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Abstract

Contrary to the prediction of the classic adverse selection theory, a more informed

trader could receive better pricing relative to a less informed trader in over-the-counter

financial markets. Dealers chase informed orders to better position their future quotes

and avoid winner’s curse in subsequent trades. When dealers are perfectly competitive

and risk averse, their incentive of information chasing dominates their fear of adverse

selection. In a more general setting, information chasing can dominate adverse selection

when dealers face differentially informed speculators, while adverse selection dominates

when dealers face differentially informed trades from a given speculator. These two

seemingly contrasting predictions are supported by empirical evidence from the UK

government bond market.
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1 Introduction

The classic adverse selection theory predicts that more informed trades should receive worse

pricing. However, this pattern could reverse in over-the-counter (OTC) financial markets—

instead of being deterred by adverse selection risk, dealers actively chase informed orders by

offering tighter bid-ask spreads to more informed traders.

We show that dealers chase informed orders to better position their future price quotes

and avoid winner’s curse in subsequent trades. On a multi-dealer trading platform, dealers’

incentive to chase informed orders exactly offsets their fear of adverse selection. Through

information chasing, dealers transform adverse selection by the informed into winner’s curse

when bidding for the uninformed. As a result, the adverse selection cost is entirely passed

on to liquidity traders. More generally, without assuming any specific trading platform, we

show that across differentially informed speculators, information chasing as a component

of the bid-ask spread dominates the adverse selection component if and only if a more

informed speculator receives a tighter bid-ask spread; Within a given speculator, however,

adverse selection always dominates information chasing, so that a more informed trade always

receives worse pricing than a less informed trade from the same speculator. These two

predictions—which contrast sharply with each other—both find strong empirical support

in the UK government bond market. Post-trade transparency reduces information chasing

incentive and thus price efficiency.

The benchmark model works as follows. An asset with uncertain payoff is traded over-

the-counter on a multi-dealer platform. In Stage 0, a speculator exerts costly effort to acquire

a private signal about the asset payoff. In Stage 1, the speculator requests two-sided quotes

for a selected quantity of the asset, without revealing her desired trade direction, from a

number of dealers simultaneously on the multi-dealer platform. Every dealer quotes a bid

and an ask to the speculator, who can then trade (buy or sell) with one dealer at that dealer’s

respectively quoted price. The trade is not publicly disclosed. In Stage 2, a mass of liquidity

traders send quote requests to the dealers simultaneously on the multi-dealer platform to
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trade one unit of the asset each.

Dealers are incentivized to chase an informed order because executing such a trade allows

a dealer to extract information about the asset payoff, then use this information to more

accurately position its subsequent quotes to liquidity traders. If, say, the informed speculator

chooses to sell to a given dealer j in Stage 1, then the asset payoff is likely to be low and Dealer

j would lower its quotes to liquidity traders in Stage 2 to attract more buy orders, leaving

undesired sell orders to the other dealers. This subjects the other dealers to winner’s curse

when competing for liquidity traders, forcing them to quote less aggressively thus allowing

Dealer j to profit. While setting quotes to the informed speculator, dealers compete to

narrow their bid-ask spread as long as the cost of being adversely selected does not exceed

the expected gain from subjecting other dealers to winner’s curse when bidding for liquidity

traders. Therefore, through information chasing, dealers transform adverse selection by the

informed into winner’s curse when bidding for the uninformed. In equilibrium, the dealers

all quote a zero bid-ask spread to the speculator in Stage 1, meaning that their incentive

to chase the informed order exactly offsets their fear of adverse selection. When setting

quotes to liquidity traders in Stage 2, dealers employ mixed strategies to mitigate winner’s

curse, giving rise to a new form of price dispersion. This type of price dispersion, induced by

winner’s curse, persists on a multi-dealer platform with simultaneous price competition and

does not vanish even when the number of competing dealers goes to infinity or the signal

about the asset payoff becomes perfectly accurate.

Direct price competition on a multi-dealer platform is not a prerequisite for information

chasing. More generally, without assuming any specific trading platform, we show that

across differentially informed speculators, information chasing dominates adverse selection

if and only if a more informed speculator receives a tighter bid-ask spread. Within a given

speculator, however, adverse selection always dominates information chasing, so that a more

informed order always receives a wider bid-ask spread than a less informed order from the

same speculator. The sharp contrast between these two predictions is due to an additional
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incentive compatibility condition required for the within-speculator comparison: a more

informed speculator cannot pretend to be a less informed one and vice versa, while a given

speculator can pretend to be less informed when she is actually more informed. For the

within-speculator comparison, the resulting incentive compatibility condition is precisely

sufficient and necessary for adverse selection to dominate information chasing.

These two predictions find strong support in the UK government bond market. To show

this, we use a non-anonymous trade-level dataset which allows use to exploit both the across-

client and within-client variations to test our predictions. First, we exploit the across-client

variation in our data to show that, ceteris paribus, a more informed client receives on average

0.5 bps lower trading cost than a less informed client. Second, we exploit the within-client

variation to show that informed clients face less favorable trading costs then their trades

better predict future price movements. Importantly, we do not find evidence for such a

positive relationship among less informed clients. In addition, we provide empirical evidence

of dealers trading more profitably against uninformed clients as well as the inter-dealer-

broker sector when giving more favorable execution costs to their informed clients. This

result is suggestive of dealers acquiring valuable information from increased trading activity

with informed clients and using this information to trade more profitably against the rest of

its client base.

Regulators have been promoting post-trade transparency in the traditionally opaque

OTC markets. FINRA and MSRB implemented real-time reporting and public dissemina-

tion of trades in corporate and municipal bonds via TRACE and RTRS since 2002 and 2005

respectively. After the 2008 financial crisis, the Dodd-Frank Act in the US expanded manda-

tory trade disclosures to swaps, while the more aggressive MiFID II Transparency Rules in

EU cover a much wider range of fixed-income assets. In our model, trade disclosure after

Stage 1 reduces information-chasing incentives thus harms information production and price

efficiency. This prediction is shared with Banerjee, Davis and Gondhi (2018) and empirically

supported by evidence in Lewis and Schwert (2018).

4



There are few theory papers demonstrating that a more informed trade may be receive

better pricing. Naik, Neuberger and Viswanathan (1999), perhaps the closest paper to ours,

shows that if a dealer is able to effectively “observe” the informativeness of a trade after ex-

ecuting the trade, then a more informed trade may receive better pricing. Our theory differs

by explicitly modeling a dealer’s inference of a trade’s informativeness through the trader’s

identity and trade size. This approach is crucial in delivering the opposite predictions for our

within- versus across-trader comparisons, thus providing guidance on where to locate em-

pirical evidence of information chasing. Two empirical papers, Ramadorai (2008), Bjønnes,

Kathitziotis and Osler (2015), document trading patterns that are consistent with informa-

tion chasing in the foreign exchange market using independent data sources. However, those

empirical patterns may also be consistent with non-informational mechanisms. Also based

on data in the foreign exchange market, Hagströmer and Menkveld (2019) document that the

most central dealer quotes a low bid-ask spread and learns quickest. This empirical finding

is consistent with the information chasing mechanism. However, it is also consistent with

the classic adverse selection theory, as pointed out by Hagströmer and Menkveld (2019). We

follow our own empirical guidance and simultaneously find evidence of information chasing

in the cross-trader comparison, and evidence of adverse selection in the within-trader com-

parison in the UK government bond market. These two opposite trading patterns provide a

natural yet strong identification of the information-chasing mechanism.

There is a large literature on adverse selection in financial markets.1 We contribute to

this literature by showing that in OTC markets, dealers have an additional incentive to chase

informed orders, which may very well dominate their fear of adverse selection. Consequently,

we derive many pricing implications of information asymmetry that are opposite to the

predictions of the classic adverse selection theory.

1Grossman and Stiglitz (1980), Glosten and Milgrom (1985), Kyle (1985, 1989) and Vives (2011) provide
theoretical benchmarks; More recently, Lester, Shourideh, Venkateswaran and Zetlin-Jones (2018) and Chen
and Wang (2020) develop dynamic models of market making under adverse selection risk. Two recent em-
pirical papers, Collin-Dufresne, Junge and Trolle (2020a) and Collin-Dufresne, Hoffmann and Vogel (2020b),
document empirical trading patterns that are consistent with the adverse selection theory in the index-CDS
market and the FX Forward market respectively.
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Our paper is related to the literature on information transmission in OTC markets.2 We

explicitly model a dealer’s incentive to chase informed orders through aggressive pricing,

which is the mechanism through which a dealer can learn and subsequently transmit infor-

mation. The pricing implication of information-chasing incentive is the focus, while learning

and transmission of information are merely natural consequences of information chasing.

Although with a different focus, Golosov, Lorenzoni and Tsyvinski (2014) also endogenizes

how information is transmitted through bilateral trading. Compared to their setting, our

speculator’s information precision is his private knowledge, which is signaled through the

quantity he requests to trade: the better he is informed, the more he requests to trade. This

rules out the possibility of entertaining an arbitrarily small trade, which is how uninformed

traders elicit information from their trading partners in Golosov, Lorenzoni and Tsyvinski

(2014). In our setting, dealers can only elicit information from the speculator at the expense

of a non-trivial adverse selection cost. The trade off between the dealers’ incentive to learn

against their fear of adverse selection is the key determinant of our pricing implications.

Our model exploits two distinguishing features of an OTC market: (i) end-investors trade

through dealers instead of directly with each other, and (ii) traders’ identity are observed

to each other before a price is formed, allowing dealers to price-discriminate based on the

identity of the end-investor.3 Abad, Aldasoro, Aymanns, D’Errico, Fache Rousová, Hoff-

mann, Langfield, Neychev and Roukny (2016) documents how a small number of dealers

2Duffie and Manso (2007), Duffie, Malamud and Manso (2009), Duffie, Giroux and Manso (2010), Duffie,
Malamud and Manso (2014) and Golosov, Lorenzoni and Tsyvinski (2014) show how information percolates
in OTC markets under different settings. Li and Song (2019) shows how a dealer can act as an information
intermediary to channel information from informed to uninformed. With the exception of Golosov, Lorenzoni
and Tsyvinski (2014), these papers separate information transmission and price formation so that adverse
selection is assumed away. Empirically, Hagströmer and Menkveld (2019) showed that dealers’ quotes are
differentially informed and exhibits a stable correlation map, suggesting information transmission among
dealers.

3Hau, Hoffmann, Langfield and Timmer (2021) provide evidence of discriminatory pricing against nonfi-
nancial clients in the foreign exchange derivatives market. Lee and Wang (2018) shows that when a central-
ized exchange and an OTC market co-exist, the OTC dealers cream-skim liquidity traders from the exchange
by offering them better pricing. Our paper considers OTC trading without an exchange running in parallel,
which is the case for currencies and Treasury bonds. However, our theory would make the same prediction if
both markets co-exist: When an exchange is available where trading prices are common knowledge, dealers
no longer have incentive to chase informed orders in the OTC market. Therefore, adverse selection induces
worse pricing for more informed speculators.
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intermediate trades among a large number of buyside firms across various OTC markets.4

More recently, a number of theoretical papers endogenize such a trading pattern.5 We as-

sume dealer intermediation as an exogenous feature of our OTC market, and focus on the

pricing implication of asymmetric information in such a market structure. Glode and Opp

(2016) provide an information-based mechanisms that endogenize intermediation chains. Our

model may seem similar to Glode and Opp (2016) in its setup. The difference is, however,

fundamental: in Glode and Opp (2016), an intermediary is exogenously informed, interme-

diating between a more informed trader and a less informed one. In our model, all dealers

are uninformed ex-ante, and chase to become informed while providing intermediation. In

this sense, Glode and Opp (2016) explains intermediation chains by assuming exogenously

and heterogeneously informed agents, whereas we assume that dealers intermediate trades

exogenously, and show how dealers take advantage of their role as intermediaries to become

informed endogenously.

We offer a different view of how dealers become informed in OTC markets than Rüdiger

and Vigier (2020), where dealers decide whether to acquire exogenous and verifiable in-

formation at a fixed cost. This approach can be interpreted as hiring research team in

the same way that a speculator acquires information. Our setting departs from this three

ways: a dealer learns indirectly through trading, the information is endogenously acquired

by the speculator, and the precision of the information is private to the speculator. The

first distinction—that dealers learn indirectly through trading—is more realistic in an en-

vironment where dealers are not allowed to directly generate its own signal. In practice, a

bank holding company usually imposes a “China Wall” between its market making arm and

its asset management arm, even before the Volcker Rule (which bans dealers from propri-

etary trading) was implemented. In addition to realism, our setting of learning endogenous

information with privately chosen precision generates unique asset pricing implications.

4Markets for interest rate swaps, credit default swaps and foreign exchange forwards.
5Examples include, but are not limited to Chang and Zhang (2019, 2021), Hugonnier, Lester and Weill

(2020), Neklyudov (2019), Sambalaibat (2018), Üslü (2019), Wang (2016), etc.

7



This paper is also related to the literature on information spillovers in trading. For

example, Camargo, Kim and Lester (2016) and Asriyan, Fuchs and Green (2017) show how

the transaction of one asset can reveal information about another asset with correlated value

and affect the trading strategies of other market participants. In their papers, the value

of information to other market participants does not enter the gains of the first trade. We

focus on markets with little to none post-trade transparency in which an uninformed party

privately learns from a trade with an informed party and subsequently makes profit from

the private information by trading with other traders. In addition to being applicable to

different market settings, this different trading environment leads to a further theoretical

distinction: in our setup, the value of information to be materialized in subsequent trades

enters the gains of the first trade, thus affects pricing of the first trade in a way that is not

present in the literature on information spillovers.

The remaining of the paper is organized as follow: Section 2 sets up and solves the

benchmark model with a multidealer platform. Section 3 derives conditions for information

chasing to dominate adverse selection in a more general setting, without assuming any specific

trading protocol. Section 4 provides empirical support for the testable predictions in the UK

government bond market. Section 5 concludes.

