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Abstract

We show that larger trades incur lower trading costs in government bond mar-

kets (“size discount”), but costs increase in trade size after controlling for clients’

identities (“size penalty”). The size discount is driven by the cross-client variation

of larger traders obtaining better prices, consistent with theories of trading with

imperfect competition. The size penalty, driven by the within-client variation, is

larger for corporate bonds and during major macroeconomic surprises as well as

during COVID-19. These differences are larger among more sophisticated clients,

consistent with theories of asymmetric information. We propose a trading model

with bilateral bargaining and adverse selection to rationalise the co-existence of the

size penalty and discount.
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1 Introduction

It is well documented that larger trades incur lower trading costs (“size discount”) in

various over-the-counter (OTC) financial markets. The size discount is consistent with

theories of bilateral trading with imperfect competition, which predict that larger trades

get more favourable prices because dealers’ bargaining power decreases in trade size.1

However, theories of information asymmetry and inventory imbalances predict “size pen-

alty”, in that larger trades would be executed at less favourable prices because of dealers’

fear of adverse selection2 or higher inventory costs.3

We reconcile this tension by decomposing the size-cost relationship into cross-client

and within-client variations, finding size discount in the cross section and size penalty in

the time series. We further analyse the drivers of the size penalty by applying differences-

in-differences methods. The evidence points to an independent role of information-based

theories (controlling for inventory- and liquidity-based explanations) in driving the size

penalty. By studying the size-cost relationship, this paper illustrates the effects of differ-

ent market frictions on trading costs. As a theoretical contribution, we present a bilateral

trading model with bargaining and information asymmetry to rationalise the co-existence

of the size discount and size penalty.

Our paper exploits a unique non-anonymous trade-level data to study the determin-

ants of trading costs in UK government bond market over the period 2011-2017. The

dataset covers close to the universe of secondary market transactions, and importantly,

it contains the identities of both counterparties for each transaction. Therefore, un-

like other datasets (e.g. TRACE) typically used in the literature, our dataset allows

one to distinguish between client-specific characteristics (such as traders’ size and type)

and transaction-specific characteristics (such as trade size) in determining trading costs.

Moreover, identifying clients who simultaneously trade in government bonds as well as

in corporate bonds allows us to compare the size-cost relation not just across clients, but

across markets as well.
1See Green, Hollifield, and Schurhoff (2007b) and the related literature.
2Glosten and Milgrom (1985); Kyle (1985); Easley and O’Hara (1987) among others.
3See Ho and Stoll (1981) and the related literature.
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Our empirical analysis yields six main results. First, we show that larger trades get

lower trading costs in government bond markets than smaller trades, consistent with

the previous literature on the “size discount” studied in corporate bond and municipal

bond markets. Second, our non-anonymous dataset allows us to decompose the size-cost

relation into within-client and cross-client variation. We find that trading costs increase

in trade size once we control for clients’ identities, generating a “size penalty”.

Figure 1: The Relation between Trade Size and Trading Costs: The Role of Traders’
Identities
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Notes: The Figure shows a linear regression line on the pooled, transaction-level data (left panel) and on the data after we
removed client-specific averages from trading costs and trade sizes corresponding to each trade. Trading costs are measured
by 4.1 (building on O’Hara and Zhou (2021)), and trade size is measured as the natural logarithm of the trade’s notional.
The estimated regression lines are based on around 1.24million observations. The confidence bands are based on 95%
standard errors as in Gallup (2019).

These two findings are illustrated in Figure 1, which shows the relationship between

trade size and trading costs in government bonds from two different model specifications.

The left panel of Figure 1 plots the fitted linear regression line from a pooled regression of

trading costs on trade size. The trade-level regression shows that larger trades incur lower

trading costs, consistent with the findings of size discount in other OTC markets.4 Our

novel contribution is to isolate the within-client variation in the size-cost relation: the
4For evidence on the size discount in the US corporate bond market, see Schultz (2001), Bessembinder,

Maxwell, and Venkataraman (2006), Edwards, Harris, and Piwowar (2007), Goldstein, Hotchkiss, and
Sirri (2007), Hendershott and Madhavan (2015) and O’Hara, Wang, and Zhou (2018) among others.
Similar evidence from the US municipal bond market is presented by Harris and Piwowar (2006) and
Green, Hollifield, and Schurhoff (2007b,a) among others.
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right panel of Figure 1 shows the regression line after removing the client-specific average

from trading costs and trade size, showing evidence on size penalty. This suggests that the

size discount is driven by the cross-client variation of larger traders facing lower trading

costs and trading larger amounts, whereas the size penalty is driven by the within-client

variation of the same trader facing higher trading costs on larger trades. This will be

shown rigorously by regression analysis further below.

Third, we exploit cross-sectional variation in client types and find that the size pen-

alty is larger for more sophisticated clients (hedge funds and asset managers), and it

is smaller for less sophisticated clients (pension funds, foreign central banks, insurance

companies etc.). Fourth, we additionally exploit time-series variation in the magnitude

of macroeconomic surprises and find that the size penalty, faced by more sophisticated

clients, is larger during informationally intensive periods such as trading days that coin-

cide with the arrival of large macroeconomic shocks. In contrast, the size penalty faced

by less sophisticated clients is similar across trading days irrespective of the magnitude

of macroeconomic shocks at the time. Fifth, we also exploit cross-market variation by

identifying clients who simultaneously trade in government bonds as well as in corporate

bonds. We find that the size penalty is larger in corporate bonds than in government

bonds, and, importantly, this difference is more pronounced amongst more sophisticated

clients.

Taken together, we interpret these results as evidence that information-based explana-

tions contribute to the heterogeneity in size penalty. To the extent that more sophisticated

clients are more likely to trade on information than less sophisticated clients, the differ-

ential degree of size penalty across client types, implied by the differences-in-differences

approach, is consistent with theories of asymmetric information (Glosten and Milgrom,

1985). The triple differences approach, that uses time-variation in the magnitude of

macroeconomic surprises, corroborates this interpretation.

The triple differences approach using cross-market variation shows that other, inventory-

and liquidity-based factors are also likely to play a role, in so far as the size penalty is

larger in corporate bonds than in government bonds irrespective of client types. While
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corporate bonds are informationally more sensitive assets than government bonds (Bran-

cati and Macchiavelli, 2019; Arnold and Rhodes, 2020), liquidity and inter-dealer inter-

mediation is also considerably smaller in the UK corporate bond market than in the

government bond market. This makes it more costly for corporate bond dealers to ex-

ecute trades with large size (Chen, Lesmond, and Wei, 2007), which could explain the

larger size penalty in corporate bonds. However, assuming that the liquidity effect of a

large corporate bond trade should be the same irrespective of the sophistication of the

client initiating the trade, the larger increase in size penalty among more sophisticated

clients is consistent with the presence of informational channels over and above what is

explained by liquidity-based mechanisms.

Our sixth result is that a more sophisticated client performs better on larger trades

than on smaller trades, with performance measured as the trade’s ability to predict

future price movements. In contrast, we find that within-client variation in trade size is

uncorrelated with trading performance for the group of less sophisticated clients. This

is an important cross-check as it strengthens the information-based interpretation of the

results implied by the triple differences approach.

In our analysis, we use various combinations of fixed effects in order to control for

other forces that may drive the size-cost relation. For example, the size penalty can

also be driven by an inventory imbalance channel: a large-sized trade is more likely

to cause skewed dealer inventory imbalance. Therefore, the dealer would be forced to

cover its resulting inventory cost by charging a higher trading cost (Ho and Stoll, 1981),

generating a size penalty. While this force is likely to be present in the data, there

are at least two reasons why we interpret our results as being driven by additional,

information-based factors over and above this inventory channel. First, our trade-level

regressions include dealer-day fixed effects that control for the linear effects of any daily

shock to dealers’ inventory which could drive the size-cost relation. Second, inventory-

based mechanisms alone are less likely to explain the heterogeneity in the size penalty

across more sophisticated and less sophisticated clients. However, it could still be that if

dealers’ inventory cost functions are sufficiently convex and if more sophisticated clients
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systematically trade larger amounts than less sophisticated clients, then the heterogeneity

in the size penalty across client types could be explained by inventory channels. However,

this possibility is rejected in our sample, as we find that, if anything, more sophisticated

clients seem to trade in smaller sizes.

Moreover, the size penalty could be affected by the strength of the trading relation-

ship between clients and dealers (Di Maggio, Franzoni, Kermani, and Sommavilla, 2019;

Barbon, Maggio, Franzoni, and Landier, 2019; Hendershott, Li, Livdan, and Schurhoff,

2020). However, larger trades are typically executed by counter-parties with stronger

trading relationship, and trading costs also tend to be lower at dealers with whom a

given client has a more enduring relationship. While mechanisms related to relationship

trading may explain some of the cross-client pattern of size discount, they are less likely

to explain the size penalty and its heterogeneity across client types. Nevertheless, we in-

clude in our regressions client-dealer fixed effects to control for the linear effect of trading

relationships.

We also revisit the size-cost relation during the COVID-19 period, as presented in

Section 5. This provides an ideal setting for performing a cross-check on a different

sample, as this analysis exploits a more recent dataset (2018-2020), compared to the

one (2011-2017) used to obtain our baseline results. We continue to find significant size

penalty in this more recent dataset, and additionally show evidence on an increased size

penalty during the financial market turmoil in March 2020, which is particularly strong

for the group of more sophisticated clients. We show that this result also holds after

controlling for the selling pressure of more sophisticated clients such as asset managers –

a well established feature of the COVID-19 crisis.5

Our empirical results highlight that controlling for traders’ identity is crucial for

understanding trading costs in non-anonymous OTC markets. In centralised exchanges,

where client identity is not revealed before the trade, client identity is not relevant for

the estimation of trading costs. However, in OTC markets, client identity is observable
5See Falato, Goldstein, and Hortaçsu (2020); Ma, Xiao, and Zeng (2020); Kargar, Lester, Lindsay,

Liu, Weill, and Zuniga (2020); Haddad, Moreira, and Muir (2020); O’Hara and Zhou (2021) among
others.
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to dealers and naturally enters dealers’ pricing function. Without information on clients’

identity and by simply looking at the relationship between trade size and trading costs in

a pooled regression, one could easily under-estimate the incremental cost when a trader

increases trade size.

In the final, theoretical section of the paper, we present a bilateral trading model

with bargaining and information asymmetry to rationalise the co-existence of the size

discount and penalty. The model builds on the standard CARA-normal setting with

strategic traders as in Kyle (1985) and risk aversion Subrahmanyam (1991) with the

addition of a liquidity component. Importantly, we show how one can introduce into this

framework of asymmetric information a simple bargaining game (building on Rubinstein

(1982) and Hoel (1987)) which can generate both the size discount and the size penalty.

This model could be a building block for analysing strategic bilateral trading under

asymmetric information in decentralised markets.

Related Literature We contribute to both the theoretical and empirical literature on

OTC markets.

Our paper builds on two mains strands of the empirical literature. First, we draw

on previous studies on the determinants of trading costs in corporate (Schultz, 2001;

Bessembinder, Maxwell, and Venkataraman, 2006; Edwards, Harris, and Piwowar, 2007;

Goldstein, Hotchkiss, and Sirri, 2007; Feldhutter, 2012; Hendershott and Madhavan, 2015;

O’Hara and Zhou, 2021) and municipal bond markets (Harris and Piwowar, 2006; Green,

Hollifield, and Schurhoff, 2007b,a; Li and Schürhoff, 2019). We contribute to this literat-

ure by isolating the role of clients’ identities in driving the relationship between trading

costs and trade size, and to combine this client-level heterogeneity with other variations

in our unique dataset to develop our empirical tests. Second, we contribute to the empir-

ical literature on informed trading in government and corporate bond markets (Brandt

and Kavajecz, 2004; Green, 2004; Kondor and Pinter, 2019; Hendershott, Kozhan, and

Raman, 2020; Czech, Huang, Lou, and Wang, 2021). Compared to these studies, we

focus on how analysing the size-cost relation in bond markets can reveal the presence of

informed trading.
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Our empirical results are able to inform the theoretical literature on OTC markets.

Specifically, our evidence on the size penalty is consistent with previous models featur-

ing asymmetric information (Kyle, 1985; Easley and O’Hara, 1987; Seppi, 1990). Our

evidence on the size discount is consistent with clients facing price discrimination from

dealers, possibly because of the heterogeneity in their bargaining power or search intens-

ity (Duffie, Gârleanu, and Pedersen, 2005; Lagos and Rocheteau, 2009; Pinter and Uslu,

2021).

