𝑥) + 2𝑝]

∼ 𝑛𝜂𝑚
2

[∆∞(𝑥− 1) − ∆∞(𝑥) + 2𝑝]

(F.1)

Where the symbol ∼ indicates asymptotic equivalence as 𝑛→ ∞. Letting 𝑥 = 0, one has

𝑟𝑉 𝑛−𝑚(0) ∼ 𝑛𝜂𝑚 [−∆∞(0) + 𝑝]. (F.2)

Given any 𝑥 ≥ 0, for 𝑛 sufficiently large,

𝑟[𝑉 𝑛−𝑚(0)−𝑥𝑝] ≤ 𝑟𝑉 𝑛−𝑚(𝑥) ≤ 𝑟𝑉 𝑛−𝑚(0) =⇒ 𝑟𝑉 𝑛−𝑚(𝑥) ∼ 𝑛𝜂𝑚 [−∆∞(0) + 𝑝]. (F.3)

By comparing the asymptotic equivalences in (F.1) and (F.3), one obtains

∆∞(𝑥) − ∆∞(𝑥− 1) = 2∆∞(0),

for every 𝑥 ∈ Z+. Thus

∆∞(𝑥) = (2𝑥+ 1)∆∞(0).

If ∆∞(0) > 0, then ∆∞(𝑥) > 𝑝 for 𝑥 > [𝑝/∆∞(0)−1]/2, which implies �̄�𝑛 ≤ [𝑝/∆∞(0)+1]/2

for 𝑛 sufficiently large. This contradicts the fact that �̄�𝑛 goes to infinity as 𝑛→ ∞. Therefore,

∆∞(0) = 0. It then follows from (F.2) that

𝑟𝑉 𝑛−𝑚(0) ∼ 𝑛𝜂𝑚 𝑝. (F.4)

Since 𝑉 𝑛−𝑚(0) − 𝑉 𝑛−𝑚−1(0) is strictly increasing in 𝑛 ≥ 𝑚 (Lemma 6), it has a (possibly

infinite) limit as 𝑛→ ∞. It then follows Cesàro’s Theorem that

𝑉 𝑛−𝑚(0)

𝑛−𝑚
=

∑︀𝑛−𝑚
𝑘=1 𝑉 𝑘(0) − 𝑉 𝑘−1(0)

𝑛−𝑚

𝑛→∞−−−→ lim
𝑛→∞

[𝑉 𝑛−𝑚(0) − 𝑉 𝑛−𝑚−1(0)].
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The asymptotic equivalence in (F.4) then implies that

lim
𝑛→∞

[𝑉 𝑛−𝑚(0) − 𝑉 𝑛−𝑚−1(0)] =
𝜂𝑚𝑝

𝑟
.

Given any 𝑝 > 0 such that 𝜂𝑚𝑝/𝑟 ≤ 𝜋 − 𝑝, for every 𝑛 > 𝑚,

ℒ(𝑛−𝑚, 𝜂𝑚, 𝑝) ≤ 𝐿𝑛−𝑚,𝜂𝑚,𝑝(0) ≤ 𝑉 𝑛−𝑚(0) − 𝑉 𝑛−𝑚−1(0) <
𝜂𝑚𝑝

𝑟
≤ 𝜋 − 𝑝.

Thus 𝑝(𝑛−𝑚, 𝜂𝑚) > 𝑝 for every 𝑛 > 𝑚, implying that

lim inf
𝑛

𝑝(𝑛−𝑚, 𝜂𝑚) ≥ 𝑟𝜋

𝜂𝑚 + 𝑟
.

Given any 𝑝 such that 𝜂𝑚𝑝/𝑟 > 𝜋 − 𝑝, I let 𝜀 = 𝜂𝑚𝑝/𝑟 − (𝜋 − 𝑝). For 𝑛 sufficiently large,

𝑉 𝑛−𝑚+1(0) − 𝑉 𝑛−𝑚(0) > 𝜋 − 𝑝+ 𝜀/2. If ℒ(𝑛−𝑚, 𝜂𝑚, 𝑝) ≤ 𝜋 − 𝑝, it follows from (16) that

ℒ(𝑛−𝑚+ 1, 𝜂𝑚, 𝑝) ≥ 𝑉 𝑛−𝑚+1(0) − 𝑉 𝑛−𝑚(0) − (𝜋 − 𝑝) + ℒ(𝑛−𝑚, 𝜂𝑚, 𝑝)

>
𝜀

2
+ ℒ(𝑛−𝑚, 𝜂𝑚, 𝑝).

Then it must be that ℒ(𝑛−𝑚, 𝜂𝑚, 𝑝) > 𝜋− 𝑝 for 𝑛 sufficiently large, thus 𝑝(𝑛−𝑚, 𝜂𝑚) < 𝑝

for 𝑛 sufficiently large, implying that

lim sup
𝑛

𝑝(𝑛−𝑚, 𝜂𝑚) ≤ 𝑟𝜋

𝜂𝑚 + 𝑟
.

Thus, the limiting number 𝑚*
∞ of dealers is the largest integer 𝑚 such that

𝑚𝑟𝜋

𝜆𝜃𝑚 +𝑚𝑟
=

𝑟𝜋

𝜂𝑚 + 𝑟
= lim

𝑛→∞
𝑝(𝑛−𝑚, 𝜂𝑚) < 𝑝*(𝑚).

Part (ii) (dependence of 𝑚* on 𝜆): Since the dealer-sustainable spread 𝑝(𝑚) is strictly

decreasing in 𝜆 (Proposition 3), and the equilibrium spread 𝑝*(𝑚) is strictly increasing in 𝜆

(equation (3)), the core size 𝑚* is thus weakly increasing in 𝜆.

Part (ii) (dependence of 𝑚* on 𝑐): As 𝑐 decreases, 𝑝*(𝑚) increases, while 𝑝(𝑚) is not affected.

The core size 𝑚* thus weakly increases.

Part (iii): When the number 𝑛 of agents increases, the equilibrium number 𝑚* of dealers
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weakly increases (Part (i)). Competitive pressure pushes dealers to lower their equilibrium

spread offer. This can be seen directly from expression (3) of the equilibrium spread 𝑝*(𝑚*).

F.2 Proof of Proposition 7

I let ∆𝜗(𝑥) = 𝑉 𝜗(𝑥)− 𝑉 𝜗(𝑥+ 1) for every 𝑥 ∈ Z. Since 𝜕
𝜕𝜗
𝑉 𝜗 is U-shaped (Lemma 4), then

∆𝜗2(𝑥) − ∆𝜗1(𝑥) =

∫︁ 𝜗2

𝜗1

𝜕

𝜕𝜗
𝑉 𝜗(𝑥) 𝑑𝜗−

∫︁ 𝜗2

𝜗1

𝜕

𝜕𝜗
𝑉 𝜗(𝑥+ 1) 𝑑𝜗 < 0,

for every 𝑥 ∈ Z+ and 𝜗1 < 𝜗2. Proposition 2 implies that �̄�𝜗1,𝑝,𝛽 ≤ �̄�𝜗2,𝑝,𝛽. The same

technique can be applied to show that �̄�𝜗,𝑝,𝛽 is weakly decreasing in 𝛽 > 0.