2 The Benchmark Model

2.1 Setup

There are three types of risk-neutral agents—one speculator, n dealers (n ≥ 2), and a mass

m of liquidity traders—trading one common asset in the market. The asset payoff is v,

which is either 1 or −1 with equal probability. Each liquidity trader needs to buy or sell,

independently and with equal probability, one unit of the asset regardless of the price.6

6Since the asset price will be bounded between -1 and 1 in equilibrium, a sufficient condition for a liquidity
trader to be willing to trade at any price is that she values the asset at v + δ, where her liquidity benefit δ
satisfies |δ| > 2.
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The trading game has three stages. In Stage 0, the speculator exerts costly effort to

acquire information about the asset value v. Specifically, the speculator pays a cost c(η) to

acquire a binary signal s with a selected precision η ∈ [0, 1]. The binary signal s takes the

value of 1 or −1 with equal probability, and returns the true asset value v with probability

(1 + η)/2 (P(s = v) = (1 + η)/2). We assume that the information acquisition cost function

c satisfies

c(0) = 0, c(1) = +∞, lim
η→0

c′(η) = 0, lim
η→1

c′(η) = +∞, and c′′(η) > 0

to insure a unique interior precision choice. The chosen precision and the signal realization

are both private information of the speculator.7 The dealers have no additional information

about the asset value v, assigning equal probability to its potential values 1 and −1.

In this benchmark model, we assume that traders trade with the dealers on a multi-dealer

platform using Request-for-Market (RFM) as the trading protocol, as follows. In Stage 1,

the speculator requests two-sided quotes from the dealers simultaneously to trade a selected

size q ≥ 0 of the asset, without revealing her desired trade direction.8 Since purchase and

sale are symmetric in Stage 1, we consider the case where each given dealer j offers an ask

a1,j(q) and a bid −a1,j(q) with a mid price equal to the unconditional mean of the asset,

which is 0. Therefore, the dealer’s pricing strategy in Stage 1 can be represented by its

mid-to-bid spread a1,j(q) as a function of the order size q. The bid-ask quotes constitute a

binding take-it-or-leave-it offer to buy or sell q units of the asset at the respective prices.

The speculator can select one dealer to buy or sell at that dealer’s respectively quoted price.

7Most existing work assume observable information precisions. In many settings, however, it is more
realistic that the information acquisition cost function c(η) is common knowledge, while the actual effort
η that an investor exerts is not directly observable. Xiong and Yang (2020) reviews existing work in this
modeling choice and further develops a model to study its effect.

8Such a request is called a “request-for-market” (RFM). In contrast, a “request-for-quote” (RFQ) indicates
a desired trade direction upfront. It is common for traders to use RFM over the phone especially for larger
trades. The trading protocol is also growing very quickly on electronic trading platforms. It is reported in
Becker (2018) that the number of RFM-traded tickets on Tradeweb increases 510% in 2017 across interest
rate swaps as traders try to hide their trading intentions. In the model, the speculator would choose to
submit an RFM instead of an RFQ if she had a choice precisely to conceal her signal and thus incentivize
dealers to chase her order.
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There is no post-trade transparency, which means that the liquidity traders and the other

dealers do not observe the direction or the execution price of the trade. In Stage 2, each

liquidity trader requests a bid-ask quote (a2,j, b2,j) simultaneously from all dealers to trade

1 unit of asset. Since the liquidity trader’s order is uninformed, it is irrelevant whether she

indicates her desired trade direction at the time of her request. The liquidity trader then

trades with the dealer who offers the best quote. At the end of Stage 2, the asset payoff is

realized. The speculator and the dealers receive the realized payoff of their asset position

plus the net payments they received from trading. The timeline and the market structure is

summarized in Figure 1.

D1

D2

Dn

S

Lm

Stage 1 Stage 2Stage 0

S
Pay cost 𝑐

Get signal 𝑠

L1

Figure 1: The Timeline.

In Stage 1, the speculator naturally chooses to trade with the dealer who offers the lowest

spread. If the lowest spread is offered by multiple dealers, the speculator is indifferent toward

trading with any of these dealers. We focus on equilibria in which the speculator randomly

selects one of those dealers offering the lowest spread, independently from the realization

of her private signal. This is not a restriction on the speculator’s strategy, but rather a

property that we require an equilibrium to satisfy. This property can be guaranteed by any

tie-breaking rule that ranks the dealers in certain preference order in the event of a tie.
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2.2 Equilibrium

Using backward induction, we show that the benchmark model has a unique perfect Bayesian

equilibrium that satisfies forward induction.

Stage 2: Competing for Liquidity Trades

In equilibrium, it will turn out to be the case that at the beginning of Stage 2, one dealer

is able to perfectly infer the signal realization by executing the speculator’s trade in Stage

1 while other dealers remain uninformed. The Stage-2 game is equivalent to a first-price-

sealed-bid auction with asymmetric information and discrete signals. In the appendix, we

show that the corresponding continuation game in Stage 2 has no pure-strategy equilibrium.

Intuitively, the uninformed dealers use a mixed pricing strategy to avoid being completely

outbid by the informed dealer precisely when the asset is good, mitigating winner’s curse.

The informed dealer also mixes to avoid being completely outbid by the uninformed dealers.

Lemma 1 summarizes dealers’ unique bidding strategies in Stage 2 constructed from

results established in Syrgkanis, Kempe and Tardos (2019). We denote a dealer’s belief

regarding the signal precision by η̂, which will be uniquely pined down by forward induction

as a function of the order size q. Since all dealers observe q, they hold the same belief η̂. We

denote the bid-ask quotes of the informed dealer by (b+
2 , a

+
2 ) when s = 1, and (b−2 , a

−
2 ) when

s = −1. The bid-ask quotes of an uninformed dealer are denoted by (b0
2, a

0
2).

Lemma 1 In Stage 2, with one informed dealer, there is an equilibrium where

(i) the informed dealer quotes b−2 = −η̂, a+
2 = η̂, and draw b+

2 and −a−2 from a continuous

distribution with CDF

G+(b) =
2

1− b/η̂
− 1, b ∈ [−η̂, 0].
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(ii) the uninformed dealers draw b0
2 and −a0

2 from a hybrid distribution with CDF

Gn(b) =

n−1
√

1

1− b/η̂
, b ∈ [−η̂, 0].

The payoffs and the distribution of the winning bid in any other stage-2 equilibrium are the

same as in the stated equilibrium above.

The distribution Gn describes a hybrid bidding strategy, in that an uninformed dealer

bids −η̂ with probability
n−1
√

1/2, and otherwise draws its bid from the distribution with

CDF

n−1√
1

1−b/η̂ −
n−1√

1
2

1−
n−1√

1
2

, b ∈ [−η̂, 0].

When n = 2, the distribution G2 of the uninformed dealer’s bid is the same as the uncon-

ditional distribution of the informed dealer’s bid. That is, the uninformed dealer “fakes” a

signal by randomly flipping a coin, and bids according to the fake signal as if it was informed.

When n > 2, the maximum bid of all the n − 1 uninformed dealers is distributed following

the CDF Gn−1
n = G2, which is not affected by n. Consistently, the informed dealer’s bidding

strategy is also not affected by the number n− 1 of competing uninformed dealers.

From dealers’ bidding strategies, we can compute their Stage-2 payoffs.

Lemma 2 In Stage 2, with one informed dealer, the expected payoff of an uninformed dealer

is 0, and the expected payoff of the informed dealer is mη̂/2.

The uninformed dealers shade their bid-ask offers due to their fear of winner’s curse, allowing

the informed dealer to earn a positive profit. The value of being the only informed dealer is

increasing in the mass of liquidity traders and the precision of the signal.

Given the prospect of earning a positive payoff in Stage 2 if informed, dealers are incen-

tivized to chase the speculator’s order in Stage 1.
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Stage 1: Chasing the Informed Order

While setting quotes to the informed speculator in Stage 1, dealers compete to narrow their

bid-ask spread until the cost of being adversely selected is about to exceed the expected

gain from being able to more accurately position their quotes to liquidity traders in Stage

2. Bertrand competition implies that at least 2 dealers offer the competitive spread a1(q)

satisfying the following zero profit condition:

q [a1(q)− η̂(q)] +
1

2
mη̂(q) = 0, (1)

where η̂(q) is dealers’ belief about η given an order size q. We will pin down η̂(q) by forward

induction when we solve for the speculator’s choice of information acquisition in Stage 0.

Therefore, given any order size q from the speculator, two or more dealers quote the same

competitive mid-to-bid spread in Stage 1:

a∗1(q) = η̂(q)− mη̂(q)

2q
. (2)

Upon selecting a dealer offering the best price, the speculator buys if she receives a positive

signal, and sells otherwise.

The pricing function in (2) reflects the combined effect of two countervailing incentives—

the fear of adverse selection and the urge of information-chasing. The first term of the spread

a∗1(q) is a dealer’s expected per-unit value of the asset when she receives an order of size q.

Since the informed speculator always trades in the direction that is adverse to the dealer, the

dealer charges the speculator this expected asset value through the spread to compensate

for its expected loss from the trade. This is the classic adverse selection component of a bid-

ask spread. When the speculator’s information becomes more precise, dealers widen their

bid-ask spread to protect themselves from the increasing adverse selection cost. The second

term in a∗1(q) reflects dealers’ incentive to chase informed orders. A dealer can profit from
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its information advantage over other dealers when competing for liquidity traders’ orders in

Stage 2. Anticipating this benefit, all dealers narrow their bid-ask spread to compete for the

informed order in Stage 1. Given an order size q, the existence of more liquidity traders in

Stage 2 gives dealers stronger incentive to chase the informed order in Stage 1 and narrows

dealers’ bid-ask spread.

The sign of the spread in (2) depends the relative strength of these two countervailing

incentives. If q > m/2, the per unit value of information is smaller the associated adverse

selection cost. Thus, The mid-to-bid spread a∗1(q) is positive. The reverse is true when

q < m/2.9 When q = m/2, the two incentives exactly offset each other, which will turn out

to be the case in equilibrium. The order size q reveals the information acquisition effort of

the speculator, and will be pinned down endogenously when we examine Stage 0.

Stage 0: Information Acquisition

Given any order size q and pricing strategies (a1,j)j=1,...,n of the dealers, the speculator’s

optimal choice of information precision maximizes her expected payoff

η̂(q) ∈ argmax
η

q ·
[
η −min

j
a1,j(q)

]
− c(η). (3)

In the speculator’s payoff, the first term represents the expected profit of trading q units of

the asset in the direction indicated by the signal at the best executable quote. The second

term represents the cost of information acquisition.

The spreads (a1,j(q))j=1,...,n cannot depend on η since dealers cannot observe the specu-

lator’s actual choice η of information precision. Thus, when choosing η, the speculator need

not consider the dealers’ pricing functions. For a given trade size q, it is thus a dominant

9In this paper, we abstract away from other market-making costs such as inventory and operational
costs. Thus, we only capture the informational component of a bid-ask spread. A negative spread should be
interpreted as a negative informational component in a positive spread.
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strategy for the speculator to choose the precision

η̂(q) = c′−1(q) (4)

that equates the marginal benefit from trading with a more precise signal and the marginal

cost of acquiring information. Forward induction thus implies that the dealers hold the

same belief η̂(q) regarding the precision when receiving an order of size q. This belief η̂(q) is

increasing in q because dealers understand that the speculator must have acquired a more

precise signal if she requests to trade a larger size. From the speculator’s perspective, she

can always credibly signal her information acquisition effort through her order size.

In Stage 0, the speculator, anticipating some equilibrium pricing function a∗1 by the

dealers, chooses η and q jointly to maximize its expected payoff:

(η∗, q∗) = argmax
η,q

q[η − a∗1(q)]− c(η). (5)

Now we can solve for the equilibrium of the game in Stage 0 and Stage 1, taking the

payoff in the Stage 2 bidding game as given.

Definition 1 (Equilibrium) A PBE of the 3-stage trading game consists of (i) the spec-

ulator’s strategy (η∗, q∗), (ii) the dealers’ pricing strategy a∗1 in Stage 1, and (iii) dealer’s

belief η̂(q) that satisfy

(i) speculator’s optimality condition (5),

(ii) dealers’ zero profit condition (2), and

(iii) the forward induction condition (4).

Substituting dealers’ equilibrium belief (4) into their zero profit condition (2), we obtain
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dealers’ equilibrium spread offered to the speculator:

a∗1(q) = c′−1(q)

(
1− m

2q

)
. (6)

Using the one-to-one relationship η = η̂(q) = c′−1(q) between the optimal choices of η

and q, and plugging in the expression (6) of the equilibrium spread a∗1(q), we can simplify

the speculator’s problem (5) into a one dimensional optimization problem over η,

max
η

mη

2
− c(η). (7)

Solving the optimization problem yields

η∗ = c′−1
(m

2

)
, q∗ =

m

2
. (8)

Proposition 1 The PBE of the 3-stage trading game can be described as follows:

1. In Stage 0, the speculator acquires information with precision η∗ = c′−1 (m/2).

2. In Stage 1, the speculator sends dealers a trade request of size q∗ = m/2. At least

two dealers quote a mid-to-bid spread according to (6), while other dealers quote equal

or larger spreads. The speculator randomly chooses to trade with one dealer with the

lowest spread, and she buys (sells) if her private signal in Stage 0 is positive (negative).