Accordingly, our theoretical contribution is to combine insights from these two literat-

ures and to present a simple model that includes both bilateral bargaining and information

asymmetry. Combining these two features is, in general, a hard theoretical problem. In

most papers, prices are either monopolistically or competitively offered by an uninformed

party to an informed party.6 This simple price-setting mechanism avoids signalling and

screening, at the expense of not being able to achieve surplus splitting between the two

parties.7 We circumvent the technical difficulty of bargaining under asymmetric inform-

ation, by showing that a trader with both liquidity and informational trading motives

would perfectly reveal her joint trading motive through her order size in a linear-pricing

equilibrium without bargaining delay. Our model jointly predicts within-client size pen-

alty and across-client size discount. Each of the two channels can be conveniently shut

down, in which case the model reduces to a standard model with remaining feature ex-

plaining either size penalty or size discount.

The remainder of the paper is organised as follows. Section 2 develops the testable

hypotheses; Section 3 describes the data sources and provides summary statistics; Section

4 presents the empirical results; Section 5 presents an analysis of the COVID-19 period;

Section 6 presents the theoretical model; Section 7 concludes.
6Early examples on monopolistic and competitive pricing include Gould and Verrecchia (1985); Glos-

ten (1989) and Kyle (1985); Glosten and Milgrom (1985), respectively.
7In Lester, Shourideh, Venkateswaran, and Zetlin-Jones (2018), the price can either be competitive

or monopolistic with an exogenous probability. While not focusing on surplus splitting, Du and Zhu
(2017) studies a bilateral double-auction model with information asymmetry in which the price is set by
a double auction between two traders.
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2 Hypothesis Development

In this section, we build on the existing theoretical literature to formulate our testable

hypotheses.

Hypothesis 1 (Size Discount). Trading costs are smaller for larger trades, and this is

driven by the cross-client variation of larger clients facing lower costs than smaller clients.

The size discount is a well documented empirical pattern in various OTC markets.8

The early literature conjectures that the size discount can be due to dealers’ fixed costs

of executing a trade or due to large clients’ stronger bargaining power. Our cross-client

variation in Hypothesis 1 isolates bargaining power from fixed costs as a driver of the size

discount. More formally, Green, Hollifield, and Schurhoff (2007a) estimates a bargain-

ing model using trade size as a proxy for bargaining power. Using more granular data

with partial trader identities, recent papers show that larger traders have more dealer

connections and stronger relationship with their dealers.9

Other forces such as asymmetric information10 and inventory imbalances (Ho and

Stoll, 1981) could generate the time-series phenomenon of size penalty in OTC mar-

kets. One would therefore expect that controlling for clients’ identities (thereby con-

trolling for the cross-client variation in average bargaining power) would likely make

both information- and inventory-based mechanisms dominate. This could then give rise

to observed patterns of size penalty, assuming that time-variation in bargaining power is

sufficiently weak.11
8Schultz (2001); Edwards, Harris, and Piwowar (2007); Bessembinder, Maxwell, and Venkataraman

(2006) find evidence of size discount in the US corporate bond market, Harris and Piwowar (2006);
Green, Hollifield, and Schurhoff (2007a) in the US municipal bond market, Loon and Zhong (2016) in
the index CDS market.

9In the US corporate bond market, for example, Hendershott, Li, Livdan, and Schurhoff (2020) shows
that larger insurance companies trade in larger quantities with dealers and they also trade with more
dealers. Di Maggio, Kermani, and Song (2017) shows that dealers charge lower spreads to dealers with
whom they have the strongest ties and more so during periods of market turmoil. O’Hara, Wang, and
Zhou (2018) finds that an insurance company will receive a better price if it trades more actively with
a given dealer. Bernhardt, Dvoracek, Hughson, and Werner (2005) develops a model of relationship
trading to explain size discount in an OTC market.

10Grossman and Stiglitz (1980), Kyle (1985, 1989), and Vives (2008) provide theoretical benchmarks for
mechanisms based on adverse selection. More recently, Lester, Shourideh, Venkateswaran, and Zetlin-
Jones (2018) and Chen and Wang (2020) develop dynamic models of market making under adverse
selection risk. Pinter, Wang, and Zou (2020) shows that size penalty is a robust prediction even when
dealers have incentive to chase informed orders.

11It has been shown that factors that affect bargaining power, such as the structure of trading networks,
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Hypothesis 2 (Size penalty). A given client faces higher trading costs on larger trades

than smaller trades.

As mentioned above, mechanisms related to both asymmetric information and invent-

ory imbalance can generate a size penalty. To tell these two forces apart, we introduce

an additional variation in our unique dataset: we distinguish between more sophisticated

clients (such as hedge funds and mutual funds) and less sophisticated clients (such as

insurance companies, pension funds etc.). We build on the assumption that more soph-

isticated clients are more likely to trade on private information, subjecting dealers to

more information asymmetry, while less sophisticated clients are more likely to trade for

hedging purposes.12 On the other hand, a dealer facing clients who seek to offload a large

quantity of assets would be subject to the same inventory cost, irrespective of whether

the client is more or less sophisticated. Cross-sectional variation in client types would

therefore generate heterogeneity in the size penalty that is less likely to be explained by

dealers’ inventory imbalance. This is summarised by Hypothesis 3.

Hypothesis 3 (Client Heterogeneity). The size penalty is bigger for more sophisticated

clients compared to less sophisticated clients.

To provide further analysis of the driving forces behind the time-series pattern of the

size penalty, we also exploit time-series variation in the magnitude of macroeconomic

surprises. Previous literature has shown that macroeconomic announcements increase

price volatility and invite informed trading in government bond markets (Ederington and

Lee, 1993; Green, 2004). This is consistent with the theoretical models which show that a

trader can use leaked information and make trading profits during these informationally

intensive periods (Brunnermeier, 2005). Since informed trading is more likely to happen

and price movements are larger during informationally intensive periods, we expect the

size penalty to be more pronounced during these periods. Moreover, the difference in

tend to be stable over time. Recent empirical work has shown that OTC markets have a stable core-
periphery network structure, and these markets feature persistent trading relationships. Li and Schürhoff
(2019) provides evidence on municipal bonds, Di Maggio, Kermani, and Song (2017) on corporate bonds,
Afonso, Kovner, and Schoar (2014) provide evidence on federal funds.

12See Kondor and Pinter (2019), Czech and Pinter (2020) and Czech, Huang, Lou, and Wang (2021)
for recent evidence.
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size penalty (across trading days with small and large macro surprises) is expected to

be larger for more sophisticated clients, who are likely to possess private information

relevant to the event.

Hypothesis 4. The size penalty is larger during informationally intensive days (such

as large macroeconomic surprises), and this difference is more pronounced in the case of

more sophisticated clients.

We also exploit cross-market variation (comparing corporate and government bond

trades of the same client) to analyze the driving forces behind the time-series pattern of

the size penalty. The corporate bond market and the government bond market differ in at

least two important dimensions. First, corporate bonds have idiosyncratic cashflow risk

on top of the interest rate risk associated with government bonds (Longstaff, Mithal, and

Neis, 2005). This, ceteris paribus, would provide larger room for informed trading in the

corporate bond market. Second, corporate bonds are less liquid than government bonds

(Chen, Lesmond, and Wei, 2007). According to the search literature, inventory concerns

are likely to be more prominent when market liquidity is lower (Garleanu and Pedersen,

2007). As argued above, both the information- and inventory-based explanations could

generate a more severe size penalty in the corporate bond market. Therefore, in order

to isolate the informational channel, we combine the cross-market variation with hetero-

geneity in client types (similar to Hypothesis 4). Since informational effects are likely to

be more pronounced in the case of more sophisticated clients, we expect any differential

effect of the size penalty (across the two markets) to be larger for more sophisticated

clients compared to less sophisticated clients.

Hypothesis 5. The size penalty is larger in corporate bonds than in government bonds,

and this difference is more pronounced in the case of more sophisticated clients.

To further test for the informational mechanism behind the size penalty, we construct a

measure of informativeness at the client-day level and test whether clients perform better

when trading larger amounts. We measure the informativeness of a client’s trade by the

future price impact of the trade (Hasbrouck, 1991; Collin-Dufresne, Junge, and Trolle,
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2020). When a market maker trades with a client who possesses private information, the

size of a given trade is a well-established proxy for the presence of private information.13

This positive correlation between trade size and information content of trade holds in

various market settings including the exchanges (Kyle, 1985) and OTC markets (Naik,

Neuberger, and Viswanathan, 1999).

Hypothesis 6. A given informed client performs better on larger trades than on smaller

trades.

In the rest of the paper, we test these six hypotheses and find evidence in support of

each one of them.

3 Data and Summary Statistics

Data Source To distinguish between trade size and trader size in bond markets, one

needs a detailed transaction-level dataset which contains information on the identity of

both sides of a trade. The ZEN database sourced by the UK Financial Conduct Au-

thority, contains this information along with information on the transaction time, the

transaction price and quantity, the International Securities Identification Number, the

account number, and buyer-seller flags, as explained in more detail in Kondor and Pinter

(2019). Our sample covers the period between August 2011 and Dec 2017. Our ana-

lysis focuses on transactions that occur between clients and designated market makers,

called Gilt-Edged Market Makers (GEMMs). GEMMs are the primary dealers in the UK

government bond market, and the majority of client-dealer trades are intermediated by

them.14 After filtering out all duplicates, erroneous entries, we are left with approxim-

ately 1.25 million observations for government bond market trades and about 1.2 million

observations for corporate bond market trades.
13The mechanism design literature points out that when the client has private information, any in-

centive compatible trading mechanism must prescribe a weakly increasing relationship between the value
of the asset and the quantity bought by the trader (Myerson and Satterthwaite, 1983).

14GEMMs’ intermediation activity is lower in corporate bonds, acting as counterparties for about
65% of all client trades in our sample. For further details on the identities of GEMMs, see
https://www.dmo.gov.uk/responsibilities/gilt-market/market-participants/.
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A key aspect of our empirical analysis is that we are able to see the identities of

both counterparties for each transaction – a unique feature of the ZEN database as also

used in Kondor and Pinter (2019), Czech and Pinter (2020) and Czech, Huang, Lou, and

Wang (2021). Following these papers, we distinguish between more sophisticated clients

(hedge funds and asset managers) and less sophisticated clients (pension funds, foreign

central banks, commercial banks, international policy institutions, insurance companies,

non-financial investors). This classification is motivated by the recent evidence on the

enhanced ability of more sophisticated clients to predict future bond returns. We identify

609 clients that cover more than 90% of the trading volume between clients and dealers.

Figure 2: Trade Size Distributions
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Notes: these figures summarize the size distributions on the UK government bond (left panel) and corporate bond (right
panel) markets, based on trade-level data spanning the period Aug 2011 - Dec 2017. The summary statistics are based on
the dataset after winsorising at the 1-99% level.

Figure 2 illustrates the size distribution for the UK government bond and corporate

bond markets, along with selected summary statistics. Both the mean and the dispersion

measures are larger in the government bond market. Table A.1 in Appendix provides

further summary statistics. The mean and median trade size for government bonds in

our sample is about £6.3million and £0.86million, suggesting a sizeable skew in the

distribution. While trades in corporate bonds tend to be considerably smaller, we do

not see a discernible difference in the size distribution across more and less sophisticated

clients.
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4 Empirical Analysis

4.1 Measurement

Building on O’Hara and Zhou (2021), our measure of trading cost for each trade v is:

Costv =
[
ln (P ?

v )− ln
(
P
)]
× 1B,S, (4.1)

where P ?
v is the transaction price, 1B,S is an indicator function equal to 1 when the

transaction is a buy trade, and equal to −1 when it is a sell trade, and P is a benchmark

price, which in our baseline is the average price of all transactions in bond k on trading

day t. We multiply Costv by 10,000 to compute costs in basis points of value. As shown

below, our baseline results are robust to using four alternative ways to compute P .15

Our baseline specification is the following trade-level regression:

Costv = β × Sizev + αk,t + λi,m + µj,m + δi,j + εv, (4.2)

where Costv is the trading cost as computed in 4.1, Sizev is the natural logarithm of

the given trade’s notional (in £s) and controls includes combinations of fixed effects at

the levels of client i, dealer j, bond k, day t and month m. The key object of interest is

the estimated value of β: if trading cost is the same for large and small trades, then we

would expect β not to be significantly different from zero.

4.2 The Role of Trader Identity in the Size-Cost Relation

Table 1 shows the results for our baseline regression 4.2, using various specification of

fixed effects. All regressions include bond-day fixed effects that aim to control for the

linear effects of aggregate shocks that may affect bonds heterogeneously. For example,
15The four alternatives are as follows. First, we compute P as the average transaction price in bond

k, trading day t and dealer j. Second, we compute P as the average transaction price in bond k, in a
given part of the trading day t. Using the time stamp for each trade, we divide trades into three groups,
depending on whether the transaction occurred (i) before 11am, (ii) during 11am-3pm, or (iii) after 3pm.
Third, we also compute P as the average transaction price in bond k, trading day t, separately for buy
and sell trades. Fourth, we also compute P as the average transaction price in bond k, trading day t,
using only trades on the inter-dealer market.
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trading costs tend to be larger in more illiquid bonds where average trade sizes are also

different compared to more liquid bonds. With bond-day fixed effects, we aim to control

for time-variation in such liquidity effects.