To drive the desired asymptotic, I fix some 𝑚 ≥ 1 and 𝑝 > 0, and let 𝜗 = (𝑛−𝑚)𝜂𝑚. It

is sufficient to show that �̄�𝜗 = Θ
(︀
𝜗1/3

)︀
as 𝜗 goes to infinity. It follows from (5) that

𝑉 𝜗(𝑥) = 𝑇1(𝑉 𝜗)(𝑥), − �̄�𝜗 < 𝑥 < �̄�𝜗. (F.5)

𝑉 𝜗(𝑥) = 𝑇2(𝑉 𝜗)(𝑥), 𝑥 ≥ �̄�𝜗. (F.6)

where for every function 𝑉 : Z → R,

𝑇1(𝑉 )(𝑥) =
1

𝜗+ 𝑟

(︂
−𝛽𝑥2 +

𝜗

2
[𝑉 (𝑥− 1) + 𝑉 (𝑥+ 1) + 2𝑝]

)︂

𝑇2(𝑉 )(𝑥) =
1

𝜗+ 𝑟

(︂
−𝛽𝑥2 +

𝜗

2
[𝑉 (𝑥− 1) + 𝑉 (𝑥) + 𝑝]

)︂
.

A quadratic solution 𝑈0
𝜗 of (F.5) is given by

𝑈0
𝜗(𝑥) = −𝛽

𝑟
𝑥2 +

𝜗

𝑟

(︂
𝑝− 𝛽

𝑟

)︂
.

To obtain all solutions of (F.5), I consider its homogeneous version:

𝑟𝑉 (𝑥) =
𝜗

2
[𝑉 (𝑥− 1) + 𝑉 (𝑥+ 1) − 2𝑉 (𝑥)]. (F.7)

The set of solutions to the difference equation above forms a 2-dimensional vector space

{𝑎𝑒𝑑𝜗𝑥 + �̃�𝑒−𝑑𝜗𝑥 : 𝑎, �̃� ∈ R}, where 𝑑𝜗 =

√︂
2𝑟

𝜗
+𝑂

(︁
𝜗− 3

2

)︁
.
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Therefore, the solutions to (F.5) are

Z ∋ 𝑥 ↦→ −𝛽
𝑟
𝑥2 +

𝜗

𝑟

(︂
𝑝− 𝛽

𝑟

)︂
+ 𝑎𝑒𝑑𝜗𝑥 + �̃�𝑒−𝑑𝜗𝑥,

where 𝑎, �̃� ∈ R. The value function 𝑉 𝜗 must be equal to one of the solutions 𝑈𝜗 in the region

−�̄�𝜗 ≤ 𝑥 ≤ �̄�𝜗, for some 𝑎 = 𝑎𝜗 and �̃� = �̃�𝜗. Since the function 𝑉 𝜗 is even, one must have

𝑎𝜗 = �̃�𝜗. Hence, for every integer 𝑥 ∈ [−�̄�𝜗, �̄�𝜗],

𝑉 𝜗(𝑥) = 𝑈𝜗(𝑥) ≡ −𝛽
𝑟
𝑥2 +

𝜗

𝑟

(︂
𝑝− 𝛽

𝑟

)︂
+ 𝑎𝜗 cosh(𝑑𝜗𝑥). (F.8)

Solving equation (F.6), one obtains, for every integer 𝑥 ≥ �̄�𝜗 − 1,

𝑉 𝜗(𝑥) = 𝑊𝜗(𝑥) ≡ 𝑊 0
𝜗(𝑥) + 𝑏𝜗𝑒

𝑐𝜗𝑥

≡ −𝛽
𝑟
𝑥2 +

𝜗

𝑟

𝛽

𝑟
𝑥−

(︂
𝜗

𝑟

)︂2
𝛽

2𝑟
+

𝜗

2𝑟

(︂
𝑝− 𝛽

𝑟

)︂
+ 𝑏𝜗𝑒

𝑐𝜗𝑥,

(F.9)

for some 𝑏𝜗 ∈ R, where 𝑐𝜗 = −2𝑟

𝜗
+ 2

(︁ 𝑟
𝜗

)︁2
+𝑂

(︀
𝜗−3
)︀
.

I show that the undetermined coefficients 𝑎𝜗 and 𝑏𝜗 are non-negative. For this purpose, I

define 𝑉 0
𝜗 as an even function from Z to R such that for every 𝑥 ∈ Z+,

𝑉 0
𝜗(𝑥) = max

{︀
𝑈0
𝜗(𝑥),𝑊 0

𝜗(𝑥)
}︀
.

I let 𝐵𝜗 be the Bellman operator defined in (8). Then one has⎧⎨⎩𝐵𝜗

(︀
𝑉 0

𝜗

)︀
≥ 𝑇1

(︀
𝑉 0

𝜗

)︀
≥ 𝑇1

(︀
𝑈0
𝜗

)︀
= 𝑈0

𝜗,

𝐵𝜗

(︀
𝑉 0

𝜗

)︀
≥ 𝑇2

(︀
𝑉 0

𝜗

)︀
≥ 𝑇2

(︀
𝑊 0

𝜗

)︀
= 𝑊 0

𝜗 ,
=⇒ 𝐵𝜗

(︀
𝑉 0

𝜗

)︀
≥ max

{︀
𝑈0
𝜗,𝑊

0
𝜗

}︀
= 𝑉 0

𝜗.

By iterating the Bellman operator 𝐵𝜗, one obtains 𝑉 𝜗 ≥ 𝑉 0
𝜗, which implies 𝑎𝜗 ≥ 0, 𝑏𝜗 ≥ 0.

It follows from (F.8) and (F.9) that 𝑈𝜗 and 𝑊𝜗 have same values at 𝑥 = �̄�𝜗 − 1 and �̄�𝜗:

𝑈𝜗(�̄�𝜗 − 1) = 𝑊𝜗(�̄�𝜗 − 1), 𝑈𝜗(�̄�𝜗) = 𝑊𝜗(�̄�𝜗), (F.10)

which is the smooth pasting condition for the difference equations (F.5) and (F.6). Also,

𝑇1(𝑈𝜗)(�̄�𝜗) = 𝑈𝜗(�̄�𝜗) = 𝑊𝜗(�̄�𝜗) = 𝑇2(𝑊𝜗)(�̄�𝜗) = 𝑇2(𝑈𝜗)(�̄�𝜗),

76



𝑈𝜗(�̄�𝜗) − 𝑈𝜗(�̄�𝜗 + 1) = 𝑝.