3. In Stage 2, the trading strategy of the dealers are described by Lemma 1.

In equilibrium, the size of the informed order and the signal precision both increase in

the mass m of liquidity traders. Intuitively, a larger amount of liquidity trades raises the

profit of offering informed quotes, thus intensifies dealers’ incentive to chase the informed

order in Stage 1. Therefore, dealers shrink their bid-ask spread to the informed order, which

in turn encourages the speculator to acquire more precision information and trade more.
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Plugging the equilibrium size q∗ = m/2 of the informed order into the dealer’s Stage-1

pricing strategy (2), the dealers’ equilibrium spread quoted to the speculator thus becomes

a∗1(q∗) = η∗
(

1− m

2q∗

)
= 0. (9)

This zero spread result holds for any parametric assumption in the benchmark model.

Without other trading frictions such as search frictions, inventory costs or transaction costs,

Proposition 1 should be interpreted as a zero informational component in the bid-ask spread.

Dealers trade off two opposing incentives when setting quotes to the speculator: their fear

of adverse selection drives up their bid-ask spread, while their urge of information chasing

pushes down the spread. On a multi-dealer trade platform, these two countervailing forces

precisely offset each other, rendering a zero net effect of information on the spread. We will

show, in a generalized model in Section 3, that this is a consequence of the market structure

allowing dealers to compete directly in their pricing for liquidity trades.

2.3 Pricing Implications

The model has several testable implications on trading prices.

Bid-Ask Spreads Since liquidity traders as a whole place the same amount of sell orders

and buy orders, There is no net asset transfer between dealers and liquidity traders. Thus,

the average mid-to-bid spread in Stage 2 is equal to the dealers’ trading profit per unit of

liquidity orders. Liquidity traders face a positive expected mid-to-bid spread given by

1

2
η∗ =

1

2
c′−1

(m
2

)
. (10)

Comparing the expected bid-ask spread received by the informed trader versus the liq-

uidity traders, we have the following testable implication.

Claim 1 In OTC markets with non-anonymous trading, informed trades receive lower bid-
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ask spreads.

We can also calculate the expected bid-ask spread of all trades in both stages, weighted

by their trade sizes:

∆̄ =
q∗∆1 +m∆2

q∗ +m
=

2

3
c′−1

(m
2

)
.

The average bid-ask spread is increasing in the amount of liquidity traders.10

Claim 2 In OTC markets with non-anonymous trading, other things equal, the average bid-

ask spread is larger when there are more liquidity traders.

Claim 3 In OTC markets with non-anonymous trading, other things equal, bid-ask spread

is smaller when the cost of information acquisition is uniformly higher.

Price Dispersions An important feature of the equilibrium is that price dispersion arises

endogenously as a result of winner’s curse. Without any search frictions, both the informed

dealer and the uninformed dealers use mixed pricing strategies when competing for liquidity

trades in Stage 2.

The price dispersion arising from winner’s curse persists even when the liquidity trader

has access to a large number of dealers (n→∞), and even increases when the signal of the

asset payoff becomes more accurate (η → 1). This is because dealers’ pricing functions are

linearly scalable in the signal precision η (Lemma 1). Letting σ(η) denote some homothetic

measure of price dispersion for trades in Stage 2 with a given signal precision η, then

σ(η) = ησ(1). (11)

Since the equilibrium signal precision η∗ increases with greater mass m of liquidity traders

and lower margin cost of information acquisition, we obtain the following prediction.

10The comparative static doesn’t change if we use different weights.
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Claim 4 In OTC market with non-anonymous trading, other things equal, price dispersion

is higher when there are more liquidity traders, and when the marginal cost of information

acquisition is lower.

Price Informativeness Since the transaction price in Stage 1 is always 0, it carries no

information about the asset’s common value v. We define price informativeness as the

proportion of variance in the asset value v explained by the observed trading prices in Stage

2. Depending on the realization of the speculator’s signal s, the best bid and ask in Stage 2

follow different distributions (Lemma 1). An econ metrician can therefore precisely estimate

the signal s from a large sample of transaction prices in Stage 2. The price informativeness

thus equals the fraction of variance in v explained by the speculator’s signal s.

τ(η) = 1− Var[v|s]
Var[v]

= η2. (12)

Claim 5 In OTC markets with non-anonymous trading, other things equal, price infor-

mativeness is higher when there are more liquidity traders, and when the marginal cost of

information acquisition is lower.

3 General Trading Protocols

In the benchmark model with direct price competition among dealers, information chasing

exactly offsets adverse selection, resulting in the zero bid-ask spread received by the spec-

ulator. Further, the speculator’s trade size doesn’t depend on her information acquisition

technology. In this section, we study, in a general setting without assuming any specific

trading platform, how the speculator’s trade size and bid-ask spread vary with the informa-

tiveness of her trade. We give a sufficient and necessary condition under which information

chasing dominates adverse selection and vice versa. When information chasing dominates, a

more informed trader receives a tighter bid-ask spread and trades a smaller size.
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In the previous section, dealers compete on the multi-dealer platform for liquidity trades

in Stage 2. Direct price competition determines the informed dealer’s profit from its infor-

mation. Now, we generalize the Stage 2 game by assuming that the informed dealer receives

some reduced-form continuation payoff VI(η) from exploiting the information content of the

speculator’s trade.11 Then, VI(η) is also the total surplus of the trade between the speculator

and the dealer. Also, to generalize the assumption that dealers compete à la Bertrand in

Stage 1, we now assume that a fraction ϕ ∈ [0, 1] of the trading surplus VI(η) goes to the

speculator, while the dealer executing the trade gets the remaining 1−ϕ fraction. The split

of the trading surplus can be viewed as the outcome of bilateral bargaining in a trade between

the dealer and the speculator, with the case ϕ = 1 corresponding to Bertrand competition by

dealers. Since the total trade surplus and the split of the surplus are both given in reduced

form, the number of dealers becomes irrelevant. For simplicity, we will view the generalized

model as one dealer trading with one speculator. In terms of the signal distribution, we

assume that the expected unit value of the asset is v(η) or −v(η) conditional on a positive

or negative signal respectively.

Therefore, the benchmark model is a special case of the generalized model with

v(η) = η, VI(η) =
1

2
mη, ϕ = 1. (13)

We impose the following regularity conditions on VI(η) and v(η).

Assumption 1 The functions v(·) and VI(·) are both twice differentiable, and

1. v(0) = 0, VI(0) = 0, v′(η) > 0, V ′I (η) > 0, c′(η) > 0;

2. v′′(η) ≤ 0, c′′(η) > 0, φV ′′I (η)− c′′(η) < 0.

It follows from (13) that Assumption 1 is a generalized version of the previously assumed

11Brancaccio, Li and Schürhoff (2020) estimates that in the US municipal bond market, the average value
of information is worth 7 bps, providing empirical support for the premises of our mechanism.
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differentiability and convexity of c(·). It guarantees that the model has a unique interior

equilibrium.

The generalized model can be solved in the same way as the benchmark model. Receiving

a trade order of size q, the dealer expects the speculator to have chosen the dominant

information precision η̂(q) that equalizes the marginal change in the total value of the order

and the marginal cost of information acquisition.

qv′(η̂) = c′(η̂). (14)

The speculator receives a total payoff of ϕVI(η̂) in the form of price discount. This replaces

the dealer’s zero-profit condition (2) in the benchmark model. The dealer’s pricing function

then becomes

a∗1(q) = v(η̂(q))− ϕVI(η̂(q))

q
. (15)

Taking the dealer’s belief into consideration, the speculator optimally chooses the information

precision η∗ to equalize her share of the marginal value of information and the marginal cost

of information acquisition.

ϕV ′I (η
∗) = c′(η∗). (16)

This determines the equilibrium level of information precision η∗. Combining (14), (15) and

(16), we establish the equilibrium relationship among information precision, order size and

the bid-ask spread.
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Proposition 2 In the generalized model, there exists a unique equilibrium in which

q∗ = ϕ
dVI
dv

∣∣∣∣
η=η∗

, (17)

a∗1(q∗) = v(η∗)

[
1− 1

ε(η∗)

]
, where ε(η) =

d lnVI
d ln v

. (18)

Here, ε(η) measures how the percentage change in the value v of the asset affects the

value of information VI in percentage. Thus, it is the elasticity of VI with respect to v. The

key to understand the intuition of Proposition 2 is the trade size q. From (15), we know

that the spread is the difference between the value of one unit of asset and the value of

information distributed to each unit of asset. Given the same asset value v, if the speculator

trades a larger quantity q, the value of information per unit of asset will be diluted more,

and the spread will be larger. The tipping point is q = ϕVI(v)/v, when the adverse selection

component and the information chasing component exactly offset each other. How is q

determined in equilibrium? Equation (17) shows that in equilibrium q always equals the

marginal value of information captured by the speculator ϕV ′I (v). Suppose the speculator

trades q > ϕV ′I (v). To make sure the trade is placed in the right direction, the speculator

has to acquire information to the point that the marginal cost of information acquisition

equals q, which exceeds the marginal value of information. This means that the speculator

is acquiring too much information, and at the same time, trading too much. The same

reasoning can be used to show the sub-optimality of q < ϕV ′I (v). Now we only need to

compare the equilibrium trade size ϕV ′I (v) with the tipping point size ϕVI(v)/v. It turns out

that this comparison is equivalent to comparing ε evaluated at the equilibrium information

precision to 1. The equilibrium bid-ask spread is positive if ε(η∗) > 1, and negative if

ε(η∗) < 1. In the benchmark model, both VI(η) and v(η) are linear function of η, so the

elasticity is exactly equal to 1. Therefore, the bid-ask spread for the speculator always equals

0 in the benchmark model.

We also gives a graphical illustration of Proposition 2 in panel (a) and (b) of Figure 2.
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In each panel, we plot the speculator’s share of the value of information ϕVI and the cost of

information acquisition c as a function of v. The two dashed tangent lines marks the value of

v such that ϕVI(v) and c(v) have the same slope. This is the equilibrium unit cost v(η∗) of

adverse selection, following the speculator’s optimal information acquisition condition (16).

The forward induction condition (14) implies that the common slope of c(v) and ϕVI(v)

at v(η∗) is the equilibrium order size q∗. The equilibrium mid-to-bid spread a∗1(q∗) can be

decomposed into two parts—an adverse selection component and an information chasing

component, as shown by the expression (15) of a∗1(q∗). The adverse selection component

equals v(η∗), the absolute deviation between of the asset value’s ex-post mean and its ex-

ante mean. The information chasing component measures the value of information per unit

captured by the speculator. In panel (a), the elasticity ε of VI with respect to v is greater

than 1 at v(η∗). This is equivalent to say that the instantaneous rate of change of VI(v) at

v = v(η∗) is greater than the average rate of change of VI(v) between v = 0 and v = v(η∗).

Therefore, the speculator trades a large quantity q∗ such that the value of information per

unit is smaller than the asset’s value v(η∗). The adverse selection component dominates

the information chasing component, resulting in a positive bid-ask spread. In panel (b), the

elasticity ε of VI with respect to v is smaller than 1 at v(η∗). In contrast to the first case, the

speculator trades a small quantity q∗ such that the value of information per unit is greater

than the asset’s value v(η∗). As a result, the information chasing component dominates the

adverse selection component, resulting in a negative bid-ask spread.

Across-speculator heterogeneity of trade size and bid-ask spread One sufficient

condition for ε to be always greater than 1 is that VI is a convex function of v. In fact,

the convexity of VI in v has important implications for understanding the cross-sectional

pattern of order sizes, bid-ask spreads and information content of trading. Consider two cost

functions of information acquisition c1(·) and c2(·) which satisfy the regularity conditions in

Assumption 1. We say that it is more costly for a speculator to acquire information under
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Figure 2: Decomposition of the bid-ask spread: information chasing vs adverse selection.

c1(·) if c′1(η) > c′2(η) for any η ∈ [0, 1].

Proposition 3 (Across-speculator trade heterogeneity) A speculator with lower cost

of information acquisition always chooses a higher precision η∗. Moreover,

• If VI is convex in v, a speculator with a lower cost of information acquisition trades a

higher quantity q∗ and receives a higher half spread a∗1(q∗).

• If VI is concave in v, a speculator with a lower cost of information acquisition trade a

lower quantity q∗ and receives a lower half spread a∗1(q∗).

• If VI is linear in v, all speculators trade the same quantity q∗ and receives a zero bid-ask

spread regardless of their cost of information acquisition.
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The proof of Proposition 3 can be found in the appendix. It is intuitive that a speculator

with lower marginal cost of information acquisition acquires more information. Why does

the ranking of trade size and bid-ask spread depend on the convexity of VI(v)? Again, we

need to start from understanding the ranking of trade size q. As we have shown previously,

it is optimal for a speculator to trade q which equals the marginal value of information. If

VI(v) is convex, the speculator who acquires more information has higher marginal value

of information, therefore trades higher q. In fact, the trade size is so large such that the

increased value of information, after being diluted by q, is smaller than the increased value

of asset. Thus, the information chasing component becomes relatively weaker compared to

the adverse selection component, and the bid-ask spread increases. The opposite holds when

VI(v) is concave in v.

Here we give a graphic illustration in Figure 2. Panel (c) and (d) depict the equilibrium

when the cost of information acquisition is uniformly lower than that in panel (a) and (b).

No matter whether VI is convex or concave, the speculator increases the level of information

acquisition in response to the decline in the cost of information acquisition to capture more

value of information. However, the change in q∗ and a∗1(q∗) are different in the two cases.

When VI is a convex function of v, lower information acquisition induces the speculator to

aggressively improve the information precision and signal this information precision with a

higher q∗. The increase in q∗ further spreads out the value of information and enlarges the

difference between the dominating adverse selection component and the information chasing

component, resulting in a larger bid-ask spread. On the contrary, when VI is a concave

function of v, the same level of decline in the cost of information acquisition only leads to a

mild increase in the optimal information precision η∗. Because the information acquisition

cost is lower, the speculator can signal this higher information precision with a lower q∗.

Therefore, value of information becomes more concentrated in a smaller amount of traded

asset and further dominates the adverse selection components. In equilibrium, the speculator

receives a more negative bid-ask spread compared with panel (b).
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Proposition 3 has important implications for identifying informed orders in OTC markets.