We move gradually from the least restrictive specification (column 1) to the most

restrictive specification (column 5). Consistent with the Figure 1 above, the inclusion

of client fixed effects (column 2) makes the biggest change to the estimation results by

flipping the sign of the estimated effect: without client fixed effects, a one log unit increase

in trade size is associated with a size discount of -0.217bp. In contrast, the inclusion of

client fixed effects results in a size penalty of 0.1bp.

Table 1: Trading Costs and Trade Size in Government Bond Markets: The Role of
Traders’ Identities

(1) (2) (3) (4) (5)
Trade Size -0.217*** 0.102*** 0.121*** 0.134*** 0.158***

(-4.04) (3.05) (4.01) (4.25) (5.19)
N 1274295 1274289 1274289 1269855 1269238
R2 0.055 0.061 0.062 0.134 0.139
Day*Bond FE Yes Yes Yes Yes Yes
Client FE No Yes Yes No No
Dealer FE No No Yes No No
Day*Dealer FE No No No Yes Yes
Month*Client FE No No No Yes Yes
Client*Dealer FE No No No No Yes

Notes: this table regresses transaction performance measure on trade size and various fixed effects (4.2). The performance
measures are in bp-points. To reduce noise, we winsorise the sample at the 1%-level. T-statistics in parentheses are based
on robust standard errors, using two-way clustering at the day and client level. Asterisks denote significance levels (*
p<0.1, ** p<0.05, *** p<0.01).

In column 3, we include dealer fixed effects, motivated by the recent literature (Hol-

lifield, Neklyudov, and Spatt, 2017) that emphasised the role of dealer-heterogeneity in

determining transaction costs. In column 4, we include dealer-day fixed effects in order

to control for time-variation in the tightness of balance sheet constraints of dealers and

client-month fixed effects to control for lower frequency variation in client characteristics.

In column 5, we include client-dealer fixed effects, motivated by Di Maggio, Franzoni,

Kermani, and Sommavilla (2019) emphasising the role of client-dealer relationship in de-

termining trading costs. The interpretation of this additional control is that it allows the

comparison of trades that are executed by the same counterparties in different points in
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time. We find that the results are qualitatively robust to including these additional fixed

effects, and are overall consistent with Hypothesis 2 of Section 2.

4.3 The Size Discount in the Cross-Section

We argued above that the size discount implied by pooled regressions (left panel of Figure

1) is driven by the cross-client variation of larger traders facing more favourable trading

costs and trading larger amounts. To show this rigorously, we collapse our dataset at the

client-level and estimate the following cross-sectional regression for client i:

Costi = γ × TraderSizei + εi, (4.3)

where Costi is the unweighted average trading cost (4.1) based on all trades of client i,

and TraderSizei is measured as the natural logarithm of the average trade size of client

i.

Figure 3: Trading Costs and Trader Size in the Cross-Section
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Notes: this Figure shows a scatter plot of average client trading costs (vertical axis) against average trade size (horizontal
axis) at the client-level. Average trading cost is the unweighted mean of our baseline cost measure 4.1 at the client-level.
Average trade size is the natural logarithm of the average nominal size of a client’s transactions. To reduce noise, the
dataset is trimmed at 1%-level, leaving 586 observations. The estimated γ̂ = −0.59 with t-stat (based on robust standard
error) of −9.6.

The results are summarised in Figure 3, confirming a statistically significant size

discount in the cross-section. This is consistent with Hypothesis 1 of Section 2. In

spite of the simplicity of the cross-sectional regression (with various other dimensions of
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client heterogeneity not featured), the estimated model delivers a non-negligible R2 of

0.2. These results are robust to using an alternative measure of trader size such as clients’

total monthly trading volume averaged across months. Moreover, the baseline scatter plot

looks similar when we control for clients’ average monthly dealer connections (Kondor and

Pinter, 2019; Hendershott, Li, Livdan, and Schurhoff, 2020) as well as average monthly

intensity (the log of total number of transactions) of client i (O’Hara, Wang, and Zhou,

2018). These results are shown by Figures A.1–A.2 in the Appendix.

As reviewed in the Introduction, a voluminous literature documented on the size

discount as an important feature of bond trading. Figure 3 adds to this literature by

isolating the source of variation in the trade-level data (i.e. the cross-client variation)

that drives the documented size discount.

4.4 The Size Penalty: Exploring the Mechanisms

We now take a closer look at the within-client pattern of size-penalty documented in

Section 4.2.

4.4.1 The Role of Trader Sophistication

To explore the role of heterogeneity in client types in driving the size penalty, we first

divide clients into two groups based on whether the given client is of a more sophisticated

type (asset manager or hedge fund) or of a less sophisticated type (pension funds, foreign

central bank etc.). As argued, the underlying assumption is that former group is more

likely to trade on information, than the latter group.16 For these two groups g = {g1, g2},

we estimate an extended version of our baseline regression 4.2, as follows:

Costv =
2∑

w=1
ηw × 1[i ∈ gw]× Sizev + FE + εv, (4.4)

where 1[i ∈ gw] is an indicator function equal to 1 if client i belongs to group w, and 0

otherwise. We present the estimates of η1 and η2 adjacent to each other in the regression
16See Czech, Huang, Lou, and Wang (2021) for further details on the ability of more sophisticated

clients to forecast bond returns.
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tables and present results for tests of equality of the two coefficients.

Table 2 shows the results for the case when we estimate regression 4.2 for the more

sophisticated and less sophisticated clients separately. This “diff-in-diff” (DID) approach

reveals that while the cross-sectional phenomenon of size discount is present for both

sets of clients (with the estimated coefficients being similar), the inclusion of client fixed

effects generates a larger size penalty for the group of more sophisticated traders. The

most conservative specification (column 5) shows that the size penalty is almost twice

as large among more sophisticated clients (0.197) than among less sophisticated clients

(0.106), consistent with Hypothesis 3 of Section 2.

Table 2: Trading Costs and Trade Size: More Sophisticated Clients vs Less Sophisticated
Clients

(1) (2) (3) (4) (5)
Less Sophisticated Clients

Trade Size -0.217*** 0.057 0.067 0.080* 0.106**
(-4.14) (1.22) (1.46) (1.79) (2.29)

More Sophisticated Clients
Trade Size -0.213*** 0.140*** 0.169*** 0.183*** 0.197***

(-2.67) (3.34) (4.83) (5.08) (5.61)
p-values, eq. of coeff. 0.966 0.185 0.076 0.069 0.115
N 1271112 1271106 1271106 1264580 1263963
R2 0.100 0.106 0.107 0.202 0.207
Day*Bond*ClientType FE Yes Yes Yes Yes Yes
Client FE No Yes Yes No No
Dealer*ClientType FE No No Yes No No
Day*Dealer*ClientType FE No No No Yes Yes
Month*Client FE No No No Yes Yes
Client*Dealer FE No No No No Yes

Notes: this table regresses transaction performance measure on trade size and various fixed effects. The performance
measures are in bp-points. To reduce noise, we winsorise the sample at the 1%-level. T-statistics in parentheses are based
on robust standard errors, using two-way clustering at the day and client level. Asterisks denote significance levels (*
p<0.1, ** p<0.05, *** p<0.01). The p-values correspond to the testing for the equality of coefficients.

To the extent that more sophisticated traders are more likely to trade on information,

heterogeneity in the degree of size penalty across the two groups of traders is suggestive

of an information-based explanation (Kyle (1985), Easley and O’Hara (1987) and others).

It could still be however that more sophisticated clients face a steeper cost-size trade-off

for non-informational reasons (e.g. mechanisms related to dealer inventory). Therefore,

to isolate more rigorously the role of information in driving the size penalty, the next
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subsections extend the DID approach by adding one additional layer of “differences”

related to macroeconomic surprises.

4.4.2 The Size Penalty around Macroeconomic Announcements

In this section, we estimate the role of macroeconomic announcements in affecting the

degree of size-penalty. According to our Hypothesis 4, the release of large unexpected

macroeconomic news leads to higher probability of informed trading (Bernile, Hu, and

Tang, 2016; Du, Fung, and Loveland, 2018), so it increases the size penalty of both more

and less sophisticated clients. Moreover, since more sophisticated clients have a higher

likelihood to possess private information or a more accurate private interpretation of

public signals, the increase in size penalty should be larger among this group of clients.

We build on the high-frequency methodology of Swanson and Williams (2014) to

identify trading days when the surprise component of US and UK macroeconomic an-

nouncements were unusually high.17 Specifically, we sort trading days into two groups

s = {s1, s2}, based on whether the magnitude of the surprise on day t was smaller or

bigger than the sample median. We estimate a modified version of our baseline regression

4.4, as follows:

Costv =
2∑

w=1

2∑
z=1

ηw,z × 1t[t ∈ sz, i ∈ gw]× Sizev + FE + εv, (4.5)

where 1t[t ∈ sz, i ∈ gw] is an indicator function equal to 1 when a given trading day t

belongs to group z and client i belongs to group w, and is equal to 0 otherwise; the term

FE includes various combinations of fixed effects discussed above.

The results are shown in Table 3. The size penalty faced by less sophisticated cli-

ents is virtually the same irrespective of whether trading days are hit by small or large

macroeconomic shocks. In contrast, the size penalty continues to be more statistically

significant for sophisticated clients. Importantly, the point estimates are around 30%
17Our dataset is obtained from the Bank of England (building on Eguren-Martin and McLaren (2015)

as used in Kondor and Pinter (2019)). The method uses historical tick data to compute the change in
the 3-year interest rate in a tight window (five minutes before and five minutes after) around the release
of both nominal and real news from both from the UK and the US.
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Table 3: Trading Costs and Trade Size: Around Big and Small Macroeconomic News

(1) (2) (3) (4) (5)
Less Sophisticated Clients

Trade Size#SmallNews 0.061 0.080 0.061 0.082* 0.104**
(1.25) (1.57) (1.33) (1.70) (2.11)

Trade Size#LargeNews 0.067 0.069 0.066 0.075 0.107**
(1.44) (1.40) (1.41) (1.58) (2.13)

p-values, eq. of coeff. 0.830 0.673 0.871 0.833 0.943
More Sophisticated Clients

Trade Size#SmallNews 0.150*** 0.161*** 0.141*** 0.154*** 0.171***
(4.01) (4.03) (3.49) (3.62) (4.11)

Trade Size#LargeNews 0.196*** 0.207*** 0.202*** 0.205*** 0.221***
(4.55) (4.75) (4.77) (4.79) (5.17)

p-values, eq. of coeff. 0.132 0.119 0.086 0.144 0.147
N 1182307 1178836 1179827 1176302 1175687
R2 0.106 0.136 0.173 0.199 0.204
Day*Bond*ClientType FE Yes Yes Yes Yes Yes
Dealer*ClientType FE Yes No No No No
Client FE Yes Yes Yes No No
Day*Dealer*ClientType FE No No Yes Yes Yes
Month*Client FE No Yes No Yes Yes
Client*Dealer FE No No No No Yes

Notes: this table regresses trading costs (measured in bp-points) on trade size (measured as log of the nominal size of
the trade in £s) interacted with indicator variables denoting whether the trading day coincides with the arrival of a large
or small macroeconomic surprise compared to the median, and whether the client is more or less sophisticated. The
macroeconomic surprises are constructed following the high-frequency methodology of Swanson and Williams (2014). The
regression also includes various fixed effects. To reduce noise, we winsorise the sample at the 1%-level. T-statistics in
parentheses are based on robust standard errors, using two-way clustering at the day and client level. Asterisks denote
significance levels (* p<0.1, ** p<0.05, *** p<0.01). The p-values correspond to the testing for the equality of coefficients,
within a given client type.

larger on trading days with big macroeconomic surprises (0.221) compared to days with

small surprises (0.171) in the most conservative specification (column 5). The statistical

significance of these differences is somewhat modest, with the corresponding p-values

being in the range 0.08-0.15.

The third layer of the triple differences approach, represented by the time-variation in

the magnitude of macroeconomic surprises provides a stronger evidence for the presence

information-based drivers of the size penalty, compared to the differences-in-differences

approach of the previous subsection. Tables A.5–A.6 in Appendix show that the results

are similar when we experiment with four alternative measures of trading costs as left-

hand-side variables in regression 4.5.

An alternative interpretation of these results, however, is that the trading activity
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of clients during informationally sensitive periods may be endogenous to client type,

e.g. less sophisticated clients may refrain from trading (large amounts) compared to

more sophisticated clients during high-surprise days. This selection effect combined with

the possibility of dealers facing more inventory risk during high-surprise days may be

driving the results in Table 3. There are two ways in which we try to address this

issue. First, we document how the relative presence of more and less sophisticated clients

may change during low- and high-surprise days. We measure the presence of the given

client group with three variables: (i) total number of daily transactions, (ii) total daily

trading volume and (iii) total number of unique clients from the given group type. As

shown in Table A.7 in the Appendix, we find all three measures increase during days

with large macroeconomic surprises. Importantly, we find that this increase is similar

across the two client groups, indicating that the selection issue may be less of a concern.