By an abuse of notation, I use 𝑈𝜗 and 𝑊𝜗 to denote the functions given by (F.8) and (F.9)

respectively on the entire real line R. There exists some �̃�𝜗 ∈ (�̄�𝜗, �̄�𝜗 + 1) such that

𝑈 ′
𝜗(�̃�𝜗) = −𝑝. (F.11)

Similarly, there exists some �̂�𝜗 ∈ (�̄�𝜗 − 1, �̄�𝜗 + 1) such that

𝑊 ′
𝜗(�̂�𝜗) = −𝑝, (F.12)

Plugging the expressions of 𝑈𝜗 and 𝑊𝜗 into (F.10) to (F.12), one obtains

−2𝛽

𝑟
�̃�𝜗 + 𝑎𝜗𝑑𝜗 sinh(𝑑𝜗�̃�𝜗) = −𝑝, (F.13)

−2𝛽

𝑟
�̂�𝜗 +

𝜗

𝑟

𝛽

𝑟
+ 𝑏𝜗𝑐𝜗𝑒

𝑐𝜗�̂�𝜗 = −𝑝. (F.14)

𝜗

2𝑟

(︂
𝑝− 𝛽

𝑟

)︂
+ 𝑎𝜗 cosh(𝑑𝜗�̄�𝜗) =

𝜗

𝑟

𝛽

𝑟
�̄�𝜗 −

(︂
𝜗

𝑟

)︂2
𝛽

2𝑟
+ 𝑏𝜗𝑒

𝑐𝜗�̄�𝜗 , (F.15)

Equation (F.14) and 𝑏𝜗 ≥ 0 imply that

0 ≤ − 𝑟

𝜗
𝑏𝜗𝑐𝜗𝑒

𝑐𝜗�̂�𝜗 =
𝛽

𝑟

(︂
1 − 2𝑟

𝜗
�̂�𝜗

)︂
+
𝑟

𝜗
𝑝.

Thus, 𝑏𝜗𝑒𝑐𝜗�̄�𝜗 = 𝑂(𝜗2) and �̂�𝜗 = 𝑂(𝜗). I multiply (F.14) by 𝜗/(2𝑟) and subtract by (F.15),

𝑎𝜗 cosh(𝑑𝜗�̄�𝜗) = 𝑏𝜗𝑂
(︀
𝜗−1
)︀
𝑒𝑐𝜗�̄�𝜗 +𝑂(𝜗) = 𝑂(𝜗). (F.16)

I show that �̂�𝜗 = 𝑜(𝜗). If this is not the case, then there exists a sequence (𝜗ℓ)ℓ≥0 going to

infinity such that �̂�𝜗ℓ
= Θ(𝜗ℓ) as ℓ goes to infinity. It then follows from (F.13) that

𝑎𝜗ℓ
sinh(𝑑𝜗ℓ

�̃�𝜗ℓ
) = Θ

(︁
𝜗
3/2
ℓ

)︁
, thus 𝑎𝜗ℓ

cosh(𝑑𝜗ℓ
�̃�𝜗ℓ

) = Θ
(︁
𝜗
3/2
ℓ

)︁
.

This contradicts (F.16). Therefore, �̂� = 𝑜(𝜗), and thus �̄�𝜗 = 𝑜(𝜗).
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I derive a higher order Taylor expansion in (F.16):

𝑎𝜗 cosh(𝑑𝜗�̄�𝜗) ∼ 𝛽

𝑟

𝜗

𝑟
.

=⇒ 𝑎𝜗𝑑𝜗 sinh(𝑑𝜗�̄�𝜗) ∼ 2𝛽

𝑟

√︂
𝜗

2𝑟
tanh(𝑑𝜗�̄�𝜗).

It then follows from (F.13) that 𝑑𝜗�̄�𝜗 ∼ tanh(𝑑𝜗�̄�𝜗). Since 𝑦 = tanh 𝑦 does not have non-zero

solution. Thus, lim𝜗 𝑑𝜗�̄�𝜗 = 0. A higher-order Taylor expansion applied to (F.16) gives

𝑎𝜗 =
𝛽𝜗

𝑟2
− 𝛽𝜗

2𝑟2
𝑑2𝜗�̄�

2
𝜗 +𝑂(�̄�𝜗). (F.17)

Using (F.17), another Taylor expansion applied to (F.13) leads to

− 𝛽𝜗

3𝑟2
𝑑4𝜗 �̄�

3
𝜗 = −𝑝,

which implies �̃�𝜗 = Θ
(︀
𝜗1/3

)︀
, �̄�𝜗 = Θ

(︀
𝜗1/3

)︀
, 𝑉𝜗(0) − 𝑉𝜗(�̄�𝜗) = 𝑂

(︀
𝜗1/3

)︀
. (F.18)

I show that the mixing time goes to 0 at the rate of (𝑛𝜆)−1/3 in Lemma G.2 which generalizes

the mixing time result with a potential interdealer market.

F.3 Proof of Proposition 8

Part (i): Fixing some 𝑚 ≥ 1 and 𝑝 > 0, I let 𝜗 = (𝑛 −𝑚)𝜂𝑚. With reparametrization, I

write 𝐶(𝜗) for 𝐶(𝑛, 𝜆,𝑚). The dealer value 𝑉𝜗(0) = 𝑉 𝜗(0) increases superlinearly with 𝜗

(Lemma 6). Thus, the individual dealer inventory cost 𝐶(𝜗) is strictly concave in 𝜗. Since

𝑉𝜗(0) ≤ 𝜗𝑝/𝑟, then 𝐶(𝜗) ≥ 0. Hence, it must be that 𝐶(𝜗) is strictly increasing in 𝜗 ∈ R+.

Equation (F.17) implies that 𝑎𝜗 = 𝛽𝜗/𝑟2 +𝑂
(︀
𝜗2/3

)︀
. Letting 𝑥 = 0 in (F.8), one has

𝑉𝜗(0) =
𝜗𝑝

𝑟
+𝑂

(︁
𝜗

2
3

)︁
=⇒ 𝐶(𝜗) = 𝑂

(︀
𝜗2/3

)︀
.

Part (ii): One has 𝑚𝜗𝑚 < (𝑚 + 1)𝜗𝑚+1. Since the individual dealer inventory cost 𝐶(𝜗) is

strictly increasing and strictly concave in 𝜗, Jensen’s inequality implies that

𝑚𝐶(𝜗𝑚) = 𝑚𝐶(𝜗𝑚) + 𝐶(0) < (𝑚+ 1)𝐶

(︂
𝑚𝜗𝑚

𝑚+ 1

)︂
< (𝑚+ 1)𝐶(𝜗𝑚+1).
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F.4 Proof of Proposition 9

With an instantaneous rate of benefit Φ𝑚,𝑝*(𝑚), a buyside firm’s equilibrium utility is

Φ𝑚,𝑝*(𝑚)

𝑟
=
𝜆𝜃𝑚(𝜋 − 𝑝*(𝑚)) −𝑚𝑐

𝑟
.

As 𝑛 goes to infinity, it follows from (F.4) that

𝑉 𝑛−𝑚,𝜂𝑚,𝑝*(𝑚)(0) ∼ 𝑛𝜆
𝜃𝑚
𝑟𝑚

𝑝*(𝑚). (F.19)

Thus, 𝑈𝑚 = (𝑛−𝑚)Φ𝑚,𝑝*(𝑚) +𝑚𝑉 𝑛−𝑚,𝜂𝑚,𝑝*(𝑚)(0)

∼
(︂
𝜆𝜃𝑚𝜋 −𝑚𝑐

𝑟

)︂
𝑛 =

[︃ ∑︁
1≤𝑚′≤𝑚

(𝜃𝑚′ − 𝜃𝑚′−1)𝑝
* (𝑚′)

]︃
𝜆𝑛

𝑟
≡ 𝑔(𝑚)

𝜆𝑛

𝑟
.