Conventional wisdom generally believes that better informed traders trade larger quantity in

financial markets. We show that this conventional wisdom can be reversed when information

chasing effect dominates the classical adverse selection effect. This is indeed relevant in

opaque markets without post-trade transparency where dealers can profit from their private

information gathered from informed orders.

Within-speculator heterogeneity of order size and bid-ask spread Up till now we

have focused on the heterogeneity of order size and bid-ask spread originated from specula-

tor’s heterogeneity. In fact, in the data it is quite usual to observe that the same speculator

trades different quantities at different spreads. Now we relax the binary signal structure to

account for this within-client trade heterogeneity.

Suppose the speculator observes a private signal x with a symmetric c.d.f F (x) after

incurring the information acquisition cost c(η). The ex-post value of the asset not only

depends on the precision η, but also depends on the signal x. Without loss of generality, we

assume the value of asset v(η, x) is an increasing function of both η and x. To understand

this assumption intuitively, we can think of η as the preditive power of the speculator’s

quantitative model, and x as the predictied value based on the model. The deviation of the

speculator’s value from the market expectation increases in the quality of the speculator’s

model and the innovation predicted by the model. For the value of information, we maintain

the same assumption that VI is an increasing function of v(η, x).

Here the speculator has two dimensions of private information, the precision η and the

signal x. However, after the speculator has choosen η, the only unobservable variable that

matters for the trading profit for both the speculator and the dealers is the value of the

asset v(η, x). The trading game is essentially a Bayesian game with one-dimentional private

information on v. By the revelation principle, the Bayes-Nash equilbrium can be described by

a quantity fundtion q(v) and half-spread function a(v). The trading payoff of the speculator,
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gross of the cost of information acquisition, is given by

VS(v) = [v − a(v)]q(v). (19)

Lemma 3 In a symmetric Bayes-Nash equilibrium, q(v) must be non-negative and weakly

increasing in v for any v > 0, and

a(v) = v −
VS(0) +

∫ v
0
q(z)dz

q(v)
. (20)

We omit the proof of Lemma 3 since it is a property of bilateral trading with private

information in Myerson and Satterthwaite (1983). Lemma 3 immmediately implies that the

speculator trades weakly more when having more private information represented by a higher

absolute value of v. Also, from (20) we know that the trading profit of the speculator VS(v),

which equals VS(0) +
∫ v

0
q(z)dz, must be a convex and increasing function of v for v > 0.

VS(0) must also be non-negative since the individual rationality constraint must hold when

the speculator has v = 0. Given that VS(v) is a non-negative, increasing convex funciton of

v, we can show that a(v) is an increasing function of v using the same steps as in the proof

of Proposition 3. We formally state this relationship in the proposition below.

Proposition 4 (Within-speculator trade heteogeneity) A speculator trades more at a

higher spread when receiving higher private signal x.

Recall that the across-client relationship among trade sizes, bid-ask spreads and trade

informativeness depend on the convexity of VI(v), the value of information function. In

contrast, Proposition 4 shows that the within-client variation is independent of the shape

of VI(v). Why is there a disconnection between within-client variation and across-client

variation? This is because with non-binary signals the speculator does not always capture a

fixed fraction of the realized value of information. The surplus captured by the speculator

with private information v, which is now represented by VS(v), can deviate from VI(v),
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the value of information v to the dealer. In fact, IC constraint forces VS(v) to be weakly

convex, independent of the convexity of VI(v). In the appendix, we solve a joint model that

features both within-client and across-client variation in trade size, bid-ask spread and trade

informativeness. We show that VS(v) and VI(v) only equal to each other in expectation with

respect to the private signal x. In the joint model, all the previous results in Proposition 3

and 4 hold with slight modifications.

We adopted endogenous information acquisition, whereby the speculator chooses a signal

precision η which is not observed by other traders. In equilibrium, this choice is signaled

through the size q of the speculator’s request to trade via forward induction η̂ = c′−1(q). This

modeling approach is necessary to allow for a separating equilibrium when VS is concave,

in which case information chasing dominates adverse selection. Here, we discuss how some

alternative modeling approaches fail to deliver the same result.

Exogenous Information Acquisition: If a speculator’s information precision η was

exogenously drawn by the nature while remaining private knowledge to the speculator, the

speculator’s distinguishing feature, its information acquisition cost function c, becomes en-

tirely irrelevant. Therefore, the comparison between a more informed speculator (higher η)

with a less informed speculator (lower η) effectively reduces to our within-trader compari-

son: In a separating equilibrium, the speculator signals his information precision η through

the size of his trade request q. For such a separating equilibrium to exist, the information

rebate function VS has to be convex, which implies that adverse selection always dominates

information chasing.

Observable Information Precision: If the speculator’s information precision η is

observable to the dealer, then model would lose the discipline on the trade size q, regardless of

whether the information precision η is endogenously chosen by the speculator or exogenously

drawn by the nature. Hence, the bid-ask spread is undetermined.

Xiong and Yang (2020) show that the observabilility of a speculator’s information acqui-

sition level lowers the speculator’s equilibrium choice of information precision in the setting
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of Kyle (1985). In our setting, the equilibrium information precision η remains the same

whether or not the choice is observable to the dealer. The difference is with the presence

of noise traders whose order pool with the speculator’s order. Hiding behind such noise

traders, the speculator has a incentive to secretly acquire a greater information precision

which is only partially inferred by the market maker. Without such noise traders, however,

the speculator has no such incentive because his information precision is perfectly inferred

in a separating equilibrium.

4 Empirical Evidence

4.1 Data and Client Classification

To test the predictions of the theoretical model of order chasing, one needs a detailed

transaction-level dataset together with a classification scheme whereby informed and un-

informed traders could be identified. To that end, we use the proprietary ZEN database

maintained by the UK Financial Conduct Authority (FCA), which covers virtually the uni-

verse of secondary-market transactions in the UK government bond market. Importantly,

the dataset contains information on the identity of both sides of a trade (unlike other datasets

on OTC markets, such as the TRACE database). This allows us to identify informed and

uninformed clients, and to keep track of the time-variation in the fraction of trading volume

initiated by informed and uninformed clients at each individual dealer.

To test the predictions of our theory, we are therefore able to exploit (i) the cross-

sectional variation in client types, and (ii) the time-variation in the client composition at

the dealer-level. Our sample covers the period between August 2011 and December 2017.

During this period, there are 21 primary dealers and 576 clients that we have identified.12

In our baseline classification, sophisticated clients include hedge funds and asset managers;

12The identities of the currently active primary dealers can be found on the website of the Debt Manage-
ment Office: https://www.dmo.gov.uk/responsibilities/gilt-market/market-participants/.
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whereas uninformed clients include insurance companies, pension funds, government entities

(e.g. central banks) and non-financial corporations. We end up with 292 sophisticated clients

and 284 unsophisticated clients, accounting for approximately two thirds and one third of

the total trading volume, respectively.

In addition, we apply a classification scheme that is based on clients’ realised trading

performance in our sample. The idea is to estimate the profit and loss (P&L) account for

each client i using the realised transactions as well as evaluating any inventory outstanding

at an appropriate market price. Specifically, we compute for each client i the following

measure:

P&Li =

Ai∑
a


JS
i,a∑

jSi,a=1

QS
jSi,a
P S
jSi,a
−

JB
i,a∑

jBi,a=1

QB
jBi,a
PB
jBi,a︸ ︷︷ ︸

Realised Cash−flow

+

 JB
i,a∑

jBi,a=1

QB
jBi,a
−

JS
i,a∑

jSi,a=1

QS
jSi,a

 1

Ni,a

Mi,a∑
mi,a=1

Pmi,a︸ ︷︷ ︸
V aluation of Inventories


(21)

where JSi,a and JBi,a denote the total number of sell and buy transactions of client i in bond a,

and Q and P denote the quantity and price of a given transaction of client i. The first term

in 21 denotes the realised cash-flows from buying and selling bond a, and the remaining term

captures the valuation effect corresponding to any negative or positive inventory the client

may accumulate during the sample period. To valuate inventories, we take a conservative

approach and use the average transaction price faced by given client i. If the client buys

the same quantity in bond a as she sells, then this inventory term would be zero. We then

sum across all the bonds that client i has traded, to arrive at the client-specific performance

measure P&Li. We scale this performance measure by the total trading volume of the given

client, in order to mitigate the mechanical effect of client size on performance measurement.

We use our scaled P&Li measure to split our sophisticated clients into two groups: one

with P&Li values in the top tertile and the remaining group with P&Li values in the bottom

two tertiles. We will refer to this latter group, consisting of 97 traders, as informed clients
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in the remainder of the analysis.

4.2 Testing the Theory

4.2.1 Claim 1: Informed clients face lower average trading costs than less in-

formed clients

To test the first claim predicted by the theory, we first construct a measure of trading costs

for each trade. While trade-specific bid-ask quotes are not observed, our approximation

is based on the realised price deviation of the given trade from a benchmark price in the

corresponding bond (in the spirit of O’Hara, Wang and Zhou (2018), O’Hara and Zhou

(2021) and Pinter, Wang and Zou (2021)). Formally, for each trade j, on day t and bond k,

we construct the measure Costj,k,t as follows:

Costj,k,t =
[
ln
(
P ?
j,k,t

)
− ln (Pk,t)

]
× 1B,Sj , (22)

where P ?
j,k,t is the transaction price, Pk,t is benchmark price the daily closing quoted mid-price

of the corresponding bond, and 1B,Sj is an indicator function equal to 1 when transaction j is

a buy trade, and equal to −1 when it is a sell trade. As benchmark price, we use the average

transaction price at the bond-day-dealer level. As a robustness check, we also use the daily

closing quoted mid-price of the corresponding bond, obtained from Datastream. The higher

the measure Costj,k,t in 22, the less favourable the given client’s trading costs are.

Given our measure of trading costs 22 (which proxies the bid-ask spread), we estimate

the following transaction-level regression for client i, asset k, dealer m and day t:

Costi,k,m,t = β ×DInf
i + γ × TradeSizei,k,m,t + µk,t + δm,t + εi,k,m,t, (23)

where DInf
i is a dummy taking value 1 if the client i is sophisticated and informed and 0

if the client is unsophisticated. The terms µk,t and δm,t are bond-day and dealer-day fixed
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effects, respectively. The object of interest in D.1 is β which captures how much more

favourable the trading cost is on the trade of an informed client compared to the trade of an

unsophisticated client who is trading at the same dealer on the same day (this interpretation

is possible because of the inclusion of the fixed effect δm,t).
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Table 1: Relative Trading Costs of Informed Clients

(1) (2) (3) (4) (5) (6) (7)

Informed Clients -0.529*** -0.497*** -0.455*** -0.417*** -0.472*** -0.464*** -0.521***

(-3.22) (-3.54) (-3.27) (-2.95) (-3.33) (-3.17) (-3.32)

Client Size -0.028 -0.018 -0.094*** -0.114*** -0.111***

(-1.06) (-0.67) (-2.77) (-2.71) (-2.73)

Dealer-Connections -0.009 -0.036* -0.035* -0.028

(-0.54) (-1.91) (-1.88) (-1.46)

Client Intensity 0.228*** 0.250*** 0.252***

(3.67) (3.33) (3.24)

Trade Size 0.019 0.018

(0.62) (0.57)

N 542837 538426 538426 538426 538426 538426 455403

R2 0.010 0.158 0.158 0.158 0.158 0.158 0.340

Day FE Yes No No No No No No

Bond FE Yes No No No No No No

Dealer FE Yes No No No No No No

Day*Dealer FE No Yes Yes Yes Yes Yes No

Day*Bond FE No Yes Yes Yes Yes Yes No

Day*Bond*Dealer FE No No No No No No Yes

Notes: This table regresses trading costs (computed by 22 using the average transaction price at the bond-day-dealer level as

the benchmark price) on an informed sophisticated client dummy, various controls and various fixed effects. “Client Size” is

the log of the average monthly trading volume of a given client. “Dealer-Connections” is the total number of unique dealers

(averaged across months) that a given client trades with in a given month. “Client Intensity” is the log of the average monthly

number of transactions of a given client. “Trade Size” is the log of the trade size in £s. Informed clients include those asset

managers and hedge funds whose average scaled P&L measure 21 is in the top tertile. To reduce noise, we winsorise the sample

at the 1-99%-level. T-statistics in parentheses are based on robust standard errors, using two-way clustering at the day and

client level. Asterisks denote significance levels (* p<0.1, ** p<0.05, *** p<0.01).

Table 1 shows the results from regression D.1 using various specifications. In column (1)
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we include the day-, bond- and dealer-level fixed effects separately (without interactions),

whereas columns (2)-(6) include day-dealer and day-bond fixed effects that aim to control

for the linear effect of any dealer- and bond-level shocks that might hit on a given trading

day. Column (7) corresponds to the tightest specification with day-dealer-bond fixed effects,

which allows for the comparison of the trading costs of different types of clients who trade

the same bond, at the same dealer on the same day.

Overall, the results imply that the trading costs faced by informed clients at a dealer

are about 0.5 bps lower compared to trades initiated by unsophisticated clients at the same

dealer.13 This result is robust to the inclusion of a number of additional regressors that aim

to control for mechanisms related to heterogeneity in clients’ bargaining power or in their

exposure to search frictions.

To show that our baseline is not simply picking up these mechanisms we first include

“client size” which is the average monthly trading volume of clients. Consistent with the

evidence of size discount (Green, Hollifield and Schurhoff, 2007, Pinter, Wang and Zou,

2021), we find that larger traders typically get more favourable transaction prices than

smaller traders. Next, we compute the total number of dealers that a client trades with

in a given month. This measure of clients’ “dealer-connections” aims to control for the

client’s position in the trading network which could affect her trading costs.14 While this

suggests that informed clients tend to have more dealer-connections, and clients with more

connections tend to face more favourable trading costs15,the informedness of clients seems to

matter over and above what is captured by her trading network. Third, we add as control

“client intensity” which is the total number of transactions a client carries out in a given

13It is important to note that, by using the average transaction price at the bond-day-dealer level as the
benchmark price in 22, we implicitly control for the fact that informed and unsophisticated clients may trade
with different dealers.