Second, the next subsection will exploit cross-market variation to further analyse the

source of heterogeneity in the size penalty. This alternative approach is less subject to

the aforementioned selection effect, as will be discussed below, because we require clients

to be present and active in both markets in a given time period.

4.4.3 The Size Penalty in Government vs Corporate Bond Markets

In this section, we estimate whether the size penalty may be different in the corporate

bond market compared to the government bond market. This cross-market analysis is

made possible by a unique feature of our dataset: our ZEN dataset not only covers close-

to the universe of secondary market trades in UK government bonds but also in UK

corporate bonds. This allows us to identify clients who simultaneously trade in both UK

bond markets on the same trading day. Identifying a common set of clients is crucial

for a cross-market comparison of the size penalty, because the client composition itself

can be endogenously determined by the yields, riskness, liquidity and opaqueness of the

market in question (Dow, 2004). We mitigate the selection issue by restricting the sample

to clients who have a non-trivial presence in both types of bond markets. Specifically,

we restrict that any client in this subsample must generate at least 15% of their volume
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in both markets. For example, this means that we omit most foreign central banks from

this exercise, as they have little presence in the UK corporate bond markets and trade

almost exclusively in government bonds. Some asset managers specialize in trading in

either the government bond or the corporate bond market so they are also excluded from

the sample.

Possible differences in size penalty across the two markets could be due to at least

three reasons. First, corporate bonds provide more opportunities for informed trading

than government bonds, because of additional variation in cash-flows and default risk.

Second, the corporate bond market tends to be more illiquid than the government bond

market, due to the higher asset-heterogeneity and lower trading frequency of corporate

bonds. Because of this, the inventory cost should be higher in the corporate bond market.

A third and related reason is that inter-dealer brokers play a smaller role in the corporate

bond market than in the government bond market, which would ceteris paribus increase

dealers’ cost of managing their corporate bond inventories. All three factors could make

larger trades in corporate bond markets more costly to execute compared to government

bond markets. Thereby all three factors could in theory explain why the size penalty is

larger in corporate bonds than in government bonds.

The identification assumption underlying our triple differences approach is that the

liquidity and inventory mechanisms should generate a differential degree of size penalty

in corporate bonds vis-a-vis in government bonds, irrespective of client type. Therefore,

if we find that the size penalty is larger for corporate bonds than in government bonds

and, importantly, this increase is significantly larger for sophisticated clients than less

sophisticated clients, then we can plausibly argue that information-based factors likely

play a role in determining the size penalty over and above what is captured by liquidity

and inventory channels, consistent with Hypothesis 5 in Section 2.

To proceed, we sort all transactions into two groups l = {GovernmentBond, CorporateBond},

based on whether the given trade occurred in the government bond or corporate bond
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Table 4: Trading Costs and Trade Size: Government vs Corporate Bonds Markets

(1) (2) (3) (4)
Less Sophisticated Clients

Trade Size#GovernmentBonds 0.078 0.093** 0.122*** 0.125***
(1.42) (2.01) (2.69) (2.74)

Trade Size#CorporateBonds 0.310 0.316 0.332 0.350*
(1.59) (1.59) (1.64) (1.71)

p-values, eq. of coeff. 0.149 0.192 0.232 0.208
More Sophisticated Clients

Trade Size#GovernmentBonds 0.152*** 0.177*** 0.186*** 0.186***
(3.92) (4.70) (5.16) (5.11)

Trade Size#CorporateBonds 0.774*** 0.749*** 0.800*** 0.856***
(3.89) (3.81) (4.07) (4.34)

p-values, eq. of coeff. 0.001 0.002 0.001 0.000
N 1171526 1165674 1165359 1164790
R2 0.349 0.426 0.430 0.433
Day*Bond*ClientType FE Yes Yes Yes Yes
Client*Market FE Yes Yes Yes No
Dealer*Market*ClientType FE Yes Yes Yes No
Day*Dealer*ClientType FE No Yes Yes Yes
Month*Client FE No Yes Yes Yes
Client*Dealer No No Yes No
Client*Dealer*Market FE No No No Yes

Notes: this table regresses trading costs (measured in bp-points) on trade size (measured as log of the nominal size of the
trade in £s) interacted with an indicator variable taking value 2 (1) if the trade takes place in the corporate (government)
bond market. The regression also includes various fixed effects. The upper (lower) panel shows the results for less (more)
sophisticated clients. To reduce noise, we winsorise the sample at the 1%-level. T-statistics in parentheses are based on
robust standard errors, using two-way clustering at the day and client level. Asterisks denote significance levels (* p<0.1,
** p<0.05, *** p<0.01). The p-values correspond to the testing for the equality of coefficients, within a given client type.

market. We then estimate a modified version of our baseline regression 4.4, as follows:

Costv =
2∑

w=1

2∑
z=1

ηw,z × 1[j ∈ lz, i ∈ gw]× Sizev + FE + εv, (4.6)

where 1[j ∈ lz, i ∈ gw] is an indicator function equal to 1 when a bond j belongs to group

z and client i belongs to group w, and is equal to 0 otherwise; the term FE includes

various combinations of fixed effects discussed above.

The results are shown in Table 4. We find that the size penalty is significantly larger in

corporate bonds than in government bonds, but only for the sophisticated group of clients.

While the most conservative specification (column 4) shows that the point estimate on

the size penalty is about 0.225bp larger (0.35 vs. 0.125) for less sophisticated clients, it

is larger by about 0.67 (0.856 vs. 0.186) for the more sophisticated client groups. For the
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latter group, the statistical significance of these differences is particularly strong, with

the corresponding p-values being less than 0.01. As shown by Tables A.8–A.9 in the

Appendix, we obtain similar results when using four alternative definitions of trading

costs. Moreover, including all clients in the analysis (irrespective of their relative trading

volume in the two markets) lead to similar findings as well, as shown in Table A.10 in

the Appendix.

4.4.4 Trade Size and Trading Performance

One natural test for an information-based explanation of the size penalty is to check

whether clients make more profitable trades when trading larger amounts. To carry out

this test, we first construct a measure of performance for each trade v and horizon T ,

building on Di Maggio, Franzoni, Kermani, and Sommavilla (2019):

PerformanceTv =
[
ln
(
P T

)
− ln

(
P 0
)]
× 1B,S, (4.7)

where P 0 is the average price of all transactions in bond k on the day when transaction

v takes place, P T is the average transaction price T days after trade v, and 1B,S is an

indicator function equal to 1 when the transaction is a buy trade, and equal to −1 when

it is a sell trade.

Given that bond trading strategies tend to have multiple legs (Duarte, Longstaff,

and Yu, 2007), we do not estimate trade-level regression to proxy informed trading but,

instead, we collapse our dataset at the client-day level using volume weighted average of

measure 4.7 for each client i, market l, and day t. We also sort trading days of each client

i on each market l into three tertiles according to average trade size. For these groups

gi,l = {gi,l,1, gi,l,2, gi,l,3}, we estimate the following panel regression:

PerformanceTi,l,t =
3∑

w=1
ηw × 1t[t ∈ gi,l,w] + Intensityi,l,t + εi,l,t, (4.8)

where 1t[t ∈ gi,l,w] is an indicator function equal to 1 on trading days t when a client i in

market l belongs to group w, and is equal to 0 otherwise. It is important to emphasise
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Figure 4: The Relation between Trade Size and Trading Performance

-2
0

2
4

6

Large Relative to Small Trades Large Relative to Small Trades

10-day Performance Spread 20-day Performance Spread

Less Sophisticated Clients More Sophisticated Clients

Ba
si

s 
Po

in
ts

Notes: this figure plots the difference between the estimated η3 and η1 coefficients from regression 4.8 using performance
at the 10- and 20-day horizon measured in basis points. We include as control the natural logarithm of the number of daily
transactions (“Intensity”). To reduce noise, we winsorise the sample at the 1%-level and use client-day observations. The
90% confidence interval based on robust standard errors, using two-way clustering at the client and day level.

that the construction of this indicator variable primarily exploits within-client variation

(in market l), i.e. we compare the performance of the same client across different trading

days instead of comparing clients who systematically trade in different quantities. The

term Intensityi,l,t in 4.8 is the log of total number of transactions of client i on day t,

which aims to control for the activity of clients (O’Hara, Wang, and Zhou, 2018).

Figure 4 shows the difference between the estimated values for η1 and η3 for horizons

T = {10, 20} trading days, separately for more sophisticated clients (red bars) and less

sophisticated clients (blue bars). The results show that, for the set of more sophisticated

clients, days with large trade sizes are associated with significantly higher trading per-

formance over the 10-20 day horizon, compared to days when the same client trades in the

lower size tertile. In contrast, we do not observe such a size effect for less sophisticated

clients.

These results can also be used to discuss alternative explanations behind the observed

size penalty. For example, one may argue that the size penalty is due to differences in

opinions, instead of information asymmetry.18 According to this alternative explanation,
18See Aumann (1976) and the subsequent literature; Carlin, Longstaff, and Matoba (2014) presents a

recent contribution.
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a larger trade size may reflect a greater disagreement between the client and the dealer.

For example, if the client buys a larger amount from a dealer, then this could indicate that

the client is more optimistic than the dealer, leading to the client buying at a higher price.

If more sophisticated clients were more likely to trade on opinions (while less sophisticated

clients were more likely to trade for hedging purposes), this could explain the differential

degree of size penalty across client types. However, this (non-informational) explanation

would be at odds with the results presented in this section, i.e. disagreements alone may

not explain why larger trades better predict future yields changes than smaller trades,

and why this difference would be more pronounced among more sophisticated clients.

4.5 Robustness and Extensions

4.5.1 Client Type and Trade Size

A main source of variation in our empirical design is client type. A key assumption under-

lying the information-based interpretation of our regressions is that more sophisticated

clients are different from less sophisticated clients because they are more likely to trade

on information, and not because, say, they systematically trade in different quantities.

To test for this, we estimate the following trade-level regression:

Sizev = δ ×DSoph
i + FEs+ εv, (4.9)

where DSoph
i is a dummy variable taking value 1 is client i is an asset manager or a hedge

fund and 0 otherwise.

Table A.11 in Appendix shows the results for the estimated values for δ using dif-

ferent combinations of fixed effects. The effects are statistically insignificant. The point

estimates suggest that, if anything, more sophisticated clients seem to trade in smaller

sizes. This rejects the possibility that heterogeneity in client types is simply picking up

that more sophisticated clients trade in larger sizes, which could generate larger inventory

costs for dealers and thereby larger size penalty.
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4.5.2 Non-linearities

Moreover, we check for non-linearities and non-monotonicity in the size penalty. To that

end, we re-estimate a variant of Table 2 by replacing size as a continuous variable with

four dummy variables indicating which size quartile a given trade is located in, using

the within-size variation of a client. As shown in Table A.12 in Appendix, trading costs

are the largest on the trades that are in top quartile of the size distribution, using the

within-client variation of trade sizes. The results continue to be more statistically and

economically significant among more sophisticated clients compared to less sophisticated

clients.

4.5.3 Agency Trades

As an additional test, we explore variation in trade-type to further investigate the possible

information-based mechanism underlying the size penalty. In our baseline sample, about

20% of client-dealer trades are labelled as agency trades, with these trades structured as

follows: trader B trades, on behalf of trader A, with trader C. In our sample, trader C

is always a dealer; trader B (the agent) can either be a dealer or a client; and trader A

is always a client that can be more or less sophisticated.19 We now test whether a more

sophisticated client A faces a differential size penalty when trading directly with dealers

(non-agency trade) compared to trading with dealers via an agent (agency trade). The

hypothesis is that if information-based mechanisms are at play, then the size penalty of

the sophisticated client would be smaller on agency trades, because the given client could

conceal her identity through agency.20

Table A.13 in the Appendix shows the results for the group of more sophisticated

clients from a variant of regression 4.4, where we interact size with a dummy variable,

indicating whether the given trade is an agency trade or not. We find that the size penalty

is concentrated in non-agency trades, consistent with an information-based explanation.
19Our baseline sample therefore excludes the type of agency trades (typically studied in the literature)

whereby (using the example above) traders A and C would be clients and trader B would be a dealer.
20See Smith, Turnbull, and White (2001) and the related literature.
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5 COVID-19

In this last empirical section of our paper, we revisit the cost-size relation during the

COVID-19 episode in the UK. The spread of the COVID-19 pandemic in early 2020

presented a major shock to the global financial system, including bond markets. Invest-

igating the behaviour of the cost-size relation during this informationally intensive period

provides an ideal opportunity to perform an out-of-sample robustness test of our baseline

results. This is because more recent sample period (2018-2020) requires the use of a

different dataset compared to our baseline sample (2011-2017).