Since 𝑝*(𝑚′) > 0 for every 1 ≤ 𝑚′ ≤ 𝑚, then 𝑔(𝑚) is strictly increasing in 𝑚 for 0 ≤ 𝑚 ≤ 𝑚.

The asymptotic equivalence above implies that there exists some integer 𝑛0 > 0, if the total

number of agent 𝑛 > 𝑛0, the welfare 𝑈𝑚 is strictly increasing in 𝑚 for 0 ≤ 𝑚 ≤ 𝑚.

G Proofs for Section 5

G.1 Proof of Theorem 3

With the presence of an interdealer market, the buyside firm’s problem is not affected, thus

the equilibrium spread remains to be 𝑝*(𝑚) which solves the buyside firm’s indifference

condition. The dealer’s value function ̂︀𝑉𝑘 solves a different HJB equation

𝑟̂︀𝑉𝑘(𝑥) = −𝛽𝑥2 + 𝑘
𝜂

2
max

{︁̂︀𝑉𝑘(𝑥− 1) − ̂︀𝑉𝑘(𝑥) + 𝑝+ ℎ, 0, ̂︀𝑉𝑘−1(𝑥− 1) − ̂︀𝑉𝑘(𝑥) + 𝜋
}︁

+ 𝑘
𝜂

2
max

{︁̂︀𝑉𝑘(𝑥+ 1) − ̂︀𝑉𝑘(𝑥) + 𝑝− ℎ, 0, ̂︀𝑉𝑘−1(𝑥+ 1) − ̂︀𝑉𝑘(𝑥) + 𝜋
}︁

+ (𝑚− 1)𝜉
[︁̂︀𝑉𝑘(0) − ̂︀𝑉𝑘(𝑥)

]︁
.

Compared to the HJB equation (4) without the interdealer market, the HJB equation above

includes an additional term (𝑚− 1)𝜉
[︁̂︀𝑉𝑘(0) − ̂︀𝑉𝑘(𝑥)

]︁
that reflects the instantaneous rate of

benefit from interdealer trading. On the equilibrium path, the dealer has no incentive to
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gouge any buyside firm. Thus ̂︀𝑉𝑘 = ̂︀𝑉 𝑘 where ̂︀𝑉 𝑘 solves

𝑟̂︀𝑉 𝑘(𝑥) = −𝛽𝑥2 + (𝑚− 1)𝜉
[︁̂︀𝑉 𝑘(0) − ̂︀𝑉 𝑘(𝑥)

]︁
+ 𝑘

𝜂

2
max

{︁̂︀𝑉 𝑘(𝑥− 1) − ̂︀𝑉 𝑘(𝑥) + 𝑝+ ℎ, 0
}︁

+ 𝑘
𝜂

2
max

{︁̂︀𝑉 𝑘(𝑥+ 1) − ̂︀𝑉 𝑘(𝑥) + 𝑝− ℎ, 0
}︁
.

Similar to Lemma 2, one can show that the value function ̂︀𝑉 𝑘 is even and strictly concave.

Thus the dealer optimally controls its inventory within some range [𝑥𝑘, �̄�𝑘]. I let 𝜉𝑚 =

(𝑚− 1)𝜉, then

for 𝑥𝑘 < 𝑥 < �̄�𝑘,

𝑟̂︀𝑉 𝑘(𝑥) = −𝛽𝑥2 + 𝜉𝑚

[︁̂︀𝑉 𝑘(0) − ̂︀𝑉 𝑘(𝑥)
]︁

+
𝑘𝜂

2

[︁̂︀𝑉 𝑘(𝑥− 1) + ̂︀𝑉 𝑘(𝑥+ 1) − 2̂︀𝑉 𝑘(𝑥) + 2𝑝
]︁

(G.1)

for 𝑥 ≥ �̄�𝑘,

𝑟̂︀𝑉 𝑘(𝑥) = −𝛽𝑥2 + 𝜉𝑚

[︁̂︀𝑉 𝑘(0) − ̂︀𝑉 𝑘(𝑥)
]︁

+
𝑘𝜂

2

[︁̂︀𝑉 𝑘(𝑥− 1) − ̂︀𝑉 𝑘(𝑥) + 𝑝+ ℎ
]︁
, (G.2)

for 𝑥𝑘 ≤ 𝑥𝑘.

𝑟̂︀𝑉 𝑘(𝑥) = −𝛽𝑥2 + 𝜉𝑚

[︁̂︀𝑉 𝑘(0) − ̂︀𝑉 𝑘(𝑥)
]︁

+
𝑘𝜂

2

[︁̂︀𝑉 𝑘(𝑥+ 1) − ̂︀𝑉 𝑘(𝑥) + 𝑝− ℎ
]︁
, (G.3)

I follow the same steps as in the proof of Proposition 7 to derive ̂︀𝑉 𝑘 as 𝑘 → ∞. First,

one can solve the difference equations (G.1), (G.2) and (G.3) to obtain

̂︀𝑉 𝑘(𝑥) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

̂︀𝑈𝑘(𝑥), 𝑥𝑘 ≤ 𝑥 ≤ �̄�𝑘,

̂︁𝑊𝑅
𝑘 (𝑥), 𝑥 ≥ �̄�𝑘 − 1,

̂︁𝑊𝐿
𝑘 (𝑥), 𝑥 ≤ 𝑥𝑘 + 1,
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where for every 𝑥 ∈ Z,

̂︀𝑈𝑘(𝑥) = − 𝛽

𝑟 + 𝜉𝑚
𝑥2 +

𝑘𝜂

𝑟

(︂
𝑝− 𝛽

𝑟 + 𝜉𝑚

)︂
+
𝑎

2

(︂
𝑒𝑑𝑥 +

𝜉𝑚
𝑟

)︂
+
�̃�

2

(︂
𝑒−𝑑𝑥 +

𝜉𝑚
𝑟

)︂
,

̂︁𝑊𝑅
𝑘 (𝑥) = − 𝛽

𝑟 + 𝜉𝑚
𝑥2 +

𝑘𝜂𝛽

(𝑟 + 𝜉𝑚)2
𝑥+

𝑘𝜂

2𝑟

(︂
𝑝+ ℎ− 𝛽

𝑟 + 𝜉𝑚
− 𝑘𝜂𝛽

(𝑟 + 𝜉𝑚)2

)︂
+ 𝑏

(︂
𝑒𝑐𝑥 +

𝜉𝑚
𝑟

)︂
,

̂︁𝑊𝐿
𝑘 (𝑥) = − 𝛽

𝑟 + 𝜉𝑚
𝑥2 − 𝑘𝜂𝛽

(𝑟 + 𝜉𝑚)2
𝑥+

𝑘𝜂

2𝑟

(︂
𝑝− ℎ− 𝛽

𝑟 + 𝜉𝑚
− 𝑘𝜂𝛽

(𝑟 + 𝜉𝑚)2

)︂
+ �̃�

(︂
𝑒−𝑐𝑥 +

𝜉𝑚
𝑟

)︂
,

for some non-negative constants 𝑎, �̃�, 𝑏, �̃� to be determined, and as 𝑘 → ∞,

𝑑 =

√︃
2(𝑟 + 𝜉𝑚)

𝑘𝜂
+𝑂

(︁
𝑘−

3
2

)︁
, 𝑐 = −2

𝑟 + 𝜉𝑚
𝑘𝜂

+ 2

(︂
𝑟 + 𝜉𝑚
𝑘𝜂

)︂2

+𝑂
(︀
𝑘−3
)︀
.