14This is motivated by recent papers that explored the cross-sectional variation of dealers’ network cen-
trality as well as dealers’ relationships with clients in driving trading costs in the US corporate bond market
(Maggio, Kermani and Song, 2017, Hendershott, Li, Livdan and Schurhoff, 2020).

15These results are consistent with Kondor and Pinter (2019).
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month averaged over the sample.16 Next, we include “client size” which is the average

monthly trading volume of clients. To show that our results are not simply picking up the

effect of trade size (Edwards, Harris and Piwowar, 2007, Bernhardt, Dvoracek, Hughson and

Werner, 2005), column (6) includes trade size as an additional control, with little effect on

the baseline results.17

Robustness Checks In our baseline, we used the benchmark price for our measure of

trading costs that is based on realised transaction prices. Table 2 in the Appendix shows the

results where we use the end-of-day mid-quote (from Datastream) as the benchmark price in

22. We find that the results become stronger with informed clients facing more favourable

trading costs by about 0.6-0.8 bps compared to unsophisticated clients. A likely explanation

for the stronger result is that, by using the end-of-day quote as the benchmark price, our

estimation is likely capturing some of the price impact of informed trading activity. There-

fore, by measuring trading costs with effective spreads (Bessembinder and Venkataraman,

2010), we get stronger results compared to our baseline in Table 1.

Moreover, we illustrate how much our baseline result is driven by our choice of control

and treatment groups. First, we broaden the set of the treated group by including all

sophisticated clients (i.e. all asset managers and hedge funds irrespective of their P&Li

measure) in it, and compare their trading costs to those of unsophisticated clients. Table 3

shows the results, indicating that while the difference in the trading costs of sophisticated

and unsophisticated clients is still statistically significant, the economic effect drops to 0.2

bps in the most conservative specification (compared to 0.52 bps in our baseline Table 1).

Next, we focus only on sophisticated clients and compare informed to uninformed clients.

Table 4 shows that the trading costs of informed clients are about 0.35-0.47 bps lower than

those of uninformed clients. These results show that heterogeneity both in client types and

16This control is motivated by O’Hara, Wang and Zhou (2018) who used a subset of the US corporate
bond market to analyse the trading costs of insurance companies.

17While Table 1 focuses on the across-client variation, in a related paper (Pinter, Wang and Zou, 2021), we
show evidence on a positive relation between trade size and trading costs once we exploit the within-client
variation of the data, i.e. once we include a client fixed effect.
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informedness contributes to our baseline results.

Moreover, we check how sensitive our baseline results are to changing the definition of

performance that we use to place clients in the informed category. First, we use the average

20-day percentage return (instead of the P&Li measure (21)) to identify informed clients.18

Second, we re-estimate our baseline by using the unscaled P&Li measure (21) to identify

informed clients.19 Tables 5–6 show that the results continue to be similar to our baseline,

with informed clients facing lower average trading costs by about 0.3-0.45 bps.

4.2.2 Claim 2: A dealer anticipates larger gains against less informed client

when the dealer gives better prices to informed clients

The heart of the mechanism in our theoretical model is the idea that dealers actively shape

trading costs to attract trades with informed clients. Trading with informed clients allows

dealers to learn from them, which can be used to make profits when the given dealer trades

with less informed traders. To test this mechanism, we first construct a measure of profitabil-

ity at the trade-level, in the spirit of Di Maggio, Franzoni, Kermani and Sommavilla (2019),

based on the given trade’s ability to predict future prices over a given horizon. Formally, for

each trade j, on day t, bond k and horizon T , we construct the measure PerfTj,k,t as follows:

PerfTj,k,t = [ln (Pk,t+T )− ln (Pk,t)]× 1B,Sj , (24)

where Pk,t is the benchmark price of bond k on day t, Pk,t+T is the benchmark price T days

later, and 1B,Sj is an indicator function equal to 1 when transaction j is a buy trade, and

equal to −1 when it is a sell trade. We then aggregate the performance measure 24 for

each dealer i, month t, and horizon T , based on all the transactions against unsophisticated

18Specifically, we compute the 20-day return on each trade of a client (similar to formula 24 below) and
compute a size-weighted average of these returns for the given client. We then rank clients based on these
average returns. The choice of the 20-day horizon is motivated by recent results (Czech, Huang, Lou and
Wang 2021) showing that the trades of hedge funds and asset managers have predictive power of future
returns around this horizon.

19This is motivated by the mutual fund literature (Berk and van Binsbergen, 2015) that highlighted the
important role of gross performance measures.
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clients as well as inter-dealer-brokers.20 Similarly, we aggregate the transaction performance

22 for each dealer i and month t against informed sophisticated clients. We then estimate

the following panel regression at the dealer-month level:

UninfPerfTi,t = β × InfCosti,t + γ × log (V olj,t) + αi + µt + εi,t, (25)

where UninfPerfTi,t is the trading performance of the group of unsophisticated clients as

well as inter-dealer brokers against dealer i on day t at horizon T . The term InfCosti,t is

average trading cost of informed sophisticated clients, against dealer i on day t. The term

V oli,t denotes dealer’s trading volume and αi and µt are dealer and month fixed effects.

Figure 3: The relationship between trading costs of informed clients at a dealer and the
trading performance of unsophisticated clients against the given dealer
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Notes: this figure plots the estimated β coefficients from our baseline monthly regression 25 up to 20-day horizon (T = 20),
using as regressand the average value weighted performance of uninformed clients trading with dealer i in month t. We include
as a control the natural logarithm of the pound trade volume of dealers. To reduce noise, we winsorise the sample at the
1%-level. The shaded area denotes the 90% confidence band, based on robust standard errors, using clustering at the month
level.

The coefficient of interest in 25 is β which we expect to be positive if the suggested

learning mechanism is at play: when informed sophisticated clients receive more favourable

transaction prices (i.e. the dealer charging lower trading costs on these trades), then the

dealer is entering into trades against unsophisticated clients that turn out to generate capital

20Inter-dealer-brokers (IDB) provide an important platform for inter-dealer-trades in the UK government
bond market. Over 90% of inter-dealer trading volume is done through IDBs and only a small fraction
directly between dealers.
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gains over future horizon T = [1, . . . , 20] for the dealer (and capital losses for those clients).

Figure 3 plots the estimated β coefficients in regression 25 up to 20 horizons, showing evidence

that a dealer’s trading performance against unsophisticated clients is higher when the given

dealer offer more favourable execution prices to informed clients. We find that the effect

is persistent, though it is estimated with larger uncertainty at longer horizons. The fact

that the effect initially increases with the horizon suggests that the information dealers may

acquire from informed clients pertains to future price movements that are less immediate.21

It is important to note that the inclusion of dealer fixed effects αi means that we primarily

identify the effect from the time-series, i.e. we compare months when a dealer gives more

favourable execution prices to informed clients to other months when the same dealer gives

less favourable prices. The regressions, designed to test claim 2, so far exploited monthly

variation in average costs and performance. As a robustness check, we also experiment using

daily, instead of monthly, variation, and find this adds additional measurement noise to our

empirical tests but does not qualitatively change the result. Figure 5 in Appendix plots the

estimated β coefficients in regression 25 up to 20-day horizon, using data at daily frequency,

with results similar to that shown in Figure 3.

We also check whether more favourable trading costs faced by informed clients at a dealer

are associated with increased trading activity of informed clients at the given dealer. To test

for that, we replace the left-hand size variable in 25 with two possible proxies for informed

clients’ trading activity at the dealer level: the ratio of informed trading volume to total

volume, and the natural logarithm of informed trading volume. Table 7 in Appendix shows

a statistically significant negative relationship, confirming that dealers’ trading activity with

informed clients increases when those clients are offered lower trading costs by the given

dealer.

21This is consistent with the horizon effects of informed clients documented by Kondor and Pinter (2019)
and Czech, Huang, Lou and Wang (2021).
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4.2.3 Claim 3: An informed client faces larger trading costs when being more

informed, compared to when being less informed

To test this claim, we exploit the within-client variation in average trading costs and the

level of informedness of the given client. If adverse selection dominates, we would expect

trading costs of a client to be higher when the given client is more informed, i.e. when

she is better at predicting future price movements. To test this prediction, we estimate the

following panel regression model for each client i and month t:

PerfTi,t = β × Costi,t + µi + δt + εi, (26)

where PerfTi,t is the average anticipation component (24) of client i over horizon T in month

t. The main coefficient of interest is β which measures how much the anticipation component

of a client (who is on average informed) changes when the given client’s average trading costs

increase by 1bp from one month to the next. Note that this time-series interpretation of

the effect is possible because of the inclusion of the fixed effect µi which controls for the

linear effects of any time-invariant cross-sectional heterogeneity in trading performance and

trading costs across clients.

Figure 4 plots the estimated β coefficients in regression 26 up to a 20-day horizon, con-

firming that clients face higher trading costs when their trades better predict future price

movements.22 We find that a 1 bp increase in trading costs (compared to the trading costs

of other clients trading at the same dealer) is associated with up to 0.5 bps increase in the

anticipation component of the given client. The effect is persistent, with no sign of reversal.

For robustness checks, we re-estimate regression 26 for the group of less sophisticated

clients: Figure 6 shows the results for this group (right panel) along our baseline (left panel),

confirming that the positive relation between average trading costs and capital gains is only

22These results are consistent with informed clients trading larger amounts when being more informed
(Kyle, 1985). See our companion paper (Pinter, Wang and Zou, 2021) for further empirical evidence on
trade size, trading costs and informedness of clients.
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Figure 4: The relationship between trading costs and future capital gains amongst informed
clients: 1-20 day horizon
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Notes: this figure plots the estimated β coefficients from our baseline monthly regression 26 up to 20-day horizon (T = 20),
using as regressor (regressand) the unweighted average trading cost (anticipation component) of client i in month t. We include
as a control the natural logarithm of the pound trade volume of clients. The sample only includes informed sophisticated clients.
To reduce noise, we winsorise the sample at the 1%-level. The shaded area denotes the 90% confidence band, based on robust
standard errors, using clustering at the month level.

present in our sample of informed clients. Moreover, Figure 7 shows the baseline results when

we use trade size - weighted averages when constructing both the dependent and independent

variables in regression 26.

5 Conclusion

Contrary to the prediction of the classic adverse selection theory, a more informed trader

receives better pricing relative to a less informed trader in some over-the-counter financial

markets. We show that dealers compete for information by chasing informed orders so as to

better position their future price quotes. On a multi-dealer platform, dealers’ incentive of

information chasing exactly offsets their fear of adverse selection. As a result, the adverse

selection cost is passed on to uninformed traders. Information chasing induces winner’s curse

among dealers, which in turn results in price dispersion and bid-ask spread for uninformed

hedgers. Both price dispersion and price efficiency increase with hedging demand.

Information chasing is possible only without pre-trade anonymity. Hence, it is absent

on centralized exchanges. It is also absent on a non-anonymous centralized exchange, be-
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cause trades are disclosed in real time. Consistently, Theissen (2003) shows that in the

non-anonymous Frankfurt Stock Exchange, trades that are more likely to be motivated by

proprietary information about asset payoff tend to receive wider bid-ask spreads.
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Appendices

A Proofs

The quoting game in stage 2 is equivalent to a common-value first-price sealed bid auction

with discrete signals. First we state a lemma that helps us construct the unique equilibrium

of this auction games with 2 players. The proof of this lemma can be found in Syrgkanis,

Kempe and Tardos (2019).

Lemma A.1 If n = 2, in a common-value first-price sealed bid auction with discrete signals,

there exists a unique Nash equilibrium, in which

1. Each dealer’s mixed strategy has a common support [x, x̄],

2. For each dealer j, there exists a partition x = xj0 ≤ xj1 < xj2 < · · · < xjSj
= x̄, where

Sj is the number of all of possible realization of dealer j’s signal combination. Each

interval (xjk, x
j
k+1) corresponds to dealer j’s signal realization ωjk.

3. There is no gap or atom in (x, x̄].

4. At least one dealer bid x with probability 1 when receiving the worse signal realization.

5. Both dealers get expected payoff 0 when receiving their worst signal.

This lemma has a direct implication.

Corollary A.1 The expected payoff of an uninformed dealer is 0.

Proof of Lemma 1 & 2. Since buying and selling are symmetric, −a+
2 , −a−2 , −a0

2 must

follow the same distribution as b+
2 , b−2 and b0

2. In the following proof, we only focus on the

bidding prices. Let G+, G− and G0 be the c.d.f. of b+
2 , b−2 and b0

2.

We start with the case of n = 2. Lemma A.1 implies that there exists a unique Nash

equilibrium in mixed strategy, where
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1. The informed dealer bid b−2 = −η̂ with probability 1 if she observes a negative signal.

2. The mixed strategies of the uninformed dealer and the informed dealer who observes

a positive signal have the same lower bound −η̂ and the same upper bound.

3. Both supp G0 and supp G+ are connected sets.

4. The distribution of b+
2 has no mass point. The distribution of b0

2 has no mass point

other than at −η̂.