In addition, a better understanding of the functioning of government bond markets

after COVID-19 is interesting on its own right and it is becoming ever more important

for policy design (Duffie 2020; Hauser 2020). While a growing literature has analysed

the unfolding of the crisis in bond markets and the effect of subsequent central bank

interventions, the majority of this literature focused on corporate bond markets in the

US (Falato, Goldstein, and Hortaçsu 2020; Ma, Xiao, and Zeng 2020; Kargar, Lester,

Lindsay, Liu, Weill, and Zuniga 2020; Haddad, Moreira, and Muir 2020; O’Hara and

Zhou 2021 amongst others) and the UK (Czech and Pinter 2020), and there has been

little transaction-level evidence on the effect of COVID-19 in government bond markets.21

To carry out the analysis, we employ the MiFID II bond transaction data, which

covers the period from January 2018 to July 2020.22 Similar to the ZEN data, the MiFID

II data provide detailed information (including counterparty identifiers) on transactions

in the UK corporate bond market and give us almost full coverage of the client trade

universe.

The following analysis serves two purposes. First, we check whether size penalty

continues to hold in a different and more recent sample, and whether we continue to find

a more pronounced effect for more sophisticated clients, thereby providing additional
21For a theoretical analysis of COVID-19 crisis in US government bond markets, see He, Nagel, and

Song (2021).
22The MiFID II reporting requirements became applicable on 3 January 2018. While ZEN is generally

regarded as the predecessor of the MiFID II database, there are significant differences in the reporting
requirements that prohibit a consistent merge of both datasets.
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Table 5: Trading Costs and Trade Size: During and Outside COVID-19

(1) (2) (3) (4)
Less Sophisticated Clients

Trade Size#OutsideCOVID-19 0.261*** 0.257*** 0.251*** 0.214***
(4.20) (4.43) (4.26) (3.56)

Trade Size#DuringCOVID-19 0.404* 0.301 0.274 0.273
(1.81) (1.62) (1.43) (1.57)

p-values, eq. of coeff. 0.525 0.808 0.903 0.737
More Sophisticated Clients

Trade Size#OutsideCOVID-19 0.318*** 0.294*** 0.311*** 0.329***
(6.92) (6.81) (7.80) (8.45)

Trade Size#DuringCOVID-19 0.581** 0.611*** 0.635*** 0.652***
(2.22) (2.86) (3.12) (3.40)

p-values, eq. of coeff. 0.271 0.121 0.096 0.080
N 1143362 1142116 1141464 1114966
R2 0.146 0.194 0.203 0.262
Day*Bond FE Yes Yes Yes Yes
Dealer FE Yes No No No
Month*Client FE Yes Yes Yes No
Day*Dealer FE No Yes Yes Yes
Client*Dealer FE No No Yes No
Client*Dealer*Month FE No No No Yes

Notes: this table regresses transaction performance measure on trade size and various fixed effects. The performance
measures are in bp-points. To reduce noise, we winsorise the sample at the 1%-level. T-statistics in parentheses are based
on robust standard errors, using two-way clustering at the day and client level. Asterisks denote significance levels (*
p<0.1, ** p<0.05, *** p<0.01). The p-values correspond to the testing for the equality of coefficients, within a given client
type.

tests for Hypotheses 2-4 of our paper. Second, we explore how the size penalty might

have changed during the unprecedented COVID-19 crisis period. To this end, we sort

all the trades into two groups c = {c1, c2} based on whether the trade occurred during

March 2020 or outside this month. We then estimate the following regression:

Costv =
2∑

w=1

2∑
z=1

ηw,z × 1t[t ∈ cz, i ∈ gw]× Sizev + FE + εv, (5.1)

where 1t[t ∈ cz, i ∈ gw] is an indicator function equal to 1 when a trading day t belongs

to group z and client i belongs to group w, and is equal to 0 otherwise; the term FE

includes various combinations of fixed effects discussed above.

Table 5 shows the results from estimating regression 5.1, first for the group of less

sophisticated (upper panel), and then for more sophisticated clients (lower panel). We

continue to find that more sophisticated clients face a larger size penalty than less soph-
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isticated clients during normal times, with the difference being about 0.1bp (0.214 vs.

0.329) according to the most conservative specification in column (4). This difference

is similar to our baseline based on the Zen data for 2011-2017. Importantly, we find

that the size penalty increases considerably during the COVID crisis and this increase is

more pronounced for more sophisticated clients (0.652) compared to the other client type

(0.273) – consistent with Hypothesis 4 and Table 3 above.

Table 6: Trading Costs and Trade Size: During and Outside COVID-19

(1) (2) (3) (4)
More Sophisticated Clients Under More Selling Pressure

Trade Size#OutsideCOVID-19 0.320*** 0.296*** 0.321*** 0.339***
(5.59) (5.84) (7.03) (7.47)

Trade Size#DuringCOVID-19 0.605** 0.637*** 0.647*** 0.644***
(2.23) (2.99) (3.15) (3.05)

p-values, eq. of coeff. 0.226 0.098 0.098 0.138
N 483475 482910 482819 476606
R2 0.153 0.212 0.217 0.261

More Sophisticated Clients Under Less Selling Pressure
Trade Size#OutsideCOVID-19 0.348*** 0.314*** 0.313*** 0.311***

(6.66) (5.73) (5.89) (5.93)
Trade Size#DuringCOVID-19 0.576 0.475 0.511* 0.664***

(1.53) (1.58) (1.80) (3.11)
p-values, eq. of coeff. 0.535 0.602 0.494 0.114
N 206443 205745 205629 200467
R2 0.241 0.325 0.333 0.393
Day*Bond FE Yes Yes Yes Yes
Dealer FE Yes No No No
Month*Client FE Yes Yes Yes No
Day*Dealer FE No Yes Yes Yes
Client*Dealer FE No No Yes No
Client*Dealer*Month FE No No No Yes

Notes: this table regresses transaction performance measure on trade size and various fixed effects. The performance
measures are in bp-points. To reduce noise, we winsorise the sample at the 1%-level. T-statistics in parentheses are based
on robust standard errors, using two-way clustering at the day and client level. Asterisks denote significance levels (*
p<0.1, ** p<0.05, *** p<0.01). The p-values correspond to the testing for the equality of coefficients, within a given client
type.

We acknowledge however that these results could be driven by the fact that our group

of more sophisticated clients mainly consists of asset managers who could have been

under severe selling pressure as documented by the recent literature.23 Therefore, we try
23See Falato, Goldstein, and Hortaçsu (2020); Ma, Xiao, and Zeng (2020); Kargar, Lester, Lindsay,

Liu, Weill, and Zuniga (2020); Haddad, Moreira, and Muir (2020); O’Hara and Zhou (2021) amongst
others.
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to control for the possible contribution of selling pressure to the increase in the size penalty

of more sophisticated clients during the COVID-19 crisis by adding an additional layer of

differences to our research design. Specifically, we sort our group of more sophisticated

clients into two subgroups based on the cumulative signed order flow in March 2020, and

we then estimate our cost-size regression separately for these two subgroups.

Table 6 shows the results. Based on the point estimates, we find that while the

increase in size-penalty was large for clients under selling pressure (0.664 vs. 0.339),

there is still a similarly larger increase in the size penalty for clients who were under less

selling pressure (0.664 vs. 0.311).

Note also that the regressions include client-dealer-month fixed effects that aim to

control for relationship effects during turbulent times (Di Maggio, Franzoni, Kermani,

and Sommavilla, 2019). In addition the regressions include dealer-day fixed effects in

order to control for time-variation in the tightness of balance sheet constraints of dealers

– an important feature of this period (Duffie, 2020).

6 A Model of Bilateral Trading

In this section, we develop a simple bilateral trading model, featuring both information

asymmetry and heterogeneous bargaining power, that jointly predicts within-client size

penalty and across-client size discount. Each of the two channels can be conveniently

shut down, in which case the model reduces to a standard model with the remaining

feature explaining either size penalty or size discount.

A client seeks to trade a risky asset with a dealer. The value of the asset, v, has an

unconditional distribution N
(
0, 1

τv

)
. The client observes a noisy signal, s = v+ ε, before

the trade. The noise ε is normally distributed, N
(
0, 1

τε

)
. The client has an initial asset

position of x, following a normal distribution N
(
0, 1

τx

)
. The dealer does not observe

the client’s signal, s, or her initial position, x. The random variables v, ε and x are

jointly independent. The client has a CARA utility function with risk aversion γ. The

initial risky asset position x gives the client a liquidity motive to trade, while the signal
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s gives her an informational motive. The client’s preference and information follow the

standard CARA-normal setting with strategic traders as in Kyle (1985) and risk aversion

as in Subrahmanyam (1991), with the addition of a liquidity component, x, added to her

trading motive. The dealer is risk neutral.

A trade is conducted as follows. First, the client requests to buy q unit of the asset

from the dealer (q < 0 means that the client requests to sell). Then, to negotiate a price,

the client and the dealer engage in an infinite-horizon bargaining game with discount

rate δ and a random sequence of who makes the offers. In the bargaining game, the

dealer moves first to offer a price in response to the client’s request. The bargaining

game concludes if the client accepts the price offer, and otherwise continues to the next

stage. In each subsequent stage, the client is selected to offer a price with probability η

to the dealer, and the other way round with probability 1− η as in Hoel (1987), which is

adapted from the alternating offer game of Rubinstein (1982).

We consider a Perfect Bayesian Equilibrium (PBE) in which the agreed-upon price p

is linear in size, p(q) = a+ λq, and the first price offer is immediately accepted. Such an

equilibrium is said to be a linear-pricing PBE without bargaining delay. The following

theorem summarises the equilibrium of the model.

Theorem 1. When
(
2 η

1+δ − 1
)
γ2τ 2

v − τετx (τv + τε) > 0, there exists a unique linear-

pricing PBE without bargaining delay. On the equilibrium path, the client submits an

order q∗η(s, x), the dealer offers p∗η(q) = λ∗ηq, and the client immediately accepts the price

offer, where

λ∗η = γ

2

(
1 + γ2τ2

v

τετx(τv+τε)

)
+ η

1+δ

(
1− γ2τ2

v

τετx(τv+τε)

)
(
2 η

1+δ − 1
)
γ2τ2

v

τετx
− (τv + τε)

q∗η(s, x) = γ

2λ∗ (τv + τε) + γ

(
τε
γ
s− x

)
.

We establish Theorem 1 by solving for a linear-pricing PBE without bargaining delay,

with the key steps detailed in the following proof.

Proof. Given each signal s and initial position x, the client’s expected gain from trading
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q units of the asset is:

τε
τε + τv

s(q + x)− pq − γ

2
1

τε + τv
(q + x)2 −

[
τε

τε + τv
sx− γ

2
1

τε + τv
x2
]
≡ (p0(q, s, x)− p)q,

where p0(q, s, x) is the client’s reservation price:

p0(q, s, x) = γ
1

τε + τv

(
τε
γ
s− x

)
− γ

2
1

τε + τv
q. (6.1)

Anticipating an equilibrium price p(q) without bargaining delay, the client chooses size

q to maximize her expected trading gain. Her first order condition is p0(q, s, x)− p(q) +(
∂p0(q,s,x)

∂q
− ∂p(q)

∂q

)
q = 0 which, together with a linear equilibrium price function p(q) =

a+ λq, can be used to obtained the client’s optimal demand q:

q = γ

2λ (τε + τv) + γ

(
τε
γ
s− x

)
− τε + τv

2λ (τε + τv) + γ
a. (6.2)

With this optimal choice q, the client’s expected gain (p0(q, s, x)− p)q from trading can

be written as:

(p0(q, s, x)− p)q =
(

2λ (τε + τv) + γ

τε + τv
− γ

2
1

τε + τv
+ λ

)
q2, (6.3)

which shows that the client’s expected gain from trading depends on her signal s and

initial endowment x only through her requested size q. This equilibrium property renders

the ensuing bargaining game one with complete information. Therefore, the solution of

Hoel (1987) applies, whereby the dealer offers price p (q) which is immediately accepted

by the client:

p (q) = η

1 + δ
p1(q) +

(
1− η

1 + δ

)
p0(q), (6.4)

where p1 (q) is given by:

p1(q) = E[v|q] = 2λ (τv + τε) + γ

τv + τε + γ2τ2
v

τετx

q + τv + τε

τv + τε + γ2τ2
v

τετx

a. (6.5)
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In 6.5, p1 (q) can be viewed as the competitive price, which gives the dealer zero expected

profit.24 In equilibrium, the dealer’s price offer is anticipated by the client. Therefore,

substituting 6.1 and 6.5 into 6.4, and matching coefficients yields a = 0, while rearranging

gives the solution for λ:

λ = γ

2

(
1 + γ2τ2

v

τετx(τv+τε)

)
+ η

1+δ

(
1− γ2τ2

v

τετx(τv+τε)

)
(
2 η

1+δ − 1
)
γ2τ2

v

τετx
− (τv + τε)

. (6.6)

To verify that the size choice q in 6.2 given by the client’s FOC indeed maximizes the

client’s expected gain, we check the client’s second order condition 2λ (τv + τε) + γ > 0,

which is equivalent to [2η/ (1 + δ)− 1] γ2τ 2
v − τετx (τv + τε) > 0.