One can obtain the smooth pasting condition at the boundaries �̄�𝑘 and 𝑥𝑘:

̂︀𝑈𝑘(�̄�𝑘 + 1) − ̂︀𝑈𝑘(�̄�𝑘) = −(𝑝− ℎ), ̂︀𝑈𝑘(�̄�𝑘) = ̂︁𝑊𝑅
𝑘 (�̄�𝑘), ̂︀𝑈𝑘(�̄�𝑘 − 1) = ̂︁𝑊𝑅

𝑘 (�̄�𝑘 − 1),̂︀𝑈𝑘(𝑥𝑘) − ̂︀𝑈𝑘(𝑥𝑘 − 1) = 𝑝+ ℎ, ̂︀𝑈𝑘(𝑥𝑘) = ̂︁𝑊𝐿
𝑘 (𝑥𝑘), ̂︀𝑈𝑘(𝑥𝑘 + 1) = ̂︁𝑊𝐿

𝑘 (𝑥𝑘 + 1),

As 𝑘 → ∞, one can solve for the smooth pasting conditions above to obtain

�̄�𝑘 ∼ − 𝑥𝑘 ∼
(︂

3𝑝

4

)︂ 1
3

(𝑘𝜂)
1
3 + 𝑓1(𝛽, 𝑟, 𝑝, 𝜉𝑚, ℎ) + 𝑓2(𝛽, 𝑟, 𝑝, 𝜉𝑚, ℎ)(𝑘𝜂)−

1
3 (G.4)

̂︀𝑈𝑘(𝑥) =

(︃
𝑘𝜂𝑝

𝑟
− 𝛽

𝑟

(︂
3𝑝

4

)︂ 2
3

(𝑘𝜂)
2
3 + 𝑓6(𝛽, 𝑟, 𝑝, 𝜉𝑚, ℎ)(𝑘𝜂)

1
3 + 𝑓7(𝛽, 𝑟, 𝑝, 𝜉𝑚, ℎ)

)︃
(G.5)

+ 𝑓3(𝛽, 𝑟, 𝑝, 𝜉𝑚, ℎ)𝑥+ 𝑓4(𝛽, 𝑟, 𝑝, 𝜉𝑚, ℎ)(𝑘𝜂)−
1
3𝑥2 + 𝑓5(𝛽, 𝑟, 𝑝, 𝜉𝑚, ℎ)(𝑘𝜂)−1𝑥4 + 𝑔𝑘(𝑥)

for some functions 𝑓1, . . . , 𝑓7 independent of 𝑘, and 𝑔𝑘 satisfying sup𝑥∈[𝑥𝑘−1,�̄�𝑘+1] |𝑔𝑘(𝑥)| → 0.

Then for ℎ in any compact set, in particular, for any mid-quote ℎ such that the corresponding

bid and ask quotes are both less than 𝜋, that is, |ℎ| + 𝑝 ≤ 𝜋,

̂︀𝑈𝑘(0) − ̂︀𝑈𝑘−1(0) < 𝜂𝑝/𝑟 for 𝑘 sufficiently large, (G.6)

and min
𝑥∈[𝑥𝑘−1,�̄�𝑘+1]

(︁̂︀𝑈𝑘(𝑥) − ̂︀𝑈𝑘−1(𝑥)
)︁
→ 𝜂𝑝/𝑟 as 𝑘 → ∞. (G.7)

Next, I show that for 𝑘 sufficiently large, the dealer has no incentive to gouge for some ℎ

81



if and only if 𝜂𝑚𝑝*(𝑚)/𝑟 > 𝜋 − 𝑝*(𝑚), which is equivalent to 𝑚 ≤ 𝑚*. No-gouging implies

min
𝑥∈(𝑥𝑘,�̄�𝑘)

(︁̂︀𝑈𝑘(𝑥) − ̂︀𝑉𝑘−1(𝑥)
)︁
≥ 𝜋 − 𝑝+ |ℎ| ≥ 𝜋 − 𝑝.

Since ̂︀𝑈𝑘 − ̂︀𝑉𝑘−1 ≤ ̂︀𝑈𝑘 − ̂︀𝑉 𝑘−1, then the above inequality together with (G.6) imply 𝜋 − 𝑝 <

𝜂𝑚𝑝/𝑟. Conversely, a sufficient condition for no-gouging is

̂︀ℒ(𝑘, 𝜂𝑚, 𝑝) := min
𝑥∈[𝑥𝑘−1,�̄�𝑘+1]

(︁̂︀𝑈𝑘(𝑥) − ̂︀𝑉𝑘−1(𝑥)
)︁
≥ 𝜋 − 𝑝+ |ℎ|.

I let ℎ = 0 and 𝑊 = ̂︀𝑉 𝑘−1 +
[︁
𝜋 − 𝑝− ̂︀ℒ(𝑘 − 1, 𝜂𝑚, 𝑝)

]︁+
. Then ̂︀𝑉𝑘−1 ≤ 𝑊 . If 𝜂𝑚𝑝*(𝑚)/𝑟 >

𝜋 − 𝑝*(𝑚), I let 𝜀 = 𝜂𝑚𝑝/𝑟 − (𝜋 − 𝑝). For 𝑘 sufficiently large,

min
𝑥∈[𝑥𝑘−1,�̄�𝑘+1]

[︁̂︀𝑈𝑘(𝑥) − ̂︀𝑈𝑘−1(𝑥)
]︁
> 𝜋 − 𝑝+ 𝜀/2 (following from (G.7)).

On the other hand, one can show, by two separate inductions over 𝑥, that ̂︀𝑈𝑘−1(𝑥) ≥ ̂︀𝑉 𝑘−1(𝑥)

for every 𝑥 > �̄�𝑘−1 and 𝑥 < 𝑥𝑘−1, then ̂︀𝑈𝑘−1 ≥ ̂︀𝑉 𝑘−1. If ̂︀ℒ(𝑘 − 1, 𝜂𝑚, 𝑝) ≤ 𝜋 − 𝑝, then

̂︀ℒ(𝑘, 𝜂𝑚, 𝑝) ≥ min
𝑥∈[𝑥𝑘−1,�̄�𝑘+1]

[︁̂︀𝑈𝑘(𝑥) −𝑊 (𝑥)
]︁

= min
𝑥∈[𝑥𝑘−1,�̄�𝑘+1]

[︁̂︀𝑈𝑘(𝑥) − ̂︀𝑉 𝑘−1(𝑥)
]︁
− (𝜋 − 𝑝) + ̂︀ℒ(𝑘 − 1, 𝜂𝑚, 𝑝)

≥ min
𝑥∈[𝑥𝑘−1,�̄�𝑘+1]

[︁̂︀𝑈𝑘(𝑥) − ̂︀𝑈𝑘−1(𝑥)
]︁
− (𝜋 − 𝑝) + ̂︀ℒ(𝑘 − 1, 𝜂𝑚, 𝑝)

>
𝜀

2
+ ̂︀ℒ(𝑘 − 1, 𝜂𝑚, 𝑝).