An uninformed dealer must be indifferent of bidding any b ∈ supp G+, therefore

1

2
G+(b)(η̂ − b) +

1

2
(−η̂ − b) = C0. (A.1)

Notice C0, the expected value of being an uninformed dealer in the third stage, must equal

to 0. We can solve for G+:

G+ =
2

1− b/η̂
− 1. (A.2)

The upper bound of supp G+ is 0. An informed dealer must be indifferent of bidding any

b ∈ supp G0, therefore for any b ∈ [−η̂, 0]

(η̂ − b)G0(b) = C+. (A.3)

Let b = 0 we have C+ = η̂. Plugging into the previous equation, we have

G0(b) =
η̂

η̂ − b
, b ∈ [−η̂, 0]. (A.4)

Now we turn to the case of n > 2. It is easy to show that in any equilibrium the

informed dealer must bid b−2 = −η̂ with probability 1 when receiving a bad signal. Denote

the CDF of the informed dealer’ bidding strategy when receiving a good signal by G+
n>2 and
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the CDF of the maximum bid among the uninformed dealers by G0
n>2. We want to show

that in equilibrium the informed dealer is guaranteed a positive profit while any uninformed

dealer gets zero profit. First notice that uninformed dealer will never bid above 0, the ex-

ante expected value of the asset, if there’s any positive probability of winning. Therefore,

the informed dealer can always bid slightly above 0 to get a positive profit. Second, if an

uninformed dealer gets positive profit in equilibrium, all uninformed dealers must have the

same positive profit in equilibrium. Let b be the lower bound of the support of G0
n>2. There

must be a positive probability that b is higher than the informed dealer’s bid conditional

on a good signal. G+
n>2(b) must be positive. Since the informed dealer must have positive

payoff when receiving a good signal, he must win the bidding game with positive probability.

Thus, G0
n>2(b) > 0. This means b is not only the lower bound of the support but also a mass

point of G0
n>2. However, if this is a case, G+

n>2(b) is not a best response to G0
n>2, since the

informed dealer will never bid less or equal to b. Contradiction. Now we have shown that

the uninformed dealers must have zero payoff in equilibrium.

With the above results we can proceed to show that G+
n>2 and G0

n>2 must be an equilib-

rium of the game with n = 2, which means, they must be the same as in (A.2) and (A.4).

To prove this, first notice that G+
n>2 must be the best response to G0

n>2 in the game with

n = 2, as the expected payoff of the informed dealer only depends on the distribution of the

maximum bid among the uninformed dealers. Therefore, we only need to show that G0
n>2 is

the best response to G+
n>2 when n = 2. If this is not the case, there exists b′ > −η̂ such that

by bidding b′, the uninformed dealer has strictly positive profit,

1

2
G+
n>2(b′)(η̂ − b′) +

1

2
(−η̂ − b′) > 0. (A.5)

This implies that G+
n>2(b′) > 0, i.e., the informed dealer in the n > 2 game bids b ≤ b′ with

positive probability. Since the informed dealer has a positive payoff when receiving a positive

signal, he must have positive probability of winning by bidding b′. Therefore, G0
n>2(b′) > 0.
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However, if this is true any uninformed dealer can bid b′ in the game with n > 2 and gets

positive profit. This contradicts the previous results that all uninformed dealers must have

zero payoff in equilibrium. Thus, G0
n>2 is the best response to G+

n>2 when n = 2.

Just to give an example of an equilibrium with n > 2, notice that the previous G+ in

(A.2) and

G0(b) =

n−1
√

η̂

η̂ − b
, b ∈ [−η̂, 0], (A.6)

is a mixed strategy equilibrium of the stage-2 game with n > 2.

From Lemma 1, we know that if the signal is positive an informed dealer can only profit

from buying from but not selling to the liquidity traders. For each liquidity seller, the ex-

pected profit is C+ = η. On the other hand, if the signal is negative, the informed dealer

can only profit from selling to the liquidity traders. Therefore, the ex-ante expected profit

of the informed dealer is η · 1
2
m.

Proof of Proposition 1. The proof has been given in the main text.

Proof of Proposition 2. By forward induction, the belief of the dealer η̂(q) is the solution

to the speculator’s optimization problem:

η̂(q) = argmax
η

q [v(η)− a1(q)]− c(η). (A.7)

By Assumption 1, the objective function is concave in η, therefore, η̂(q) is the unique solution

to the first order condition

qv′(η) = c′(η). (A.8)
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Plugging in the mid-to-bid price (15), the speculator’s problem becomes

max
q

ϕVI(η̂(q))− c(η̂(q)). (A.9)

Assumption 1 implies that there is a unique solution to (A.9)

q∗ =
c′(η∗)

v′(η∗)
, η∗ solves ϕV ′I (η

∗) = c′(η∗). (A.10)

Note that the optimal order size can be equivalently written as

q∗ =
ϕV ′I (η

∗)

v′(η∗)
= ϕ

dVI
dv

∣∣∣∣
v=v(η∗)

. (A.11)

The equilibrium mid-to-bid spread is

a∗1(q∗) =v(η∗)− ϕVI(η
∗)

q∗
= v(η∗)− ϕVI(η

∗)
ϕV ′I (η∗)

v′(η∗)

, (A.12)

=v(η∗)

[
1− 1

ε(η∗)

]
, where ε(η) =

d lnVI
d ln v

. (A.13)

Proof of Proposition 3. By Assumption 1, ϕVI(η) − c′(η) is a decreasing function in

η. When c′(v) becomes uniformly lower for all v, η∗ increases. Thus, a speculator acquires

more information when the cost of information acquisition is lower. Next, we characterize

how q∗ and a∗1(q∗) depend on η∗ by taking derivatives.

dq∗

dη∗
= φv′(η∗)

d2VI
dv2

∣∣∣∣
η=η∗

. (A.14)

Since v′(η) > 0, if VI is convex (concave) in v, q∗ increases (decreases) in η∗ so it decreases

(increases) in the cost of information acquisition. For a∗1, with slight abuse of notations we
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view VI as a funciton of v and take derivative of a∗1 with respect to v(η∗)

da∗1
dv∗

= 1− V ′I (v
∗)2 − VI(v∗)V ′′I (v∗)

V ′I (v
∗)2

=
VI(v

∗)V ′′I (v∗)

V ′(v∗)2
(A.15)

Since VI(v
∗) and V ′I (v

∗)2 are both positive, the sign of
da∗1
dv∗

is the same as that of V ′′I (v∗). If

VI is convex (concave) in v, a∗1 increases (decreases) in η∗ so it decreases (increases) in the

cost of information acquisition. In particular, if VI is linear in v, a∗1 and q∗ are independent

of the cost of information acquisition.

B A Joint Model

Section 3 proposed two models with contrasting predictions: One predicts that information

chasing can dominate adverse selection for between-client comparisons, and the other predicts

that adverse selection always dominates information chasing for within-client comparisons.

To encompass both predictions in one model, we further nest the two models in Section 3

into a more general model by allowing the speculator to obtain a continuous signal x ∈ R

with a selected precision η ∈ R. Then each of the two models in Section 3 can be viewed

as a section of this more general model, by fixing either the signal strength |x| or the signal

precision η. We next lay out the new ingredients necessary to combine the features of both

models.

Signal The marginal distribution of the private signal x is F .23 While the joint distribution

of (v, x) depends on the signal precision η (which can be defined, for example, as the negative

conditional entropy −H(v |x)).

23Assuming that the distribution F does not depend on η is without loss of generality, because it is always
possible to 1-1 map a random variable to another random variable whose distribution is given by F .
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Pricing Upon receiving an trade request of size q from the speculator in a particular

instant, the dealer offers the speculator a mid-to-offer spread

a(x̂, η̂) = v(x̂, η̂)− VS(x̂, η̂)

q
. (B.1)

where x̂ and η̂ are the dealer’s beliefs about the speculator’s signal realization x and precision

η respectively, v(x, η) is the expected value of the asset conditional on the speculator’s signal

realization x and precision η and, and VS(x, η) is the speculator’s reduced-form information

rebate from the dealer. To infer the signal’s realization x and precision η, the dealer observes

not only the size q of the instant trade request, but also the underlying distribution P of the

size q̃ as a random variable through the speculator’s other independent instances of trade

requests.24 Therefore, an information set of the dealer consists of (q,P) such that q is in

the support of P. It will be the case that the dealer infers the signal realization x from

the realized size q, and the precision η from the underlying distribution of size q̃. Neither

sectional model in Section 3 requires the underlying distribution of the trade size q̃. This is

because when the signal precision η is fixed, the dealer only needs the realized size q to infer

the signal x, and when the signal x is binary, the random variable q̃ is also binary whose

distribution is degenerate.

Utility function The speculator chooses precision η and size q(x) to maximize her ex-

pected utility

max
q(·),η

Ex (q(x)[v(x, η)− a(x̂, η̂)]) , (B.2)

anticipating the dealer’s belief (x̂, η̂) determined by forward induction, as follows.

24The assumption that the dealer can observe the underlying joint distribution of trade size q̃ can be
more formally micro-founded in a repeated trading game. At the beginning, the speculator hires researchers
and builds infrastructure that determine its information precision η which cannot be changed. Then, the
speculator trades with the dealer repeatedly and each period is an independent copy of the one-period trading
game. The dealer can use past history to construct an empirical distribution of q̃. In the limit as the discount
rate goes to 0, any payoff received during a transition period in which the dealer is still learning about the
distribution of q̃ can be disregarded.
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Dealer’s belief Given any observed distribution P of q̃ (which can be different from the

equilibrium distribution of q̃, constituting an off-the-equilibrium-path information set for

the dealer) and a realized size q of an instant trade request, the dealer will apply forward

induction to infer the signal realization x and the precision η as follows: the speculator

maximizes

max
x(·),η

Eq̃ (q̃[v(x(q̃), η)− a(q̃,P)])− c(η),

subject to x(·) is injective and x(q̃) ∼ F

The speculator solves the maximization problem above because choosing size q(x) as a func-

tion of its signal realization x in its original maximization problem (B.2) is equivalent to

choosing its inverse function x : R 7→ R subject to the constraint x(·) is injective and x(q̃) ∼

F . Hence, the speculator has a dominant choice (x̂(·,P), η̂(P)) of signal precision:

(x̂(·,P), η̂(P)) = argmax
x(·),η

Eq̃ (q̃[v(x(q̃), η)− a(q̃,P)])− c(η),

subject to x(·) is injective and x(q̃) ∼ F

(B.3)

Applying forward induction, the dealer’s belief is (x̂(q,P), η̂(P)) at any given information set

(q,P), on or off the equilibrium path.

Now, we first solve the speculator’s constrained maximization problem (B.3) given some

distribution P of q̃, then the unconstrained maximization problem (B.2). The first order

condition with respect to η is

Eq̃
(
q̃
∂v

∂η
(x̂(q̃,P), η̂(P))

)
= c′(η̂(P)). (FOC(η,P))

Given some distribution P of size q̃, since the dealer applies forward induction to form its

belief (x̂(·,P), η̂(P)), the speculator’s expected payoff is then

Eq̃ VS(x̂(q̃,P), η̂(P))− c(η̂(P)) = Ex VS(x, η̂(P))− c(η̂(P)).
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The speculator chooses distribution P∗ and precision η̂(P∗) = η∗ that maximizes her payoff

η̂(P∗) = η∗ = argmax
η

Ex VS(x, η)− c(η). (B.4)

The first order condition with respect to η is

Ex
∂VS
∂η

(x, η∗) = c′(η∗) (FOC(η))

The speculator chooses size q∗(·) that maximizes

q∗(·) = argmax
q(·)

Ex (q(x)[v(x, η∗)− v(x̂(q(x),Pq), η̂(Pq))] + VS(x̂(q(x),Pq), η̂(Pq)))− c(η∗),

where Pq = F ◦ q−1 is the probability distribution on R induced by the measurable function

q : (R,B, F ) 7→ (R,B). We show that

q∗(x) is strictly increasing in x and ∀x, q∗(x) =
∂VS
∂x

(x, η∗)
∂v
∂x

(x, η∗)
. (B.5)

We know from (B.4) that q∗ induces probability distribution P∗ such that η̂(P∗) = η∗ and

that x̂(q∗(x), η∗) = x for every x. With P = P∗, (FOC(η,P)) becomes

Ex
(
q∗(x)

∂v

∂η
(x, η∗)

)
= c′(η∗). (B.6)

If for some x < x′,

q∗(x′)[v(x, η∗)− v(x′, η∗)] + VS(x′, η∗) > VS(x, η∗), (B.7)

then we can modify the value of q∗ at x from q∗(x) to q∗(x′). Then the speculator’s resulting

expected payoff is strictly higher since (1) her payoff upon receiving receiving signal x is

strictly higher because of (B.7), and (2) her expected payoff is not affected by the change in
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the distribution of her requested size because of (FOC(η)) and (B.6). This contradicts the

optimality of q∗. Therefore, for every x < x′,

q∗(x′)[v(x, η∗)− v(x′, η∗)] + VS(x′, η∗) ≤ VS(x, η∗).

Similarly,

q∗(x)[v(x′, η∗)− v(x, η∗)] + VS(x, η∗) ≤ VS(x′, η∗).

This shows that [q(·), a(·, η∗)] constitutes an incentive compatible direct mechanism. The

proof of Lemma 3 establishes (B.5). This completes the solution to the speculator’s problem.

The within-speculator comparison immediately follows:

Proposition B.1 (Within-speculator comparison) A speculator receives a larger spread

a(x, η∗) when receiving a stronger signal |x|.

Finally, we establish a sufficient condition for information chasing to dominate adverse

selection in the across-speculator comparison:

Proposition B.2 (Across-speculator comparison) If trade size |q(x, η∗)| is decreasing

in η∗, then a more informed trader receives a lower expected spread E a(x, η∗).

Proof.
∂

∂η
Ex a(x, η) =

∂

∂η
Ex
(
v(x, η)− VS(x, η)

q(x, η)

)
= Ex

(
∂v

∂η
(x, η)−

∂VS
∂η

(x, η)

q(x, η)
+
VS(x, η) ∂q

∂η
(x, η)

q2(x, η)

)

< Ex

(
q(x, η)∂v

∂η
(x, η)− ∂VS

∂η
(x, η)

q(x, η)

)
.