The key property allowing for a tractable bargaining solution is that the client’s

expected gain from trading 6.3 (and thereby the client’s reservation price p0) does not

directly depend on s and x but only through the requested size q. Even though the

client’s liquidity motive x and informational motive s are not uniquely determined by

her requested size q, the aggregate motive is. This nice equilibrium property renders the

ensuing bargaining game one with complete information, so that the solution of Hoel

(1987) applies.

The model simultaneously explains within-client size penalty and across-client size

discount:

Proposition 2. (Within-client size penalty) In the linear-pricing PBE without delay, the

trading cost |p(q)| = λ|q| of a given client with bargaining power η is linearly increasing

with her requested size |q|.

Next, we compare two clients with heterogeneous bargaining powers η < η′ to generate

size discount.

Proposition 3. (Across-client size discount) In the linear-pricing PBE without delay, a

client with higher bargaining power η has a larger average trade size E|q|, while facing a

lower average trading cost E|p|.
24To derive the conditional expectation E[v|q], we use the projection theorem. For that, note that

the covariance between the asset value and trade size is Cov [v, q] = (τε/τv) / [2λ (τε + τv) + γ], and the
variance of the trade size is V ar [q] = [γ/ (2λ (τε + τv) + γ)]2

[
(τε/γ)2

/τε + (τε/γ)2
/τv + 1/τx

]
.
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The above result follows immediately from the fact the average trade size E|q| is

decreasing in λ(η), while the average trading cost E|p| is increasing in λ(η). On the other

hand, λ(η) is decreasing in bargaining power η.

To highlight the novel features of the model, we perform simple comparative statics

to explore the relationship between bargaining power and the size penalty as shown in

Figure 5.

Figure 5: Bargaining Power, Signal Precision and Size Penalty
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Notes: this figure plots the value of λ (computed by 6.6) for different values of τε = [0.01 : 0.01 : 0.99] and of η =
{0.7, 0.75, 0.8}. The rest of the parameters are γ = 0.2, τv = 2, τx = 0.1, δ = 0.01 so that the second order condition,
[2η/ (1 + δ)− 1] γ2τ2

v − τετx (τv + τε) > 0, is always satisfied.

The Figure plots the values of λ (vertical axis), as computed by 6.6, for different

values of τε (horizontal axis). We trace out the relationship for three different values

η = {0.7, 0.75, 0.8}, as shown by the dashed, dotted and solid lines, respectively. All

three lines are monotonically increasing: the larger the precision of the signal (τε) the

larger the size penalty becomes. The intuition is similar to Kyle (1985): the more precise

the informed client’s signal, the more informative her trade becomes, which makes the

dealer revise the price more aggressively when considering trading a given quantity during

the bargaining process. Moreover, one possible way to connect our client-type variation

in the data with the model is to regard more sophisticated clients as having higher values

of τε, so that this simple theoretical framework could rationalise why more sophisticated

clients face a higher size penalty in the data than less sophisticated clients.
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Furthermore, the τε-λ relation largely depends on the client’s bargaining power, η, as

shown by the different lines in Figure 5: lowering η is associated with an upward shift in

the curve, which means that the size penalty becomes stronger as the client’s bargaining

power becomes weaker. In addition, we also find evidence for increased convexity in the τε-

λ relation as the client’s bargaining power decreases, which means that the size penalty

becomes increasingly sensitive to the precision of private information. This highlights

some of the rich interactions between informational and trading frictions that this simple

model can generate, and which goes beyond the regression design of our empirical model.

Our companion paper (Pinter, Wang, and Zou, 2021) presents a structural estimation

of a version of this model (in the spirit of Odders-White and Ready (2008)) in order to

explore the model’s predictions further.

7 Conclusion

To conclude, our paper revisited the relation between trade size and trading costs – one

of the main questions in the literature on financial markets. In our empirical design, we

were able to observe clients’ identities as well as their simultaneous trading activities in

government and corporate bond markets. These unique features of our empirical design

allowed us to reconcile some of the tension in the vast literature on the size-cost relation.

Our results reveal that controlling for traders’ identity is crucial for understanding the

drivers of trading costs in non-anonymous over-the-counter markets. In addition, com-

bining this client-level variation with variations in client-type, macroeconomic news and

bond markets highlights the different forces that drive the size-cost relation.
There are at least two interesting avenues for future research. First, analysing these

competing forces in a more structural framework is necessary to provide a sharper char-
acterisation of the drivers of the size-cost relation and to quantify the relative importance
of the different channels. The theoretical model presented in this paper could be regarded
as a first step into that direction. In ongoing work (Pinter, Wang, and Zou, 2021) we are
attempting to modify this model so that structural estimation on our trade-level data
would be possible. Second, one could consider the aggregate implications of our empir-
ical analysis. For example, one could estimate how time-series variation in either the
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size discount or the size penalty is related to variation in aggregate bid-ask spreads and
yields in government and corporate bond markets. This could tighten the link between
our analysis and the literature on the term structure of interest rates.
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Online Appendix

A Additional Tables

Table A.1: Summary Statistics on Trade Size

(1) (2) (3) (4) (5) (6)
N Mean p10 p50 p90 sd

Trade Size (£s)
Government Bonds
All Clients 1274548 7825263 12856 850000 2.07e+07 4.56e+07
Less Sophisticated Clients 601157 8569644 15000 1000000 2.50e+07 4.58e+07
More Sophisticated Clients 673391 7160731 11000 600000 1.86e+07 4.55e+07
Corporate Bonds
All Clients 1227954 1228126 9000 200000 2850000 6111960
Less Sophisticated Clients 561528 1283479 9000 100000 2600000 7350338
More Sophisticated Clients 666426 1181485 9000 263000 3000000 4827430

Notes: This table reports summary statistics for our baseline sample, covering the period from August 2011 to December
2017. Trade size is measured as the nominal size of the transaction in £s. The summary statistics is split based on client
types (more sophisticated = asset managers + hedge funds; and less sophisticated = pension funds, insurance companies,
foreign central banks, commercial banks, other non-financials) as well as markets (government bond vs corporate bonds).
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Table A.2: Trading Costs and Trade Size in Government Bond Markets: Alternative Cost
Measures

(1) (2) (3) (4) (5)
Alternative Cost Measure I: Using Day-Bond-Dealer Average for P

Trade Size -0.103*** 0.061** 0.068*** 0.077*** 0.085***
(-3.70) (2.35) (2.71) (2.99) (3.20)

N 973952 973948 973948 969689 968913
R2 0.061 0.065 0.065 0.126 0.132
Alternative Cost Measure II: Using Day-Bond-Within Day Average for P

Trade Size -0.180*** 0.097*** 0.115*** 0.131*** 0.149***
(-3.80) (3.75) (5.14) (6.04) (7.33)

N 1261480 1261474 1261474 1256983 1256358
R2 0.052 0.063 0.064 0.133 0.139
Alternative Cost Measure III: Using Day-Bond-Sell/Buy Average for P

Trade Size -0.220*** 0.100*** 0.119*** 0.132*** 0.156***
(-4.09) (3.00) (3.96) (4.21) (5.16)

N 1271266 1271260 1271260 1266824 1266209
R2 0.003 0.010 0.011 0.087 0.093

Alternative Cost Measure IV: Using Average IDB prices for P
Trade Size -0.184*** 0.151*** 0.173*** 0.185*** 0.212***

(-3.41) (4.47) (5.58) (5.91) (6.91)
N 1232310 1232304 1232304 1227792 1227163
R2 0.060 0.066 0.066 0.138 0.143
Day*Bond FE Yes Yes Yes Yes Yes
Client FE No Yes Yes No No
Dealer FE No No Yes No No
Day*Dealer FE No No No Yes Yes
Month*Client FE No No No Yes Yes
Client*Dealer FE No No No No Yes

Notes: this table regresses transaction performance measure on trade size and various fixed effects. The four different
performance measures are in bp-points. The first measure computes P in 4.1 as the average transaction price in bond
k, trading day t and dealer j. The second measure computes P in 4.1 as the average transaction price in bond k, in a
given part of the trading day t. Using the time stamp for each trade, we divide trades into three groups, depending on
whether the transaction occurred (i) before 11am, (ii) during 11am-3pm, or (iii) after 3pm. The third measure computes
P in 4.1 as the average transaction price in bond k, trading day t, separately for buy and sell trades. The fourth measure
computes P in 4.1 as the average transaction price in bond k, trading day t, using only trades on the inter-dealer market.
To reduce noise, we winsorise the sample at the 1%-level. T-statistics in parentheses are based on robust standard errors,
using two-way clustering at the day and client level. Asterisks denote significance levels (* p<0.1, ** p<0.05, *** p<0.01).
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Table A.3: Trading Costs and Trade Size in Government Bond Markets Using Weighted
Regressions: Alternative Cost Measures

(1) (2) (3) (4) (5)
Baseline Cost Measure

Trade Size -0.321*** 0.085** 0.119*** 0.117*** 0.146***
(-9.27) (2.26) (3.30) (3.90) (4.76)

N 1274295 1274289 1274289 1269855 1269238
R2 0.321 0.319 0.319 0.458 0.468

Alternative Cost Measure I: Using Day-Bond-Dealer Average for P
Trade Size -0.127*** 0.091*** 0.102*** 0.076*** 0.090***

(-5.47) (2.97) (3.34) (2.70) (3.10)
N 973952 973948 973948 969689 968913
R2 0.313 0.303 0.303 0.443 0.456
Alternative Cost Measure II: Using Day-Bond-Within Day Average for P

Trade Size -0.253*** 0.065** 0.097*** 0.110*** 0.136***
(-8.64) (2.25) (3.49) (4.37) (5.15)

N 1261480 1261474 1261474 1256983 1256358
R2 0.319 0.321 0.322 0.459 0.469
Alternative Cost Measure III: Using Day-Bond-Sell/Buy Average for P

Trade Size -0.324*** 0.084** 0.118*** 0.115*** 0.144***
(-9.35) (2.23) (3.27) (3.83) (4.72)

N 1271266 1271260 1271260 1266824 1266209
R2 0.278 0.276 0.276 0.424 0.435

Alternative Cost Measure IV: Using Average IDB prices for P
Trade Size -0.309*** 0.122*** 0.156*** 0.153*** 0.188***

(-8.60) (3.04) (4.02) (4.68) (5.63)
N 1232310 1232304 1232304 1227792 1227163
R2 0.317 0.319 0.320 0.457 0.467
Day*Bond FE Yes Yes Yes Yes Yes
Client FE No Yes Yes No No
Dealer FE No No Yes No No
Day*Dealer FE No No No Yes Yes
Month*Client FE No No No Yes Yes
Client*Dealer FE No No No No Yes

Notes: this table regresses transaction performance measure on trade size and various fixed effects. Each observation is
weighted by the inverse of the total number of transactions of the given client. The four different performance measures
are in bp-points. The first measure computes P in 4.1 as the average transaction price in bond k, trading day t and dealer
j. The second measure computes P in 4.1 as the average transaction price in bond k, in a given part of the trading day t.
Using the time stamp for each trade, we divide trades into three groups, depending on whether the transaction occurred
(i) before 11am, (ii) during 11am-3pm, or (iii) after 3pm. The third measure computes P in 4.1 as the average transaction
price in bond k, trading day t, separately for buy and sell trades. The fourth measure computes P in 4.1 as the average
transaction price in bond k, trading day t, using only trades on the inter-dealer market. To reduce noise, we winsorise the
sample at the 1%-level. T-statistics in parentheses are based on robust standard errors, using two-way clustering at the
day and client level. Asterisks denote significance levels (* p<0.1, ** p<0.05, *** p<0.01).
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Table A.4: Trading Costs and Trade Size in Government Bond Markets: More Sophist-
icated Clients vs Less Sophisticated Clients, Using Alternative Cost Measures

(1) (2) (3) (4) (5)
Alternative Cost Measure I: Using Day-Bond-Dealer Average for P

Trade Size#LessSophisticated -0.132*** 0.009 0.016 0.026 0.037
(-3.98) (0.21) (0.37) (0.63) (0.86)

Trade Size#MoreSophisticated -0.073* 0.108*** 0.118*** 0.125*** 0.130***
(-1.89) (4.25) (4.76) (4.59) (4.68)

p-values, eq. of coeff. 0.243 0.048 0.037 0.043 0.070
N 965894 965890 965890 958302 957486
R2 0.109 0.112 0.112 0.195 0.201

Alternative Cost Measure II: Using Day-Bond-Within Day Average for P
Trade Size#LessSophisticated -0.188*** 0.052 0.064* 0.088** 0.111***

(-4.10) (1.35) (1.75) (2.55) (3.10)
Trade Size#MoreSophisticated -0.171** 0.130*** 0.155*** 0.168*** 0.178***