Then it must be that ̂︀ℒ(𝑘, 𝜂𝑚, 𝑝) > 𝜋−𝑝 for 𝑘 sufficiently large, ensuring that the dealer has

no incentive to gouge.

G.2 Proof of Proposition 10

I define the long-run averages of interdealer volume and total trade volume by

VolID = lim
𝑇→∞

1

𝑇

∑︁
𝑗∈𝐽

Vol𝑗(𝑇 ), Vol = lim
𝑇→∞

1

𝑇

∑︁
𝑖∈𝐼,𝑗∈𝐽

Vol𝑖,𝑗(𝑇 ),
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where Vol𝑗(𝑇 ) is the volume traded by dealer 𝑗 in the interdealer market in the time interval

[0, 𝑇 ], and Vol𝑖,𝑗(𝑇 ) is the volume traded between buyside firm 𝑖 and dealer 𝑗. The Ergodic

Theorem implies that

VolID = 𝑚(𝑚− 1)𝜉 E(|𝑋𝑗|) ,

where the expectation E is taken with respect to the stationary distribution of the inventory

position 𝑋𝑗 of dealer 𝑗. Since the dealer controls its inventory within some range [𝑥𝑛, �̄�𝑛]

where both boundaries 𝑥𝑛 and �̄�𝑛 are on the order of (𝑛𝜆)
1
3 as 𝑛𝜆→ ∞ ((G.4)), then

E(|𝑋𝑗|) = Θ
(︁

(𝑛𝜆)
1
3

)︁
, hence, VolID = Θ

(︁
(𝑛𝜆)

1
3

)︁
.

On the other hand, Vol = Θ(𝑛𝜆) as 𝑛 → ∞. Therefore, the fraction VolID/Vol of volume

traded in the interdealer market is on the order of
(︀
(𝑛𝜆)−2/3

)︀
.

G.3 Proof of Proposition 11

The proof works roughly as follows: Under the strategy profile �̂�*
No DP(𝑚), a buyside firm

𝑖 receives a trading gain of either 𝜋 − 𝑝*(𝑚) or 0 each time it requests a quote from a

dealer counterparty. This payoff is 0 only when the dealer’s inventory is on one of the two

boundaries ±�̂�𝜗 (in which case the dealer rejects the trade request by offering either an ask

price ∞ or a bid price −∞). The probability of this event is arbitrarily close to 0 when

the rate 𝜗 = (𝑛−𝑚)𝜂𝑚 of RFQ received by the dealer is large. Therefore, the continuation

utility of 𝑖 is arbitrarily close to its upper bound Φ𝑚,𝑝*(𝑚)/𝑟, which is attained if all RFQ

from 𝑖 were served with the spread 𝑝*(𝑚). Therefore, maintaining 𝑚 or 𝑚−1 dealer accounts

is an 𝜀-optimal strategy for the buyside firm.

Formally, I first complement �̂�*
No DP(𝑚) with a consistent belief system. The belief system

is identical to the one for 𝜎*(𝑚) constructed in the proof of Theorem 1 with one restriction

on off-the-equilibrium-path beliefs: If a buyside firm 𝑖 receives any off-the-equilibrium-path

price offer from a dealer 𝑗, then 𝑖 believes that 𝑗 hits one of its inventory boundaries ±�̂�𝜗.

This restriction on off-the-equilibrium-path beliefs does not violate the no-signaling-what-

you-don’t-know requirement. Therefore, the belief system is consistent with respect to the

strategy profile �̂�*
No DP(𝑚).
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I let 𝒢
(︁ ̂︀𝐺(𝑚), 𝑖

)︁
be the set of networks in which all agents other than 𝑖 are connected

to each other as in ̂︀𝐺(𝑚), and ̂︀𝑋𝑡 = ( ̂︀𝑋𝑗𝑡)𝑗∈𝐽 be the dealers’ inventory positions at time

𝑡. I fix a buyside firm 𝑖 throughout this proof. At any information set of 𝑖 (on or off the

equilibrium path), the belief of 𝑖 about the current state (𝐺𝑡− , ̂︀𝑋𝑡−) assigns probability 1 to

the set 𝒢
(︁ ̂︀𝐺(𝑚), 𝑖

)︁
of networks and to the set [−�̂�𝜗, �̂�𝜗]𝑚 of dealer inventories. I let 𝐻𝑡−

include the support of all such inference distributions. That is,

𝐻𝑡− =
{︁
𝐺𝑡− ∈ 𝒢

(︁ ̂︀𝐺(𝑚), 𝑖
)︁
, ̂︀𝑋𝑡− ∈ [−�̂�𝜗, �̂�𝜗]𝑚

}︁
For every game history ℎ𝑡− ∈ 𝐻𝑡− , I let 𝑈𝑖(ℎ𝑡− ; �̂�*

No DP(𝑚)) be the continuation utility of 𝑖

following the history ℎ𝑡− under the strategy profile 𝜎*
No DP(𝑚): it is the continuation utility

of 𝑖 if ℎ𝑡− has been realized and all agents follow the strategy profile 𝜎*
No DP(𝑚) in the

continuation game. It suffices to show that this continuation utility is 𝜀-close to its upper-

bound Φ𝑚,𝑝*(𝑚)/𝑟 for every history ℎ𝑡− ∈ 𝐻𝑡− .

I let 𝑥𝑡− = (𝑥𝑗𝑡−)𝑗∈𝐽 be dealers’ current inventories under a given history ℎ𝑡− ∈ 𝐻𝑡− .

Following ℎ𝑡− , a dealer’s inventory process ( ̂︀𝑋𝑗𝑠)𝑠≥𝑡 is a Markov process starting at 𝑥𝑗𝑡−

and moving in the state space [−�̂�𝜗, �̂�𝜗]. For every dealer 𝑗, I let 𝜏𝑗𝑘 be the 𝑘’th time

at which either (i) dealer 𝑗 receives an RFQ, or (ii) dealer 𝑗 makes an interdealer trade.