It suffices to show that q(x, η)∂v
∂η

(x, η)− ∂VS
∂η

(x, η) and q(x, η) are positively correlated, since

then

∂

∂η
Ex a(x, η) < Ex

(
q(x, η)

∂v

∂η
(x, η)− ∂VS

∂η
(x, η)

)
Ex
(

1

q(x, η)

)
= 0 (FOC(η)) and (B.6).
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Since q(x, η) is increasing in x, it suffices to show that q(x, η)∂v
∂η

(x, η)− ∂VS
∂η

(x, η) is increasing

in x, or equivalently,

q
∂2v

∂x ∂η
+
∂q

∂x

∂v

∂η
>

∂2VS
∂x ∂η

. (B.8)

Since q(x, η) =
∂VS
∂x

(x,η)
∂v
∂x

(x,η)
is decreasing in η, then

∂2VS
∂x ∂η

∂v
∂x
− ∂VS

∂x
∂2v
∂x ∂η(

∂v
∂x

)2 < 0,

⇐⇒ ∂2VS
∂s ∂η

< q
∂2v

∂x ∂η
.

The desired equality (B.8) thus follows since ∂q
∂x
> 0.
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C Additional Tables and Figures

Table 2: Relative Trading Costs of Informed Clients: Using End-of-Day Quoted Prices as
Benchmark Price

(1) (2) (3) (4) (5) (6) (7)

Informed Clients -0.828*** -0.806*** -0.702*** -0.596*** -0.651*** -0.633*** -0.647***

(-4.53) (-5.17) (-4.03) (-3.30) (-3.46) (-3.34) (-3.04)

Client Size -0.066* -0.035 -0.117** -0.167** -0.073

(-1.88) (-0.90) (-2.11) (-2.57) (-1.18)

Dealer-Connections -0.025 -0.058** -0.057** -0.051**

(-1.22) (-2.45) (-2.38) (-2.18)

Client Intensity 0.258*** 0.311*** 0.261***

(2.88) (3.16) (2.62)

Trade Size 0.048 -0.003

(1.32) (-0.08)

N 718418 716254 716254 716254 716254 716254 455403

R2 0.011 0.168 0.168 0.168 0.168 0.168 0.426

Day FE Yes No No No No No No

Bond FE Yes No No No No No No

Dealer FE Yes No No No No No No

Day*Dealer FE No Yes Yes Yes Yes Yes No

Day*Bond FE No Yes Yes Yes Yes Yes No

Day*Bond*Dealer FE No No No No No No Yes

Notes: This table regresses trading costs (computed by 22 using the end-of-day quotes from Datastream as the benchmark

price) on an informed sophisticated client dummy, various controls and various fixed effects. “Client Size” is the log of the

average monthly trading volume of a given client. “Dealer-Connections” is the total number of unique dealers (averaged across

months) that a given client trades with in a given month. “Client Intensity” is the log of the average monthly number of

transactions of a given client. “Trade Size” is the log of the trade size in £s. Informed clients include those asset managers

and hedge funds whose average scaled P&L measure 21 is in the top tertile. To reduce noise, we winsorise the sample at the

1-99%-level. T-statistics in parentheses are based on robust standard errors, using two-way clustering at the day and client

level. Asterisks denote significance levels (* p<0.1, ** p<0.05, *** p<0.01).
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Table 3: Relative Trading Costs of Sophisticated vs Unsophisticated Clients

(1) (2) (3) (4) (5) (6) (7)

Sophisticated Clients -0.316*** -0.323*** -0.255** -0.236** -0.234** -0.237** -0.208**

(-2.61) (-3.11) (-2.42) (-2.33) (-2.39) (-2.37) (-2.11)

Client Size -0.059*** -0.051** -0.096*** -0.153*** -0.178***

(-2.94) (-2.29) (-3.42) (-4.36) (-5.14)

Dealer-Connections -0.006 -0.025* -0.020 -0.021

(-0.53) (-1.69) (-1.37) (-1.48)

Client Intensity 0.141*** 0.198*** 0.232***

(2.85) (3.56) (4.04)

Trade Size 0.054** 0.062***

(2.57) (2.82)

N 901054 901054 901054 901054 901054 901054 901054

R2 0.007 0.100 0.100 0.100 0.100 0.100 0.290

Day FE Yes No No No No No No

Bond FE Yes No No No No No No

Dealer FE Yes No No No No No No

Day*Dealer FE No Yes Yes Yes Yes Yes No

Day*Bond FE No Yes Yes Yes Yes Yes No

Day*Bond*Dealer FE No No No No No No Yes

Notes: This table regresses trading costs (computed by 22 using the average transaction price at the bond-day-dealer level as

the benchmark price) on dummy (taking value 1 for sophisticated clients and 0 for unsophisticated clients), various controls

and various fixed effects. “Client Size” is the log of the average monthly trading volume of a given client. “Dealer-Connections”

is the total number of unique dealers (averaged across months) that a given client trades with in a given month. “Client

Intensity” is the log of the average monthly number of transactions of a given client. “Trade Size” is the log of the trade size in

£s. Informed clients include those asset managers and hedge funds whose average scaled P&L measure 21 is in the top tertile.

To reduce noise, we winsorise the sample at the 1-99%-level. T-statistics in parentheses are based on robust standard errors,

using two-way clustering at the day and client level. Asterisks denote significance levels (* p<0.1, ** p<0.05, *** p<0.01).
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Table 4: Relative Trading Costs of Informed Sophisticated vs Uninformed Sophisticated
Clients

(1) (2) (3) (4) (5) (6) (7)

Informed Clients -0.361** -0.377*** -0.350** -0.380*** -0.409*** -0.372*** -0.474***

(-2.52) (-3.05) (-2.59) (-2.78) (-3.18) (-2.74) (-3.64)

Client Size -0.052* -0.081*** -0.115*** -0.225*** -0.265***

(-1.88) (-2.76) (-3.64) (-5.78) (-5.66)

Dealer-Connections 0.017 -0.011 0.006 0.007

(1.22) (-0.61) (0.31) (0.36)

Client Intensity 0.155** 0.235*** 0.298***

(2.51) (3.48) (3.97)

Trade Size 0.108*** 0.118***

(4.35) (4.26)

N 612502 609573 609573 609573 609573 609573 545524

R2 0.008 0.132 0.132 0.132 0.132 0.132 0.320

Day FE Yes No No No No No No

Bond FE Yes No No No No No No

Dealer FE Yes No No No No No No

Day*Dealer FE No Yes Yes Yes Yes Yes No

Day*Bond FE No Yes Yes Yes Yes Yes No

Day*Bond*Dealer FE No No No No No No Yes

Notes: This table regresses trading costs (computed by 22 using the average transaction price at the bond-day-dealer level as

the benchmark price) on dummy (taking value 1 for informed sophisticated clients and 0 for uninformed sophisticated clients),

various controls and various fixed effects. “Client Size” is the log of the average monthly trading volume of a given client.

“Dealer-Connections” is the total number of unique dealers (averaged across months) that a given client trades with in a given

month. “Client Intensity” is the log of the average monthly number of transactions of a given client. “Trade Size” is the log of

the trade size in £s. Informed clients include those asset managers and hedge funds whose average scaled P&L measure 21 is

in the top tertile. To reduce noise, we winsorise the sample at the 1-99%-level. T-statistics in parentheses are based on robust

standard errors, using two-way clustering at the day and client level. Asterisks denote significance levels (* p<0.1, ** p<0.05,

*** p<0.01).
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Table 5: Relative Trading Costs of Informed Clients: Using Average 20-day Performance
Instead of P&L

(1) (2) (3) (4) (5) (6) (7)

Informed Clients -0.443** -0.332** -0.312** -0.337** -0.360*** -0.364*** -0.324**

(-2.18) (-2.58) (-2.37) (-2.55) (-2.72) (-2.74) (-2.33)

Client Size -0.022 -0.030 -0.089*** -0.067* -0.085**

(-0.89) (-1.14) (-2.63) (-1.67) (-2.05)

Dealer-Connections 0.007 -0.012 -0.013 -0.007

(0.43) (-0.69) (-0.75) (-0.37)

Client Intensity 0.189*** 0.166** 0.192***

(3.06) (2.49) (2.69)

Trade Size -0.021 -0.029

(-0.93) (-1.07)

N 437794 430536 430536 430536 430536 430536 339130

R2 0.011 0.191 0.191 0.191 0.191 0.191 0.355

Day FE Yes No No No No No No

Bond FE Yes No No No No No No

Dealer FE Yes No No No No No No

Day*Dealer FE No Yes Yes Yes Yes Yes No

Day*Bond FE No Yes Yes Yes Yes Yes No

Day*Bond*Dealer FE No No No No No No Yes

Notes: This table regresses trading costs (computed by 22 using the average transaction price at the bond-day-dealer level as

the benchmark price) on an informed sophisticated client dummy, various controls and various fixed effects. “Client Size” is

the log of the average monthly trading volume of a given client. “Dealer-Connections” is the total number of unique dealers

(averaged across months) that a given client trades with in a given month. “Client Intensity” is the log of the average monthly

number of transactions of a given client. “Trade Size” is the log of the trade size in £s. Informed clients include those asset

managers and hedge funds whose average 20-day ahead performance measure measure is in the top tertile. To reduce noise,

we winsorise the sample at the 1-99%-level. T-statistics in parentheses are based on robust standard errors, using two-way

clustering at the day and client level. Asterisks denote significance levels (* p<0.1, ** p<0.05, *** p<0.01).
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Table 6: Relative Trading Costs of Informed Clients: Using Unscaled P&L to Measure
Performance

(1) (2) (3) (4) (5) (6) (7)

Informed Clients -0.383*** -0.383*** -0.332*** -0.292** -0.295** -0.290** -0.297**

(-3.00) (-3.42) (-2.77) (-2.46) (-2.53) (-2.43) (-2.36)

Client Size -0.027 -0.013 -0.073** -0.133*** -0.143***

(-1.10) (-0.49) (-2.18) (-3.17) (-3.54)

Dealer-Connections -0.012 -0.034** -0.030* -0.026*

(-0.86) (-2.08) (-1.86) (-1.70)

Client Intensity 0.181*** 0.242*** 0.243***

(3.25) (3.83) (3.64)

Trade Size 0.054** 0.060**

(2.24) (2.40)

N 732205 730076 730076 730076 730076 730076 685705

R2 0.007 0.118 0.118 0.118 0.118 0.118 0.310

Day FE Yes No No No No No No

Bond FE Yes No No No No No No

Dealer FE Yes No No No No No No

Day*Dealer FE No Yes Yes Yes Yes Yes No

Day*Bond FE No Yes Yes Yes Yes Yes No

Day*Bond*Dealer FE No No No No No No Yes

Notes: This table regresses trading costs (computed by 22 using the average transaction price at the bond-day-dealer level as

the benchmark price) on an informed sophisticated client dummy, various controls and various fixed effects. “Client Size” is

the log of the average monthly trading volume of a given client. “Dealer-Connections” is the total number of unique dealers

(averaged across months) that a given client trades with in a given month. “Client Intensity” is the log of the average monthly

number of transactions of a given client. “Trade Size” is the log of the trade size in £s. Informed clients include those asset

managers and hedge funds whose average unscaled/gross P&L measure 21 is in the top tertile. To reduce noise, we winsorise

the sample at the 1-99%-level. T-statistics in parentheses are based on robust standard errors, using two-way clustering at the

day and client level. Asterisks denote significance levels (* p<0.1, ** p<0.05, *** p<0.01).
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Table 7: Informed Trading Volume and Informed Trading Costs

(1) (2) (3) (4)

InfVol / Vol log(InfVol)

InfCostsi,t [Trade Prices] -0.002** -0.021***

(-2.31) (-3.63)

InfCostsi,t [Quoted Prices] -0.002*** -0.037**

(-3.18) (-2.41)

Dealer’s Trading Volume -0.013** -0.020*** 1.004*** 1.006***

(-2.45) (-2.73) (21.18) (19.18)

N 1505 1551 1505 1551

R2 0.305 0.278 0.906 0.895

Notes: This table regresses the ratio of informed trading volume to total trading volume, “InfVol / Vol”, (columns 1-2) and the

natural logarithm informed trading volume, “log(InfVol)”, (columns 3-4) on the average trading costs faced by informed clients

at the given dealer. The term ”InfCostsi,t [Trade Prices]” refers to using the average transaction price (at the bond-day-dealer

level) as the benchmark price in 22 to compute average trading cost for informed client i in month t. The term ”InfCostsi,t

[Quoted Prices]” refers to using the end-of-day quote from Datastream as the benchmark price. To reduce noise, we winsorise

the sample at the 1%-level. T-statistics in parentheses are based on robust standard errors, using clustering at the month level.

Asterisks denote significance levels (* p<0.1, ** p<0.05, *** p<0.01).
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Figure 5: The relationship between trading costs of informed clients at a dealer and the
trading performance of unsophisticated clients against the given dealer: Day-Dealer level
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Notes: this figure plots the estimated β coefficients from our baseline daily regression 25 up to 20-day horizon (T = 20), using

as regressand the average value weighted performance of uninformed clients trading with dealer i in month t. We include as a

control the natural logarithm of the pound trade volume of dealers. To reduce noise, we winsorise the sample at the 1%-level.

The shaded area denotes the 90% confidence band, based on robust standard errors, using clustering at the month level.

Figure 6: The relationship between trading costs and future capital gains amongst informed
clients: Informed vs Unsophisticated Clients
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Notes: this figure plots the estimated β coefficients from our baseline monthly regression 26 up to 20-day horizon (T = 20),

using as regressor (regressand) the unweighted average trading cost (anticipation component) of client i in month t. We include

as a control the natural logarithm of the pound trade volume of clients. The left (right) panel shows the results for the sample

which only includes informed sophisticated (unsophisticated) clients. To reduce noise, we winsorise the sample at the 1%-level.