(-2.42) (4.43) (6.86) (8.12) (8.98)
p-values, eq. of coeff. 0.840 0.105 0.032 0.045 0.097
N 1257860 1257854 1257854 1251253 1250635
R2 0.096 0.107 0.108 0.198 0.204

Alternative Cost Measure III: Using Day-Bond-Sell/Buy Average for P
Trade Size#LessSophisticated -0.218*** 0.057 0.067 0.079* 0.104**

(-4.14) (1.20) (1.44) (1.75) (2.24)
Trade Size#MoreSophisticated -0.218*** 0.137*** 0.166*** 0.181*** 0.195***

(-2.73) (3.29) (4.81) (5.09) (5.65)
p-values, eq. of coeff. 0.997 0.203 0.085 0.072 0.115
N 1267885 1267879 1267879 1261353 1260735
R2 0.051 0.058 0.059 0.160 0.165

Alternative Cost Measure IV: Using Average IDB prices for P
Trade Size#LessSophisticated -0.191*** 0.111** 0.120** 0.131*** 0.159***

(-3.57) (2.15) (2.39) (2.60) (3.01)
Trade Size#MoreSophisticated -0.182** 0.175*** 0.209*** 0.226*** 0.244***

(-2.24) (4.37) (6.19) (6.99) (7.74)
p-values, eq. of coeff. 0.924 0.322 0.141 0.106 0.167
N 1230452 1230446 1230446 1223760 1223136
R2 0.107 0.112 0.112 0.208 0.212
Day*Bond*ClientType FE Yes Yes Yes Yes Yes
Client FE No Yes Yes No No
Dealer*ClientType FE No No Yes No No
Day*Dealer*ClientType FE No No No Yes Yes
Month*Client FE No No No Yes Yes
Client*Dealer FE No No No No Yes

Notes: this table regresses transaction performance measure on trade size interacted with client type dummies as well as
various fixed effects (regression 4.4). The four different performance measures are in bp-points. The first measure computes
P in 4.1 as the average transaction price in bond k, trading day t and dealer j. The second measure computes P in 4.1
as the average transaction price in bond k, in a given part of the trading day t. Using the time stamp for each trade, we
divide trades into three groups, depending on whether the transaction occurred (i) before 11am, (ii) during 11am-3pm, or
(iii) after 3pm. The third measure computes P in 4.1 as the average transaction price in bond k, trading day t, separately
for buy and sell trades. The fourth measure computes P in 4.1 as the average transaction price in bond k, trading day
t, using only trades on the inter-dealer market. To reduce noise, we winsorise the sample at the 1%-level. T-statistics in
parentheses are based on robust standard errors, using two-way clustering at the day and client level. Asterisks denote
significance levels (* p<0.1, ** p<0.05, *** p<0.01). The p-values correspond to the testing for the equality of coefficients.
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Table A.5: Trading Costs and Trade Size in Government Bond Markets: Big vs Small
Macroeconomic News, Using Alternative Cost Measures

(1) (2) (3) (4) (5)
Alternative Cost Measure I: Using Day-Bond-Dealer Average for P

Less Sophisticated Clients
Trade Size#SmallNews 0.005 0.023 0.019 0.035 0.044

(0.12) (0.52) (0.45) (0.78) (0.95)
Trade Size#LargeNews 0.018 0.024 0.010 0.015 0.028

(0.39) (0.54) (0.23) (0.33) (0.60)
p-values, eq. of coeff. 0.610 0.960 0.723 0.476 0.565
More Sophisticated Clients
Trade Size#SmallNews 0.114*** 0.114*** 0.110*** 0.113*** 0.122***

(3.62) (3.62) (3.49) (3.48) (3.76)
Trade Size#LargeNews 0.127*** 0.125*** 0.139*** 0.133*** 0.141***

(4.70) (4.42) (4.62) (4.07) (4.15)
p-values, eq. of coeff. 0.591 0.631 0.343 0.479 0.498
N 901677 897696 898657 894597 893772
R2 0.112 0.142 0.164 0.194 0.199

Alternative Cost Measure II: Using Day-Bond-Within Day Average for P
Less Sophisticated Clients
Trade Size#SmallNews 0.065 0.088** 0.072** 0.097*** 0.120***

(1.64) (2.14) (2.00) (2.60) (3.11)
Trade Size#LargeNews 0.065* 0.080** 0.065* 0.084** 0.110***

(1.81) (2.15) (1.84) (2.36) (2.93)
p-values, eq. of coeff. 0.987 0.654 0.733 0.487 0.600
More Sophisticated Clients
Trade Size#SmallNews 0.147*** 0.164*** 0.147*** 0.161*** 0.173***

(5.51) (6.46) (5.70) (6.81) (7.64)
Trade Size#LargeNews 0.163*** 0.173*** 0.164*** 0.170*** 0.181***

(6.12) (6.52) (6.35) (6.91) (7.53)
p-values, eq. of coeff. 0.422 0.627 0.386 0.633 0.649
N 1170316 1166823 1167791 1164241 1163626
R2 0.107 0.138 0.169 0.196 0.201
Day*Bond*ClientType FE Yes Yes Yes Yes Yes
Client FE Yes No No No No
Dealer*ClientType FE Yes Yes Yes No No
Day*Dealer*ClientType FE No No Yes Yes Yes
Month*Client FE No Yes No Yes Yes
Client*Dealer FE No No No No Yes

Notes: this table regresses transaction performance measure on trade size interacted with client type and macroeconomic
surprise dummies as well as various fixed effects (regression 4.5). The four different performance measures are in bp-points.
The first measure computes P in 4.1 as the average transaction price in bond k, trading day t and dealer j. The second
measure computes P in 4.1 as the average transaction price in bond k, in a given part of the trading day t. Using the time
stamp for each trade, we divide trades into three groups, depending on whether the transaction occurred (i) before 11am,
(ii) during 11am-3pm, or (iii) after 3pm. The third measure computes P in 4.1 as the average transaction price in bond k,
trading day t, separately for buy and sell trades. The fourth measure computes P in 4.1 as the average transaction price
in bond k, trading day t, using only trades on the inter-dealer market. To reduce noise, we winsorise the sample at the
1%-level. T-statistics in parentheses are based on robust standard errors, using two-way clustering at the day and client
level. Asterisks denote significance levels (* p<0.1, ** p<0.05, *** p<0.01). The p-values correspond to the testing for the
equality of coefficients.
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Table A.6: Trading Costs and Trade Size in Government Bond Markets: Big vs Small
Macroeconomic News, Using Alternative Cost Measures

(1) (2) (3) (4) (5)
Alternative Cost Measure III: Using Day-Bond-Sell/Buy Average for P

Less Sophisticated Clients
Trade Size#SmallNews 0.062 0.081 0.062 0.082* 0.104**

(1.26) (1.57) (1.36) (1.71) (2.10)
Trade Size#LargeNews 0.067 0.068 0.064 0.073 0.105**

(1.40) (1.36) (1.35) (1.52) (2.06)
p-values, eq. of coeff. 0.876 0.634 0.936 0.788 0.987
More Sophisticated Clients
Trade Size#SmallNews 0.145*** 0.156*** 0.138*** 0.151*** 0.168***

(3.91) (3.96) (3.44) (3.57) (4.08)
Trade Size#LargeNews 0.194*** 0.206*** 0.201*** 0.205*** 0.221***

(4.56) (4.81) (4.80) (4.84) (5.23)
p-values, eq. of coeff. 0.112 0.099 0.082 0.130 0.134
N 1179331 1175860 1176855 1173330 1172712
R2 0.058 0.090 0.129 0.157 0.162

Alternative Cost Measure IV: Using Average IDB prices for P
Less Sophisticated Clients
Trade Size#SmallNews 0.125** 0.147** 0.126** 0.148*** 0.175***

(2.25) (2.52) (2.43) (2.73) (3.08)
Trade Size#LargeNews 0.118** 0.117** 0.113** 0.119** 0.153***

(2.33) (2.19) (2.24) (2.31) (2.80)
p-values, eq. of coeff. 0.803 0.343 0.651 0.351 0.508
More Sophisticated Clients
Trade Size#SmallNews 0.166*** 0.182*** 0.163*** 0.177*** 0.197***

(4.16) (4.33) (4.10) (4.31) (4.86)
Trade Size#LargeNews 0.254*** 0.267*** 0.253*** 0.260*** 0.279***

(5.95) (6.10) (6.37) (6.45) (7.00)
p-values, eq. of coeff. 0.017 0.017 0.033 0.049 0.052
N 1146316 1142804 1143736 1140154 1139534
R2 0.112 0.141 0.179 0.205 0.210
Day*Bond*ClientType FE Yes Yes Yes Yes Yes
Client FE Yes No No No No
Dealer*ClientType FE Yes Yes Yes No No
Day*Dealer*ClientType FE No No Yes Yes Yes
Month*Client FE No Yes No Yes Yes
Client*Dealer FE No No No No Yes

Notes: this table regresses transaction performance measure on trade size interacted with client type and macroeconomic
surprise dummies as well as various fixed effects (regression 4.5). The four different performance measures are in bp-points.
The first measure computes P in 4.1 as the average transaction price in bond k, trading day t and dealer j. The second
measure computes P in 4.1 as the average transaction price in bond k, in a given part of the trading day t. Using the time
stamp for each trade, we divide trades into three groups, depending on whether the transaction occurred (i) before 11am,
(ii) during 11am-3pm, or (iii) after 3pm. The third measure computes P in 4.1 as the average transaction price in bond k,
trading day t, separately for buy and sell trades. The fourth measure computes P in 4.1 as the average transaction price
in bond k, trading day t, using only trades on the inter-dealer market. To reduce noise, we winsorise the sample at the
1%-level. T-statistics in parentheses are based on robust standard errors, using two-way clustering at the day and client
level. Asterisks denote significance levels (* p<0.1, ** p<0.05, *** p<0.01). The p-values correspond to the testing for the
equality of coefficients.
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Table A.7: Client Activity During Days with Big and Small Macroeconomic Surprises

(1) (2) (3) (4)

Average Daily Average Daily Average Daily Number

Transactions Volume (£s) Number of Clients of Days

Less Sophisticated Clients

Small Surprise Days 361 3.46e+09 69 737

Big Surprise Days 391 3.83e+09 72 757

More Sophisticated Clients

Small Surprise Days 402 3.24e+09 70 737

Big Surprise Days 433 3.49e+09 73 757

Notes: This table reports summary statistics on the activity of different client types on days with small and big macroe-
conomic surprises. The data covers the period from August 2011 to December 2017. The classification of small and big
surprise days builds on the high-frequency methodology of Swanson and Williams (2014): we identify trading days when
the surprise component of US and UK macroeconomic announcements were high, by sort trading days into two groups,
based on whether the magnitude of the surprise on day t was smaller or bigger than the sample median.
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Table A.8: Trading Costs and Trade Size in Government vs Corporate Bond Markets:
Using Alternative Cost Measures

(1) (2) (3) (4)
Alternative Cost Measure I: Using Day-Bond-Dealer Average for P

Less Sophisticated Clients
Trade Size#GovernmentBonds 0.066* 0.079** 0.097** 0.108***

(1.75) (2.05) (2.37) (2.65)
Trade Size#CorporateBonds 0.201 0.112 0.107 0.113

(1.50) (0.76) (0.71) (0.72)
p-values, eq. of coeff. 0.247 0.797 0.940 0.970
More Sophisticated Clients
Trade Size#GovernmentBonds 0.116*** 0.127*** 0.132*** 0.134***

(4.50) (4.58) (5.07) (4.98)
Trade Size#CorporateBonds 0.377** 0.342** 0.360** 0.360**

(2.52) (2.22) (2.23) (2.17)
p-values, eq. of coeff. 0.074 0.142 0.142 0.155
N 790073 783440 783038 782305
R2 0.360 0.433 0.437 0.440
Alternative Cost Measure II: Using Day-Bond-Within Day Average for P

Less Sophisticated Clients
Trade Size#GovernmentBonds 0.099** 0.108*** 0.141*** 0.146***

(2.28) (2.71) (3.70) (3.83)
Trade Size#CorporateBonds 0.263 0.298* 0.299* 0.310*

(1.53) (1.72) (1.70) (1.70)
p-values, eq. of coeff. 0.268 0.216 0.318 0.316
More Sophisticated Clients
Trade Size#GovernmentBonds 0.144*** 0.169*** 0.171*** 0.177***

(5.14) (6.94) (7.50) (7.70)
Trade Size#CorporateBonds 0.730*** 0.705*** 0.717*** 0.728***

(4.56) (4.67) (4.62) (4.55)
p-values, eq. of coeff. 0.000 0.000 0.000 0.000
N 1036375 1029952 1029616 1028996
R2 0.357 0.436 0.441 0.445
Day*Bond*ClientType FE Yes Yes Yes Yes
Client*Market FE Yes Yes Yes No
Dealer*Market*ClientType FE Yes Yes Yes No
Day*Dealer*ClientType FE No Yes Yes Yes
Month*Client FE No Yes Yes Yes
Client*Dealer No No Yes No
Client*Dealer*Market FE No No No Yes