If 𝑖 currently has accounts with 𝑚 − 1 dealers under history ℎ𝑡− , then for every dealer 𝑗

with whom 𝑖 is connected, (𝜏𝑗𝑘)𝑘≥1 are the event times of a Poisson process with intensity

𝜒 = (𝑛−𝑚− 1)𝜂𝑚 + 𝜂𝑚−1 + (𝑚− 1)𝜉. Otherwise, 𝑖 would open and maintain accounts with

every dealer 𝑗 at and after time 𝑡, thus (𝜏𝑗𝑘)𝑘≥1 are the event times of a Poisson process with

intensity 𝜒′ = (𝑛−𝑚)𝜂𝑚 + (𝑚− 1)𝜉. I let RFQ𝑗𝑘 ∈ {0, 1} be the binary variable indicating
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whether buyside firm 𝑖 submits an RFQ to dealer 𝑗 at 𝜏𝑗𝑘. Then

Φ𝑚,𝑝*(𝑚)/𝑟 − 𝑈𝑖(ℎ𝑡− ; �̂�*
No DP(𝑚))

≤ E

⎛⎝ ∑︁
𝑗∈𝐽,𝜏𝑗𝑘≥𝑡

𝑒−𝑟(𝜏𝑗𝑘−𝑡)[𝜋 − 𝑝*(𝑚)]1
{︀
RFQ𝑗𝑘 = 1

}︀
1

{︁
| ̂︀𝑋𝑗𝜏−𝑗𝑘

| = �̂�𝜗

}︁ ⃒⃒⃒ ̂︀𝑋𝑗𝑡− = 𝑥𝑗𝑡−

⎞⎠
≤ [𝜋 − 𝑝*(𝑚)]

𝜂𝑚−1

𝜒

∑︁
𝑗∈𝐽,𝑘≥1

E
(︀
𝑒−𝑟𝜏𝑗𝑘

)︀
P
(︁
|̂︀𝑌𝑗(𝑘−1)| = �̂�𝜗

⃒⃒⃒ ̂︀𝑌𝑗0 = 𝑥𝑗𝑡−
)︁

≤ [𝜋 − 𝑝*(𝑚)]
𝜂𝑚−1

𝜒

∑︁
𝑗∈𝐽,𝑘≥1

(︂
𝜒

𝜒+ 𝑟

)︂𝑘

P
(︁
|̂︀𝑌𝑗(𝑘−1)| = �̂�𝜗

⃒⃒⃒ ̂︀𝑌𝑗0 = 𝑥𝑗𝑡

)︁
,

where (𝜏𝑗𝑘)𝑘≥1 are the event times of a Poisson process with the same intensity as that for

(𝜏𝑗𝑘)𝑘≥1, and (̂︀𝑌𝑗𝑘)𝑘≥0 is the embedded discrete-time Markov Chain of ( ̂︀𝑋𝑗𝑠)𝑠≥𝑡. The second

equality above uses the independence between (𝜏𝑗𝑘)𝑘≥1 and ( ̂︀𝑋𝑗𝜏𝑗𝑘)𝑘≥1, between RFQ𝑗𝑘 and

(𝜏𝑗𝑘, ̂︀𝑋𝑗𝑘𝜏𝑘)𝑘≥1, and P
(︀
RFQ𝑗𝑘 = 1

)︀
≤ max{𝜂𝑚−1/𝜒, 𝜂𝑚/𝜒

′} = 𝜂𝑚−1/𝜒. Lemmas G.1 and G.2

imply that for every 𝜀, there exists 𝑛0 and 𝑘(𝑛) = 𝑜(𝑛) such that for every 𝑛 > 𝑛0, 𝑘 > 𝑘(𝑛)

and 𝑥𝑗𝑡− ∈ [−�̂�𝜗, �̂�𝜗],

P
(︁
|̂︀𝑌𝑗(𝑘−1)| = �̂�𝜗

⃒⃒⃒ ̂︀𝑌𝑗0 = 𝑥𝑗𝑡−1

)︁
< 𝜀.

Hence, there exists some 𝑛1 such that for every 𝑛 > 𝑛1, 𝑡 and ℎ𝑡− ∈ 𝐻𝑡− ,

Φ*
𝑚,𝑝*(𝑚)/𝑟 − 𝑈𝑖(ℎ𝑡− ; �̂�*

No DP(𝑚)) < 𝑚𝜂𝑚−1[𝜋 − 𝑝*(𝑚)]

(︂
𝑘(𝑛)

𝜒
+
𝜀

𝑟

)︂
< 2𝑚𝜂𝑚−1[𝜋 − 𝑝*(𝑚)]

𝜀

𝑟
.

Lemma G.1. I let �̂� be the stationary distribution of a dealer’s inventory process �̂�𝑗𝑡. Then

�̂�({−�̂�𝜗, �̂�𝜗}) ≤ 2

2�̂�𝜗 + 1
.

Proof. I show that if ̃︀𝑋𝑗 ∼ Unif(−�̂�𝜗, �̂�𝜗) and ̂︀𝑋𝑗 ∼ �̂�, then

| ̃︀𝑋𝑗|
𝑑

≥ | ̂︀𝑋𝑗|, (G.8)

where
𝑑

≥ denotes stochastic dominance. It would then follow that

�̂�({−�̂�𝜗, �̂�𝜗}) = P
(︁
| ̂︀𝑋𝑗| = �̂�𝜗

)︁
≤ P

(︁
| ̃︀𝑋𝑗| = �̂�𝜗

)︁
=

2

2�̂�𝜗 + 1
.
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I let (̃︀𝑌𝑘) be a bounded random walk that loops at the end points ±�̂�𝜗, and (𝑦𝑘, 𝑦𝑘, 𝑦𝑘+1)

be integers within [0, �̂�𝜗] such that 𝑦𝑘 ≥ 𝑦𝑘. Since interdealer trading can only reduce the

dealer’s inventory, one has

P
(︁
|̃︀𝑌𝑘+1| ≥ ̂︀𝑦𝑘+1

⃒⃒
|̃︀𝑌𝑘| = 𝑦𝑘

)︁
≥ P

(︁
|̂︀𝑌𝑗(𝑘+1)| ≥ 𝑦𝑘+1

⃒⃒
|̂︀𝑌𝑗𝑘| = 𝑦𝑘

)︁
.

Hence, the desired stochastic dominance (G.8) follows from an induction over 𝑘.

Lemma G.2. As 𝑛→ ∞, the mixing time of a dealer’s inventory process ( ̂︀𝑋𝑗𝑡)𝑡≥0 is asymp-

totically bounded by 𝑛−1/3.