The shaded area denotes the 90% confidence band, based on robust standard errors, using clustering at the month level.
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Figure 7: The relationship between trading costs and future capital gains amongst informed
clients: trade size -weighted performance and cost measures
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Notes: this figure plots the estimated β coefficients from our baseline monthly regression 26 up to 20-day horizon (T = 20), using

as regressor (regressand) the size-weighted average trading cost (anticipation component) of client i in month t. We include as

a control the natural logarithm of the pound trade volume of clients. The sample only includes informed sophisticated clients.

To reduce noise, we winsorise the sample at the 1%-level. The shaded area denotes the 90% confidence band, based on robust

standard errors, using clustering at the month level.

D Informed Trading and Trade Size

Given our baseline classification of clients, we explore whether informed clients trade in

smaller quantities on average. To check this, we estimate the following transaction-level

regression for client i, asset k, dealer m and day t:

TradeSizei,k,m,t = β ×DInf
i + µk,t + δm,t + εi,k,m,t, (D.1)

Tables 8–9 show that the average trade size of informed clients is about 0.5-1 log points

lower than that of uninformed clients.
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D.1 Controlling for Client Size

Table 8: Relative Trade Size of Informed vs Unsophisticated Clients

(1) (2) (3) (4) (5)

Informed Clients -0.588* -0.498* -1.267*** -0.562*** -0.615***

(-1.81) (-1.86) (-5.98) (-2.87) (-3.54)

Client Size 0.503*** 0.702*** 0.604***

(9.39) (14.00) (10.64)

Dealer-Connections -0.168*** -0.129***

(-6.05) (-3.98)

N 730291 728093 728093 728093 469599

R2 0.207 0.398 0.518 0.544 0.690

Day FE Yes No No No No

Bond FE Yes No No No No

Dealer FE Yes No No No No

Day*Dealer FE No Yes Yes Yes No

Day*Bond FE No Yes Yes Yes No

Day*Bond*Dealer FE No No No No Yes

Notes: This table regresses trade size (computed as the log of trade notional) on dummy (taking value 1 for informed sophisti-

cated clients and 0 for unsophisticated clients), various controls and various fixed effects. “Client Size” is the log of the average

monthly trading volume of a given client. “Dealer-Connections” is the total number of unique dealers (averaged across months)

that a given client trades with in a given month. Informed clients include those asset managers and hedge funds whose average

scaled P&L measure is in the top tertile. To reduce noise, we winsorise the sample at the 1-99%-level. T-statistics in parentheses

are based on robust standard errors, using two-way clustering at the day and client level. Asterisks denote significance levels

(* p<0.1, ** p<0.05, *** p<0.01).
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Table 9: Relative Trade Size of More vs Less Informed Sophisticated Clients

(1) (2) (3) (4) (5)

Informed Clients -0.797*** -0.730*** -0.891*** -0.395** -0.418***

(-2.85) (-3.06) (-4.02) (-2.56) (-3.42)

Client Size 0.382*** 0.844*** 0.818***

(7.58) (17.55) (20.86)

Dealer-Connections -0.286*** -0.280***

(-11.64) (-14.34)

N 824757 823018 823018 823018 546716

R2 0.252 0.408 0.484 0.545 0.689

Day FE Yes No No No No

Bond FE Yes No No No No

Dealer FE Yes No No No No

Day*Dealer FE No Yes Yes Yes No

Day*Bond FE No Yes Yes Yes No

Day*Bond*Dealer FE No No No No Yes

Notes: This table regresses trade size (computed as the log of trade notional) on dummy (taking value 1 for informed sophisti-

cated clients and 0 for uninformed sophisticated clients), various controls and various fixed effects. “Client Size” is the log of

the average monthly trading volume of a given client. “Dealer-Connections” is the total number of unique dealers (averaged

across months) that a given client trades with in a given month. Informed clients include those asset managers and hedge

funds whose average scaled P&L measure is in the top tertile. To reduce noise, we winsorise the sample at the 1-99%-level.

T-statistics in parentheses are based on robust standard errors, using two-way clustering at the day and client level. Asterisks

denote significance levels (* p<0.1, ** p<0.05, *** p<0.01).
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D.2 Additional Results: Controlling for Intensity

Table 10: Relative Trade Size of Informed vs Unsophisticated Clients

(1) (2) (3) (4) (5)

Informed Clients -0.588* -0.498* -0.639** -1.004*** -0.944***

(-1.81) (-1.86) (-2.28) (-3.29) (-3.95)

Intensity 0.094* -0.157 -0.128**

(1.71) (-1.62) (-2.14)

Dealer-Connections 0.123*** 0.104***

(3.00) (3.92)

N 730291 728093 728093 728093 469599

R2 0.207 0.398 0.400 0.412 0.618

Day FE Yes No No No No

Bond FE Yes No No No No

Dealer FE Yes No No No No

Day*Dealer FE No Yes Yes Yes No

Day*Bond FE No Yes Yes Yes No

Day*Bond*Dealer FE No No No No Yes

Notes: This table regresses trade size (computed as the log of trade notional) on dummy (taking value 1 for informed sophisti-

cated clients and 0 for unsophisticated clients), various controls and various fixed effects. “Intensity” is the log of the average

monthly transaction number of a given client. “Dealer-Connections” is the total number of unique dealers (averaged across

months) that a given client trades with in a given month. Informed clients include those asset managers and hedge funds whose

average scaled P&L measure is in the top tertile. To reduce noise, we winsorise the sample at the 1-99%-level. T-statistics

in parentheses are based on robust standard errors, using two-way clustering at the day and client level. Asterisks denote

significance levels (* p<0.1, ** p<0.05, *** p<0.01).
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Table 11: Relative Trade Size of More vs Less Informed Sophisticated Clients

(1) (2) (3) (4) (5)

Informed Clients -0.797*** -0.730*** -0.821*** -0.851*** -0.842***

(-2.85) (-3.06) (-3.60) (-3.70) (-4.69)

Intensity 0.123*** -0.047 -0.070

(2.74) (-0.34) (-0.71)

Dealer-Connections 0.065 0.065*

(1.32) (1.89)

N 824757 823018 823018 823018 546716

R2 0.252 0.408 0.411 0.413 0.602

Day FE Yes No No No No

Bond FE Yes No No No No

Dealer FE Yes No No No No

Day*Dealer FE No Yes Yes Yes No

Day*Bond FE No Yes Yes Yes No

Day*Bond*Dealer FE No No No No Yes

Notes: This table regresses trade size (computed as the log of trade notional) on dummy (taking value 1 for informed sophisti-

cated clients and 0 for uninformed sophisticated clients), various controls and various fixed effects. “Intensity” is the log of the

average monthly transaction number of a given client. “Dealer-Connections” is the total number of unique dealers (averaged

across months) that a given client trades with in a given month. Informed clients include those asset managers and hedge

funds whose average scaled P&L measure is in the top tertile. To reduce noise, we winsorise the sample at the 1-99%-level.

T-statistics in parentheses are based on robust standard errors, using two-way clustering at the day and client level. Asterisks

denote significance levels (* p<0.1, ** p<0.05, *** p<0.01).

E Dynamics of Order Imbalance

In our theoretical model, the informed dealer is likely to mimic the trading direction of its

informed clients during the dealer’s subsequent trades against uniformed clients. In this

section, we provide additional (albeit suggestive) evidence in support of this prediction, by

studying the dynamic correlation structure of clients’ order imbalance at the dealer-day level,
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distinguishing between the type of order imbalance initiated by informed and by uninformed

clients. Specifically, we explore the idea that buy (sell) trades, initiated by informed clients

are more likely to be followed by the dealer selling to (buying from) uninformed clients.

To the extent that this mimicking behaviour by dealers drives the data, we expect the

cross-correlation between the present informed order imbalance and future uninformed order

imbalance to be negative compared to the autocorrelation in the order imbalance.

The previous literature used aggregate data to document the positive autocorrelation in

aggregate order imbalance in stock markets (Chordia, Roll and Subrahmanyam 2002, 2005)

and in government bond markets (Green 2004, Wang, Wu and Yu 2012).25 Our contribution

to this literature is twofold. First, we are able to analyse the persistence profile of order

imbalance at a more disaggregated level, i.e. at the dealer-level. Second, we are able to

decompose clients’ order imbalance at the dealer-level into the part initiated by informed

clients and the remaining that is related to uninformed clients.

Formally, we estimate the following dynamic regression model for dealer i, bond j, on

day t:

Imbki,j,t = β × Imbki,j,t−1 + εi,j,t, (E.1)

where Imbki,j,t is the order imbalance related to client type k which may include all clients,

informed clients and uninformed clients, k = {Total, Inf, Un}. Informed clients are defined

as the informed sophisticated clients, as defined above; uninformed clients include all other

agents that the dealer trades with, including other clients as well as the inter-dealer sector.

The term Imbki,j,t is measured as the net trading volume in pounds, scaled by the total trading

volume (at the dealer-bond-day level).26 The object of interest is the estimated value of β.

The upper panel of Table 12 reports the results at the bond-day-dealer level. Columns

1-3 show that there is a positive autocorrelation in total, informed and uninformed order

25The literature offered various expiations behind the positive autocorrelation in order imbalance, including
information-induced order-splitting (Kyle 1985) and herding behaviour amongst others.

26Scaling the net trading volume by total trading volume serves as a standardisation device, which is
motivated by the sizeable cross-sectional heterogeneity in the size of order imbalance across dealers (e.g.
small vs. large dealers) and across bonds (e.g. on-the-run vs off-the-run bonds).
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Table 12: The Dynamics of Order Imbalance

(Totalt, T otalt−1) (Inft, Inft−1) (Unt, Unt−1) (Unt, Inft−1) (Unt−1, Inft)

(1) (2) (3) (4) (5)

Day-Dealer-Bond Level

β 0.072*** 0.119*** 0.076*** -0.050*** 0.013***

(18.10) (12.07) (19.79) (-7.13) (6.46)

N 426392 90330 328060 138197 137325

R2 0.005 0.014 0.006 0.001 0.000

Day-Dealer-Maturity Bucket Level

β 0.043*** 0.079*** 0.038*** -0.042*** 0.003

(11.73) (11.55) (9.73) (-4.61) (1.21)

N 119328 68263 115332 83350 83416

R2 0.002 0.006 0.001 0.000 0.000

Notes: This table shows the estimation results for regression E.1. T-statistics in parentheses are based on robust standard
errors, using clustering at the day-bond level (upper panel) and at the day-level (lower panel). Asterisks denote significance
levels (* p<0.1, ** p<0.05, *** p<0.01).

imbalance. These results are consistent with the aggregate evidence of the existing literature

(Chordia, Roll and Subrahmanyam 2002, 2005, Green 2004). The novel contribution of

this empirical exercise is Column 4 of Table 12, which shows that there is a significantly

negative relationship between lagged order imbalance of informed clients at a dealer and

the contemporaneous order imbalance of uninformed clients at the given dealer. This is

consistent with the learning mechanism in our theoretical model: a dealer is more likely to

buy from (sell to) uninformed clients after it sold to (bought from) informed clients, because

the transaction with informed clients revealed to the dealer that the asset value is more likely

to be high (low).

Note that a negative dynamic correlation between order imbalances of different client

groups at a dealer could also be driven by the dealer’s need to dynamically rebalance its

inventory. However, this explanation could equally apply to the case when we inspect the

relationship between contemporaneous order imbalance of informed clients and the lagged

order imbalance of uninformed clients. Column 5 of Table 12, however, shows that this

relationship continues to be positive. This is an important cross-check, as it provides evi-

dence (albeit suggestive) that our findings are more likely to be explained by our theoretical

mechanism than simple inventory based explanations.

74



In the lower panel Table 12, we report the results after grouping together bonds in four

maturity buckets.27 The aggregation of bonds at different maturity segments builds on

the previous literature (Brandt and Kavajecz 2004) and is motivated by the strong factor

structure of government bonds. The findings continue to suggest that positive informed

order imbalance against a dealer tends to be followed a negative uninformed order imbalance

against the same dealer in the following trading day. Table 13 below shows that the results

are similar when we include second lags as regressors in the regression.

27The four maturity buckets, based on years to maturity (YTM), include short-term (0-4 YTM), medium-
term (4-9 YTM), long-term (9-21 YTM) and very long-term (¿21 YTM) bonds. These cut-offs are chosen
to have an approximately even number of transactions in each bucket in our sample.

75



Table 13: The Dynamics of Order Imbalance: Including a Second Lag

Lag (days) (Totalt, T otalt−1) (Inft, Inft−1) (Unt, Unt−1) (Unt, Inft−1) (Unt−1, Inft)

(1) (2) (3) (4) (5)

Day-Dealer-Bond Level

l = 1 0.066*** 0.117*** 0.067*** -0.041*** 0.011***

(18.36) (9.64) (18.54) (-5.00) (4.76)

l = 2 0.037*** 0.074*** 0.030*** -0.022*** 0.007***

(9.64) (6.81) (8.12) (-3.12) (3.18)

N 317168 42915 234045 55686 94606

R2 0.006 0.021 0.006 0.001 0.000

Day-Dealer-Maturity Bucket Level

l = 1 0.040*** 0.067*** 0.034*** -0.040*** 0.003

(10.66) (9.66) (8.65) (-4.13) (1.41)

l = 2 0.028*** 0.050*** 0.017*** -0.008 -0.000

(7.96) (7.27) (4.64) (-0.83) (-0.12)

N 116234 57538 111100 66637 81278

R2 0.002 0.007 0.001 0.000 0.000

Notes: This table shows the estimation results for a variant of regression E.1, where second lags too are included as regressors.

T-statistics in parentheses are based on robust standard errors, using clustering at the day-bond level (upper panel) and at the

day-level (lower panel). Asterisks denote significance levels (* p<0.1, ** p<0.05, *** p<0.01).
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