Notes: this table regresses transaction performance measure on trade size interacted with client type and bond market
dummies as well as various fixed effects (regression 4.6). The four different performance measures are in bp-points. The
first measure computes P in 4.1 as the average transaction price in bond k, trading day t and dealer j. The second measure
computes P in 4.1 as the average transaction price in bond k, in a given part of the trading day t. Using the time stamp
for each trade, we divide trades into three groups, depending on whether the transaction occurred (i) before 11am, (ii)
during 11am-3pm, or (iii) after 3pm. The third measure computes P in 4.1 as the average transaction price in bond k,
trading day t, separately for buy and sell trades. The fourth measure computes P in 4.1 as the average transaction price
in bond k, trading day t, using only trades on the inter-dealer market. To reduce noise, we winsorise the sample at the
1%-level. T-statistics in parentheses are based on robust standard errors, using two-way clustering at the day and client
level. Asterisks denote significance levels (* p<0.1, ** p<0.05, *** p<0.01). The p-values correspond to the testing for the
equality of coefficients.
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Table A.9: Trading Costs and Trade Size in Government vs Corporate Bond Markets:
Using Alternative Cost Measures

(1) (2) (3) (4)
Alternative Cost Measure III: Using Day-Bond-Sell/Buy Average for P

Less Sophisticated Clients
Trade Size#GovernmentBonds 0.071 0.086* 0.124*** 0.115**

(1.33) (1.86) (2.79) (2.50)
Trade Size#CorporateBonds 0.130 0.138 0.174 0.216

(0.61) (0.64) (0.79) (0.98)
p-values, eq. of coeff. 0.744 0.786 0.799 0.601
More Sophisticated Clients
Trade Size#GovernmentBonds 0.147*** 0.176*** 0.187*** 0.183***

(3.81) (4.68) (5.19) (5.08)
Trade Size#CorporateBonds 0.686** 0.674** 0.750*** 0.854***

(2.48) (2.47) (2.76) (3.15)
p-values, eq. of coeff. 0.043 0.060 0.037 0.012
N 1054855 1048593 1048276 1047673
R2 0.171 0.276 0.283 0.287

Alternative Cost Measure IV: Using Average IDB prices for P
Less Sophisticated Clients
Trade Size#GovernmentBonds 0.111* 0.125** 0.167*** 0.151***

(1.74) (2.43) (3.29) (2.88)
Trade Size#CorporateBonds 0.300 0.255 0.165 0.215

(1.38) (1.26) (0.80) (1.06)
p-values, eq. of coeff. 0.362 0.496 0.992 0.741
More Sophisticated Clients
Trade Size#GovernmentBonds 0.193*** 0.209*** 0.230*** 0.230***

(5.11) (5.36) (6.06) (6.10)
Trade Size#CorporateBonds 0.779*** 0.767*** 0.809*** 0.876***

(3.85) (3.71) (3.87) (4.37)
p-values, eq. of coeff. 0.002 0.006 0.005 0.001
N 768755 761318 760936 760134
R2 0.267 0.377 0.383 0.386
Day*Bond*ClientType FE Yes Yes Yes Yes
Client*Market FE Yes Yes Yes No
Dealer*Market*ClientType FE Yes Yes Yes No
Day*Dealer*ClientType FE No Yes Yes Yes
Month*Client FE No Yes Yes Yes
Client*Dealer No No Yes No
Client*Dealer*Market FE No No No Yes

Notes: this table regresses transaction performance measure on trade size interacted with client type and bond market
dummies as well as various fixed effects (regression 4.6). The four different performance measures are in bp-points. The
first measure computes P in 4.1 as the average transaction price in bond k, trading day t and dealer j. The second measure
computes P in 4.1 as the average transaction price in bond k, in a given part of the trading day t. Using the time stamp
for each trade, we divide trades into three groups, depending on whether the transaction occurred (i) before 11am, (ii)
during 11am-3pm, or (iii) after 3pm. The third measure computes P in 4.1 as the average transaction price in bond k,
trading day t, separately for buy and sell trades. The fourth measure computes P in 4.1 as the average transaction price
in bond k, trading day t, using only trades on the inter-dealer market. To reduce noise, we winsorise the sample at the
1%-level. T-statistics in parentheses are based on robust standard errors, using two-way clustering at the day and client
level. Asterisks denote significance levels (* p<0.1, ** p<0.05, *** p<0.01). The p-values correspond to the testing for the
equality of coefficients.
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Table A.10: Trading Costs and Trade Size: Government vs Corporate Bonds Markets:
All Clients Included

(1) (2) (3) (4)
Less Sophisticated Clients

Trade Size#GovernmentBonds 0.077 0.083* 0.110** 0.116**
(1.53) (1.71) (2.23) (2.30)

Trade Size#CorporateBonds 0.447*** 0.426*** 0.353** 0.352**
(2.87) (2.90) (2.43) (2.40)

p-values, eq. of coeff. 0.007 0.008 0.055 0.067
More Sophisticated Clients

Trade Size#GovernmentBonds 0.174*** 0.197*** 0.205*** 0.206***
(4.84) (5.40) (5.75) (5.74)

Trade Size#CorporateBonds 0.670*** 0.705*** 0.743*** 0.789***
(4.03) (4.48) (4.72) (5.03)

p-values, eq. of coeff. 0.002 0.000 0.000 0.000
N 1962998 1957464 1956891 1955799
R2 0.287 0.350 0.356 0.358
Day*Bond*ClientType FE Yes Yes Yes Yes
Client*Market FE Yes Yes Yes No
Dealer*Market*ClientType FE Yes Yes Yes No
Day*Dealer*ClientType FE No Yes Yes Yes
Month*Client FE No Yes Yes Yes
Client*Dealer No No Yes No
Client*Dealer*Market FE No No No Yes

Notes: this table regresses trading costs (measured in bp-points) on trade size (measured as log of the nominal size of the
trade in £s) interacted with an indicator variable taking value 2 (1) if the trade takes place in the corporate (government)
bond market. The regression also includes various fixed effects. The upper (lower) panel shows the results for less (more)
sophisticated clients. To reduce noise, we winsorise the sample at the 1%-level. T-statistics in parentheses are based on
robust standard errors, using two-way clustering at the day and client level. Asterisks denote significance levels (* p<0.1,
** p<0.05, *** p<0.01). The p-values correspond to the testing for the equality of coefficients, within a given client type.

Table A.11: Average Trade Size of More Sophisticated Clients Relative to Less Sophist-
icated Clients

(1) (2) (3) (4)
More Sophisticated Clients -0.356 -0.162 -0.120 -0.085

(-1.39) (-0.76) (-0.61) (-0.58)
N 1274295 1274295 1273531 973952
R2 0.149 0.282 0.350 0.566
Day*Bond FE Yes Yes Yes No
Dealer FE No Yes No No
Day*Dealer FE No No Yes No
Day*Bond*Dealer FE No No No Yes

Notes: this table regresses trade size on a dummy that takes value 1 if the client is more sophisticated (asset managers
and hedge funds) and 0 if they are less sophisticated (pension funds, central banks etc.) and various fixed effects. To
reduce noise, we winsorise the sample at the 1%-level. T-statistics in parentheses are based on robust standard errors,
using two-way clustering at the day and client level. Asterisks denote significance levels (* p<0.1, ** p<0.05, *** p<0.01).
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Table A.12: Trading Costs and Trade Size: Non-linearities

(1) (2) (3) (4) (5)
Less Sophisticated Clients

Trade Size Q = 2 -0.061 -0.065 -0.021 -0.029 0.015
(-0.51) (-0.53) (-0.20) (-0.27) (0.14)

Trade Size Q = 3 0.247 0.221 0.224 0.225 0.285*
(1.49) (1.30) (1.44) (1.38) (1.72)

Trade Size Q = 4 0.353* 0.363* 0.356* 0.390* 0.479**
(1.81) (1.71) (1.86) (1.88) (2.24)

N 598874 596569 597365 595007 594602
R2 0.112 0.143 0.179 0.206 0.212

More Sophisticated Clients
Trade Size Q = 2 0.008 0.030 0.084 0.071 0.084

(0.06) (0.19) (0.70) (0.60) (0.70)
Trade Size Q = 3 0.242 0.257 0.301** 0.299** 0.319**

(1.41) (1.53) (2.20) (2.27) (2.47)
Trade Size Q = 4 0.664*** 0.693*** 0.705*** 0.701*** 0.744***

(3.91) (4.02) (4.23) (4.06) (4.36)
N 672232 670823 670987 669573 669361
R2 0.102 0.132 0.172 0.198 0.203
Day*Bond FE Yes Yes Yes Yes Yes
Client FE No Yes Yes No No
Dealer FE No No Yes No No
Day*Dealer FE No No No Yes Yes
Month*Client FE No No No Yes Yes
Client*Dealer FE No No No No Yes

Notes: this table regresses transaction performance measure on trade size and various fixed effects. The performance
measures are in bp-points. To reduce noise, we winsorise the sample at the 1%-level. T-statistics in parentheses are based
on robust standard errors, using two-way clustering at the day and client level. Asterisks denote significance levels (*
p<0.1, ** p<0.05, *** p<0.01).
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Table A.13: Trading Costs and Trade Size: Agency Trades of More Sophisticated Clients

(2) (3) (4) (5)
Non-Agency Trades

Trade Size 0.173*** 0.194*** 0.208*** 0.222***
(4.37) (5.20) (5.41) (5.71)
Agency Trades

Trade Size 0.058 0.113* 0.078 0.079
(0.88) (1.72) (1.26) (1.29)

p-values, eq. of coeff. 0.074 0.257 0.049 0.027
N 656472 656472 647277 647029
R2 0.159 0.160 0.282 0.286
Day*Bond Yes Yes Yes Yes
Client FE Yes Yes No No
Dealer No Yes No No
Day*Dealer No No Yes Yes
Month*Client FE No No Yes Yes
Client*Dealer FE No No No Yes

Notes: this table regresses transaction performance measure on trade size interacted with a dummy variable (taking value
1 if the given trade is an agency trade) as well as on various fixed effects. The performance measures are in bp-points.
To reduce noise, we winsorise the sample at the 1%-level. T-statistics in parentheses are based on robust standard errors,
using two-way clustering at the day and client level. Asterisks denote significance levels (* p<0.1, ** p<0.05, *** p<0.01).
The p-values correspond to the testing for the equality of coefficients.

B Additional Figures

Figure A.1: Trading Costs and Trader Size in the Cross-Section
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Notes: this Figure shows a scatter plot of average client trading costs (vertical axis) against average trader size (horizontal
axis) at the client-level. Average trading cost is the unweighted mean of our baseline measure 4.1 at the client-level. Trader
size is measured as traders’ monthly trading volume average across months. To reduce noise, the dataset is trimmed at
1%-level, leaving 586 observations. The estimated γ̂ = −0.43 with t-stat (based on robust standard error) of −8.8.
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Figure A.2: Trading Costs and Trade Size in the Cross-Section: Adding Controls
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Notes: this Figure shows a scatter plot of average client trading costs (vertical axis) against average trade size (horizontal
axis) at the client-level. Average trading cost is the unweighted mean of our baseline cost measure 4.1 at the client-level.
Average trade size is the natural logarithm of the average nominal size of a client’s transactions. To reduce noise, the
dataset is trimmed at 1%-level, leaving 586 observations. The estimated γ̂ = −0.52 with t-stat (based on robust standard
error) of −9.2.
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Figure A.3: The Relation between Trade Size and Trading Costs: Using Alternative Cost
Measures

(a) Using Day-Bond-Dealer Average for P
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(b) Using Day-Bond-Within Day Average for P
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(c) Using Day-Bond-Sell/Buy Average for P
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(d) Using Average IDB prices for P
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Notes: The Figures show a linear regression line on the pooled, transaction-level data (left panel) and on the data after we
removed client-specific averages from trading costs and trade size corresponding to each trade. The four different trading
cost measures are measured by 4.1 (building on O’Hara and Zhou (2021)) with different definitions of P , and trade size
is measured as the natural logarithm of the trade’s notional. The four different performance measures are in bp-points.
The first measure computes P in 4.1 as the average transaction price in bond k, trading day t and dealer j. The second
measure computes P in 4.1 as the average transaction price in bond k, in a given part of the trading day t. Using the time
stamp for each trade, we divide trades into three groups, depending on whether the transaction occurred (i) before 11am,
(ii) during 11am-3pm, or (iii) after 3pm. The third measure computes P in 4.1 as the average transaction price in bond k,
trading day t, separately for buy and sell trades. The fourth measure computes P in 4.1 as the average transaction price
in bond k, trading day t, using only trades on the inter-dealer market. The confidence bands are based on 95% standard
errors as in Gallup (2019).
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