Proof. I use the coupling technique.31 I consider a lazy version of ̂︀𝑌𝑗𝑘, which remains in

its current position with probability 1/2 and otherwise moves with the same transition

probabilities as ̂︀𝑌𝑗𝑘. Further, I construct a coupling (𝑌𝑘, 𝑍𝑘)𝑘≥0 of two such lazy chains on

[−�̂�𝜗, �̂�𝜗], starting from 𝑌0 = 𝑦 and 𝑍0 = 𝑧 respectively. At each event time 𝜏𝑗𝑘, dealer 𝑗

either makes an interdealer trade or receives an RFQ from a buyside firm. In the first case,

a fair coin is tossed to determine which of the two chains (𝑌𝑘) or (𝑍𝑘) makes the interdealer

trade. In the second case, if 𝑌𝑘−1 ̸= 𝑍𝑘−1, then a fair coin is tossed to determine which of

the two chains (𝑌𝑘) or (𝑍𝑘) receives the RFQ. If 𝑌𝑘−1 = 𝑍𝑘−1, then a fair coin is tossed to

determine whether both (𝑌𝑘) and (𝑍𝑘) receive the RFQ, or none does. Once the two chains

(𝑌𝑘) and (𝑍𝑘) collide, they make identical moves thereafter. I let 𝐷𝑘 = 𝑌𝑘 − 𝑍𝑘 and �̂�𝑘,𝑦 be

the distribution of 𝑌𝑘. Proposition 4.7 and Lemma 4.11 of Levin et al. (2009) imply that

max
𝑦∈[−�̂�𝜗,�̂�𝜗]

||�̂�𝑘,𝑦 − �̂�||TV ≤ max
𝑦,𝑧∈[−�̂�𝜗,�̂�𝜗]

P𝑦,𝑧(𝐷𝑘 ̸= 0). (G.9)

However, the process (𝐷𝑘) is not Markovian. To bound the RHS of the above inequality, I

construct a conditional Markov chain (�̄�𝑘) such that |�̄�𝑘| ≥ |𝐷𝑘| almost surely for every 𝑘 ≥

0. The increment �̄�𝑘−�̄�𝑘−1 is set to be equal to 𝐷𝑘−𝐷𝑘−1 unless at the 𝑘’th move, (i) either

(𝑌𝑘) or (𝑍𝑘) (but not both) receives an RFQ, (ii) in the case where (𝑌𝑘)𝑘≥0 ((𝑍𝑘)𝑘≥0) receives

the RFQ, 𝑌𝑘−1 = ±�̂�𝜗 (𝑍𝑘−1 = ±�̂�𝜗) and the requested trade would further expand 𝑌𝑘 (𝑍𝑘).

When these two conditions hold, I set �̄�𝑘 = (�̄�𝑘−1 + sgn𝑌𝑘−1 − sgn𝑍𝑘−1) ∧ (2�̂�𝜗) ∨ (−2�̂�𝜗).
31Chapter 5 of Levin, Peres, and Wilmer (2009) provides relevant background for the coupling technique.
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In other words, when (𝑌𝑘) or (𝑍𝑘) receives a trade request that would make it move beyond

the boundaries ±�̂�𝜗, �̄�𝑘 is determined if (𝑌𝑘) or (𝑍𝑘) were to move beyond the boundaries as

long as �̄�𝑘 remains in the range [−2�̂�𝜗, 2�̂�𝜗]. One can verify that almost surely, |�̄�𝑘| ≥ |𝐷𝑘|

for every 𝑘. I let 𝐸𝑘 be the event that no interdealer trade occurs up to period 𝑘. Conditional

on the event 𝐸𝑘, the process (�̄�𝑘)𝑘≥0 is a random walk bounded in [−2�̂�𝜗, 2�̂�𝜗] and loops at

the end points ±2�̂�𝜗, up to period 𝑘 and before being absorbed by 0. Therefore,

P
(︀
�̄�𝑘 = 0

)︀
> P

(︀
�̄�𝑘 = 0 |𝐸𝑘

)︀
P(𝐸𝑘) = P

(︀
�̄�𝑘 = 0 |𝐸𝑘

)︀(︂(𝑛−𝑚)𝜂𝑚
𝜒

)︂𝑘

(G.10)

To calculate P
(︀
�̄�𝑘 = 0 |𝐸𝑘

)︀
, I consider a random walk ( ̃︀𝐷𝑘) bounded in [−2�̂�𝜗, 2�̂�𝜗] that

starts from the same state 𝑦 − 𝑧 as (�̄�𝑘) but is not absorbed by 0. Then

P
(︀
�̄�𝑘 = 0 |𝐸𝑘

)︀
= P

(︁ ̃︀𝐷𝑘 = 0
⃒⃒⃒ ̃︀𝐷0 = 𝑦 − 𝑧

)︁
.

I let 𝜏 = min{𝑘 : ̃︀𝐷𝑘 = 0} and 𝑓ℓ = E
(︁
𝜏
⃒⃒⃒ ̃︀𝐷0 = ℓ

)︁
, then 𝑓0 = 0 and

𝑓ℓ =
1

2
(1 + 𝑓ℓ−1) +

1

2
(1 + 𝑓ℓ+1), 0 < |ℓ| < 2�̂�𝜗,

𝑓2�̂�𝜗
=

1

2
(1 + 𝑓2�̂�𝜗−1) +

1

2
(1 + 𝑓2�̂�𝜗

).

One can solve the system above to obtain 𝑓ℓ = |ℓ| (4�̂�𝜗 − |ℓ| + 1) ≤ 2�̂�𝜗(2�̂�𝜗 + 1). Hence,

P
(︁ ̃︀𝐷𝑘 ̸= 0

⃒⃒ ̃︀𝐷0 = 𝑦 − 𝑧
)︁

= P
(︁
𝜏 > 𝑘

⃒⃒ ̃︀𝐷0 = 𝑦 − 𝑧
)︁
<

E
(︁
𝜏
⃒⃒ ̃︀𝐷0 = 𝑦 − 𝑧

)︁
𝑘

≤ 2�̂�𝜗(2�̂�𝜗 + 1)

𝑘

It then follows from (G.9) and (G.10) that

max
𝑦∈[−�̂�𝜗,�̂�𝜗]

||�̂�𝑘,𝑦 − �̂�||TV ≤ P
(︀
�̄�𝑘 ̸= 0

)︀
< 1 −

(︂
1 − 2�̂�𝜗(2�̂�𝜗 + 1)

𝑘

)︂(︂
(𝑛−𝑚)𝜂𝑚

𝜒

)︂𝑘

As 𝑛→ ∞, the right hand side is arbitrarily close to 0 if 𝑘 = 𝑛𝛼 for any 𝛼 ∈ (2/3, 1). Hence,

the mixing time of ( ̂︀𝑋𝑗𝑡) is asymptotically bounded by 𝑛−1/3.
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G.4 Proof of Proposition 12

It follows from the asymptotic of ̂︀𝑉 𝑘 derived in the proof of Theorem 3 ((G.5)) that as

𝑛→ ∞, ̂︀𝑉 𝑛−𝑚,𝑚,𝑝*(𝑚)(0) − 𝑉 𝑛−𝑚,𝑚,𝑝*(𝑚)(0) = 𝑂
(︁
𝑛

1
3

)︁
.

Since 𝑉 𝑛−𝑚,𝑚,𝑝*(𝑚)(0) = 𝑂(𝑛) ((F.19)), then ̂︀𝑉 𝑛−𝑚,𝑚,𝑝*(𝑚)(0) ∼ 𝑉 𝑛−𝑚,𝑚,𝑝*(𝑚)(0) as 𝑛 → ∞.

That is, for a given dealer in a large market, the surplus generated by trading with other

dealers is negligible vis-à-vis the surplus generated by trading with buyside firms. Hence,

for every 𝑚 ≤ 𝑚, ̂︀𝑈𝑚 ∼ 𝑈𝑚 as 𝑛𝜆 → ∞. Proposition 12 thus follows as a corollary of

Proposition 9.
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